1. Technical Field
The present invention relates generally to an improved method and system for transferring data to a sewing/embroidery system. In particular, the present invention relates to a method and system for using wireless transmission between a sewing/embroidery machine and a source system to update stitch information in a memory card.
2. Description of Related Art
Advances in computer technology have provided the embroidery and sewing machine market with various methods to transfer embroidery designs to an embroidery or sewing machine. Embroidery designs are employed by the embroidery or sewing machine to guide the machine's movement of the embroidery arm. The embroidery arm is directed to stitch the same pattern specified in the design.
Embroidery designs may be acquired in a variety of ways, including purchasing designs stored on floppy disks and CD-ROMs, or downloading designs from the Internet and storing the designs on a computer's hard drive. The embroidery design is then typically supplied to the embroidery or sewing machine via a data storage device, such as a memory card or floppy disk. The memory card or floppy disk is typically inserted into a built-in embroidery card slot within the embroidery machine, which reads the contents of the card and is then able to stitch the designs stored on the card.
Current methods for transferring designs obtained from a source such as a PC's hard drive to an embroidery machine include storing these designs on a blank memory card and transferring the designs to the embroidery machine in the same manner as describe above.
However, conventional methods for updating the stitch data available to the embroidery machine can be cumbersome. For example, the content of the memory card or floppy disk is updated with desired stitch data via a PC or other source system. Next, the updated card or disk is physically carried from the source system to the embroidery machine. The updated card or disk is interfaced with the embroidery machine and the desired stitch information is then available for use. Since these steps are performed each time new stitch information is desired, changing stitch data available to the embroidery machine can be a time-consuming process.
In addition, although some conventional embroidery machines include the ability to directly connect to the PC, the addition of this interface method to the embroidery machine requires that the machine software be extensively modified or designed from the ground up prior to implementing this peer-to-peer protocol.
Therefore, it would be advantageous to have an improved method and system for updating stitch data available to an embroidery machine.
The present invention provides a method and system for using a wireless transmission between an embroidery machine and a source system to update stitch data in a memory card. A command to update the stitch data in the memory card is received. Once it is determined that the memory card is not currently in use, the memory card is logically disconnected from the embroidery machine. The new stitch data is then transferred from a source system to the memory card via a wireless connection, and the contents of the memory card are updated with the new stitch data. The memory card is then logically reconnected to the embroidery machine and the new stitch data is ready to be used by the embroidery machine.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as a preferred mode of use, further objectives and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
The present invention provides a method and system for transferring embroidery designs from a source system to an embroidery machine via a wireless connection. The present invention may be implemented using a stand-alone embroidery machine, a combination sewing/embroidery machine, or any other device which employs stitch data instructions. The present invention may also be implemented using a source system, such as, for example, a personal computer (PC) or a personal digital assistant (PDA) device.
With reference now to the figures and in particular with reference to
With reference now to
An operating system runs on processor 202 and is used to coordinate and provide control of various components within data processing system 200 in FIG. 2. The operating system may be a commercially available operating system such as Windows XP™, which is available from Microsoft Corporation. An object oriented programing system such as Java™ may run in conjunction with the operating system and provides calls to the operating system from Java™ programs or applications executing on data processing system 200. “Java” is a trademark of Sun Microsystems, Inc. Instructions for the operating system, the object-oriented programing system, and applications or programs are located on storage devices, such as hard disk drive 226, and may be loaded into main memory 204 for execution by processor 202.
Those of ordinary skill in the art will appreciate that the hardware in
For example, data processing system 200, if optionally configured as a network computer, may not include IDE interface 212, hard disk drive 226, tape drive 228, and CD-ROM 230. In that case, the computer, to be properly called a client computer, includes some type of network communication interface, such as LAN adapter 210, modem 222, or the like. As another example, data processing system 200 may be a stand-alone system configured to be bootable without relying on some type of network communication interface, whether or not data processing system 200 comprises some type of network communication interface. As a further example, data processing system 200 may be a personal digital assistant (PDA), which is configured with ROM and/or flash ROM to provide non-volatile memory for storing operating system files and/or user-generated data.
The depicted example in FIG. 2 and above-described examples are not meant to imply architectural limitations. For example, data processing system 200 also may be a notebook computer or hand held computer in addition to taking the form of a PDA. Data processing system 200 also may be a kiosk or a Web appliance.
Turning now to
Memory card 306, also known as a flash memory card, is used to store data for use on embroidery machine 302. In this example, memory card 306 includes a flash memory 308, a microcontroller 310, a memory card connector 312, and a wireless interface 314. Memory card connector 312 may be a built-in memory card slot within embroidery machine 302, or a connection to a memory card module located external to embroidery machine 302. Inserting memory card 306 into a built-in memory card slot within embroidery machine 302 allows the embroidery machine to access the stitch data via memory card connector 312. Embroidery machine 302 is then able to use the stitch data on memory card 306 in flash memory 308.
Personal computer (PC) 316 is connected to memory card 306 via a wireless connection. USB interface device 318 is connected to personal computer 316 through USB interface 324, such as USB adapter 216 shown in FIG. 2. It should be noted that although this example implementation employs a USB device, other interface mechanisms may be used, including, for example, IEEE1394, PCCard (PCMCIA), compact PCMCIA, PCI, or any other expansion bus interface card. USB interface device 318 facilitates the wireless connection between memory card 306 and personal computer (PC) 316. USB interface device 318 includes microcontroller 320 and wireless interface 322. Stitch data may be transferred from PC 316 to memory card 306 via the wireless connection. Thus, memory card 306 is updated to reflect the new stitch data from PC 316 while memory card 306 is located within the built-in memory card or within a memory card module located external to embroidery machine 302. Consequently, embroidery machine 302 is able to access new stitch on updated memory card 306.
Referring now to
An alternative embodiment of memory card 306 in
As mentioned previously, the mechanism of the present invention allows for the wireless transfer of stitch data from a source system to an embroidery machine, and the subsequent update of the contents in memory, such as flash memory 308 in memory card 306. The present invention also eliminates the need for modifying the embroidery machine software to accommodate this peer-to-peer protocol.
Turning now to
The process begins by initiating a change in the contents of the flash memory (step 600). The process may be initiated by a PC, such as computer 100 in
Otherwise, a command is sent to effectively disconnect the memory card from the embroidery or sewing machine by signaling the various card detect signals accordingly (step 604). In response, the memory card microcontroller disconnects the flash memory from the embroidery machine memory card connector (step 606). This step may be accomplished by pushing a high z from the CPLD to the embroidery machine card connector.
Next, the memory card microcontroller erases the data stored in the flash memory, reprograms itself as necessary to acquire data from the PC wireless interface, and receives the new data (step 608). The memory card microcontroller then reconnects the flash memory to the embroidery machine memory card connector by signaling the various card detect signals accordingly (step 610). At this time, the embroidery or sewing machine may use the new design data stored in the flash memory.
In this manner, the present invention provides an improved method and system for transferring data to a sewing/embroidery system. The advantages of the present invention should be apparent in view of the detailed description provided above. The mechanism of the present invention allows for the wireless transmission of stitch data from a source system to an embroidery machine. The memory card containing stitch data is updated with new stitch data received from the source system. The stitch data is then made available to the embroidery machine. Consequently, new stitch data may be transferred to an embroidery machine without the need for physically carrying the memory card from the source system to the embroidery machine. In addition, there is no need to alter or redesign the software in the embroidery or sewing machine, since the present invention is implemented using existing connections and interfaces on the machines.
The description of the present invention has been presented for purposes of illustration and description, and is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. The embodiment was chosen and described in order to best explain the principles of the invention, the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
Number | Name | Date | Kind |
---|---|---|---|
5904108 | Tanaka et al. | May 1999 | A |
5960726 | Yamada | Oct 1999 | A |
5988083 | Tomita et al. | Nov 1999 | A |
6095067 | Tomita et al. | Aug 2000 | A |
6131526 | Iida et al. | Oct 2000 | A |
6202001 | Muto | Mar 2001 | B1 |
6256551 | Muto | Jul 2001 | B1 |
6289831 | Hanai et al. | Sep 2001 | B1 |
6295481 | Price | Sep 2001 | B1 |
6324441 | Yamada | Nov 2001 | B1 |
6457429 | Tomita et al. | Oct 2002 | B1 |
6543374 | Terao | Apr 2003 | B2 |
20020000181 | Mamiya et al. | Jan 2002 | A1 |
20020007228 | Goldman | Jan 2002 | A1 |
20020014191 | Shimizu | Feb 2002 | A1 |
20020029729 | Mamiya | Mar 2002 | A1 |
20020029730 | Mamiya | Mar 2002 | A1 |
20020059891 | Shimizu et al. | May 2002 | A1 |
20020066397 | Mamiya et al. | Jun 2002 | A1 |
20020078871 | Mamiya et al. | Jun 2002 | A1 |
20040083022 | Akira et al. | Apr 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20050107905 A1 | May 2005 | US |