1. Field of the Invention
The present invention relates to the field of virtual metropolitan area network (VMAN) topologies and internetwork communications technologies. In particular, the present invention relates to a protocol for use in a VMAN network architecture to route and forward data packets according to the VMAN configuration.
2. Background Information and Description of Related Art
A metropolitan area network (MAN) is a network that interconnects users with computer resources in a geographic area or region larger than that covered by a local area network but smaller than the area covered by a wide area network. The term is typically applied to the interconnection of networks in a city into a single larger network (which may then also offer efficient connection to a wide area network). The amount of data traffic being sent over MANs is increasing at an exponential rate. This is due in part to the increasingly ubiquitous use of the Internet by consumers and businesses, as well as the increasingly bandwidth-intensive nature of the Internet applications that are being deployed.
An important aspect of MANs is the ability of MAN service providers to create virtual private network network connections (VPNs) across a single MAN infrastructure, referred to as a virtual metropolitan area network (VMAN). VMANs allow customers having multiple locations within a metropolitan area to transport private traffic, including virtual local area network (VLAN) traffic, over the shared single MAN.
However, the use of vMANs to handle traffic from multiple customers over a single MAN creates access and security issues. Therefore, it is important to segregate one customer from another so that there is no co-mingling of traffic.
In addition, customer traffic must be transported over the MAN without interfering with the customers' own higher-layer protocols such as DECnet, or private IP subnets. For example, the DECnet Phase IV protocol can cause problems when routed to a Layer 2 MAN because the DECnet protocol changes the media access control (MAC) address in the packet's datalink header. Since duplicate MAC addresses are typically not allowed, MAN service providers end up managing DECnet streams by hand—something which neither the provider nor the customer wants.
Accordingly, a new approach is needed to securely manage traffic in a VMAN network architecture while not interfering with higher level protocols.
According to one aspect of the invention, a method and system is provided in which a VMAN protocol is used to segregate MAN traffic at a customer and a provider domain level. A switch at the edge of the MAN encapsulates a customer data packet from an initiating 802.1Q customer domain in a new Ethernet header, which is used to specify the IEEE 802.1Q VLAN tags as determined by the customer-related VLAN configurations. A switch at the core of the MAN encapsulates the data packet further in another new Ethernet header, which is used to specify new VMAN tags as determined by the MAN service provider VMAN configurations. The nested encapsulation is repeated as necessary until the data packet is eventually forwarded to a remote switch at the edge of the MAN in accordance with the VMAN configuration, or the source and destination address in the original data packet. The remote switch strips the VMAN tags from the data packet, and forwards the stripped data packet to the receiving 802.1Q customer domain as specified in the IEEE 802.1Q VLAN tag.
According to one aspect of the invention, apparatus are provided to carry out the above and other methods.
The present invention will be described by way of exemplary embodiments, but not limitations, illustrated in the accompanying drawings in which like references denote similar elements, and in which:
In the following description various aspects of the present invention, a VMAN protocol method and system, will be described. Specific details will be set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to those skilled in the art that the present invention may be practiced with only some or all of the described aspects of the present invention, and with or without some or all of the specific details. In some instances, well known architectures, steps, and techniques have not been shown to avoid unnecessarily obscuring the present invention. For example, specific details are not provided as to whether the method and system is implemented in a router, server or gateway, as a software routine, hardware circuit, firmware, or a combination thereof.
Various operations will be described as multiple discrete steps performed in turn in a manner that is most helpful in understanding the present invention. However, the order of description should not be construed as to imply that these operations are necessarily performed in the order they are presented, or even order dependent. Lastly, repeated usage of the phrase “in one embodiment” does not necessarily refer to the same embodiment, although it may.
Referring now to
Data packets originating within the VLANs of the VLANs of the 802.1Q domains in the illustrated embodiment carry a VLAN identification that can be used to provide intra-VLAN communication using existing layer-2 VLAN forwarding mechanisms. While no other information is needed, additional constraints and layer-2 filtering can be defined as needed to improve performance and security. As there is no single official standard protocol for communication of VLAN information, existing VLAN forwarding mechanisms may be employed, including proprietary VLAN communication protocols. The method commonly used is known as “frame-tagging.” In frame-tagging, packets originating from a host belonging to a VLAN acquire a VLAN identifier (VLAN ID) as they are switched onto a shared backbone network. The VLAN ID is what enables the receiving switches to forward the packets intelligently by switching the packets to only those switches that are members of the same VLAN. A non-proprietary VLAN communication protocol has been incorporated into the institute for Electrical and Electronics Engineers (IEEE) 802.1Q standard, whereby the VLAN ID is part of the IEEE 802.1Q header inserted between the DataLink header (i.e. the Media Access Control (MAC) header) and the frame's user data. This is also referred to as an 802.1Q tagged frame.
When the 802.1Q tagged frame is transported over the MAN 100 the MAN service provider must insure that the data packet is segregated from other customer traffic so as not to compromise the security of the packet or cause conflict with other customer traffic. In the illustrated embodiment, the packets are segregated using VMANs. A VMAN allows certain traffic designated with a VMAN identifier to be forwarded along a particular path to only destinations belonging to the same VMAN. In the illustrated embodiment, an 802.1Q tagged frame 135 represents a data packet sent by a customer having a .1Q tag with VLAN ID=10 in the first 802.1Q Domain-A 110. Upon receipt by the first edge switch 1115, the 802.1Q tagged frame 135 is converted to a VMAN tagged frame 145 by encapsulating it in a new Ethernet data packet containing a VMAN tag with a VMAN ID=60. The VMAN tagged frame 145 is then received by the VMAN CORE 120, which forwards the VMAN tagged frame 145 to a second edge switch 125 according to VMAN tag with the VMAN ID=60. Depending on the architecture of the MAN, the VMAN CORE 120 may include one or more core switches that perform routing and forwarding of network traffic based on the VMAN ID and the destination media access control (MAC) address. The encapsulation of the 802.1Q tagged frame 135 may be repeated as necessary, depending upon the architecture of the MAN. In one embodiment, the data packet sent by the customer may be an untagged frame, such as an Ethernet frame in accordance with the IEEE 802.1D protocol. Upon receipt by the second edge switch 2130 the VMAN tagged frame 145 is stripped of the VMAN tag with VMAN ID=60. The stripped VMAN tagged frame 140 is then forwarded to the proper customer in VLAN 10 according the .1Q tag VLAN ID=10. In the case of untagged frames, the proper customer is determined from a value in the edge switch 2130 and the destination MAC address.
A similar process is illustrated in the 802.1Q tagged frame 155 with a .1Q tag of VLAN ID=20. The first edge switch 1115 converts the 802.1Q tagged frame 155 to VMAN tagged frame 150 by adding the VMAN tag with a VMAN ID=50 after the DataLink Header portion of the 802.1Q tagged frame 155. Upon receipt, the second edge switch 2130 then converts the VMAN tagged frame 150 by stripping it of the VMAN tag with VMAN ID=50, resulting in the 802.1Q tagged frame 160 with a .1Q tag VLAN ID=20. The stripped VMAN tagged frame 160 is then routed to the proper customer in VLAN 20 according the .1Q tag VLAN ID=20.
As can be seen from the foregoing description, the illustrated embodiment of the present invention makes it possible to create separate customer and provider domains for data packets transported over a single MAN 100. Customer domain encapsulation is performed at the edge of the MAN 100 using 802.1Q frame-tagging where the VMAN-enabled switches enforce other customer-related priorities and policies, while the provider encapsulation is performed at the core of the MAN 100. This nested encapsulation gives the MAN service provider an opportunity to create VMANs for their own use, without interfering with the flow of customer traffic.
For example, provider VMANs can be used to connect customers to third-party services such as Internet Service Providers (ISPs) or Application Service Providers (ASPs). Since the connections to the ISPs and ASPs are transported over a VMAN, the customers can easily switch ISPs without disrupting their service. MAN service providers can also use VMANs to consolidate traffic and centralize value-added services like VPNs or managed firewalls. Rather than being forced to install and maintain equipment on or near the customer premises—an expensive, labor-intensive task—providers can aggregate customer traffic for value-added services at a central office. This not only saves on the cost of providing administrative staff, but achieves better economies of scale and gives customers more reliable service. Better economies of scale are achieved due in part to the fact that each VMAN switch can set up and manage up to 4,096 VMANs.
In the illustrated embodiment, 802.1Q tagged frames are used to encapsulate data packets at the customer domain level. However, it should be understood that other variations for determining the customer domain using IP subnets or other high-level protocols may be employed without departing from the principles of or exceeding the scope of the present invention. Moreover, while the description of the embodiments of the present invention address the method and system as it applies to use by a MAN service provider, it is appreciated by those of ordinarily skill in the art that method is generally applicable to any network service provider that services multiple customers over any Internetworking application including, Local Area Networks (LANs), and Wide Area Networks (WANs).
Referring now to
b illustrates an embodiment of the 802.1Q tagged format of the previously described 802.1Q tagged frames 135, 140, 155, and 160, in further detail. The 802.1Q tagged format is known in the art and has been incorporated into the IEEE 802.1Q standard for VLAN communication. In addition to the MAC destination address 201, MAC source address 202, type/length 203, and user data 204 as already described, the 802.1Q tagged frame format includes an additional 4 bytes of data in type data field 205 and .1Q VLAN ID 206. In one embodiment the type field 205 is a 2-byte hexadecimal number, e.g. ¢H8100,” that defines the type of tag being used in the data packet, in this case the .1Q tag VLAN ID 206. This type field 205 provides the information to the switch that is necessary to interpret the contents of the .1Q VLAN ID 206. In the illustrated embodiment, the .1Q tag VLAN ID 206 is also a 2-byte field, and may also be formatted as a hexadecimal number that identifies the VLAN to which the data packet belongs.
c illustrates an embodiment of the VMAN tagged format of the previously described VMAN tagged frames 145 and 150, in further detail. In addition to the MAC destination address 201, MAC source address 202, type/length 203, user data 204, type 205, and .1Q tag VLAN ID 206 as already described, the VMAN tagged frame format includes an additional 4 bytes of data in type data field 207 and VMAN tag VMAN ID 208. In one embodiment the type field 205 is a 2-byte hexadecimal number, e.g. “H8181,” that defines the type of tag being used in the data packet, in this case the VMAN tag VMAN ID 208. The type field 207 provides the identifying information to the switch that is necessary to interpret the contents of the VMAN tag VMAN ID 208. In the illustrated embodiment, the VMAN tag VMAN ID 208 is also a 2-byte field, and may also be formatted as a hexadecimal number that identifies the VMAN to which the data packet belongs.
In one embodiment, the use of new Ethernet headers in the form of the type 205/207 and tag 206/208 fields constitute encapsulating the data packet into a customer domain and provider domain respectively. The encapsulation allows the MAN service providers to transport data packets over a single MAN without comingling different customers' traffic. In addition, the encapsulation allows the MAN service providers to aggregate traffic according to provider-defined domains.
Referring now to
Referring now to
Accordingly, a novel method and system is described for a VMAN protocol used in forwarding data packets by a MAN switch connecting multiple customers across a single MAN infrastructure. From the foregoing description, those skilled in the art will recognize that many other variations of the present invention are possible. In particular, while the present invention has been described as being implemented in a network comprising one or more MAN switches, such as edge switch 1115, edge switch 2130, core MAN switches in VMAN COR 120, and customer domains such as the 802.1Q domains 110/130, some of the logic may be distributed in other components of a network or internetwork application.
For example, embodiments of the invention may be represented as a software product stored on a machine-accessible medium (also referred to as a computer-readable medium or a processor-readable medium). The machine-accessible medium may be any type of magnetic, optical, or electrical storage medium including a diskette, CD-ROM, memory device (volatile or non-volatile), or similar storage mechanism. The machine-accessible medium may contain various sets of instructions, code sequences, configuration information, or other data. As an example, the procedures described herein for a encapsulating a data packet by edge switch 1115, or forwarding a VMAN tagged frame by a core switch in VMAN CORE 120 can be stored on the machine-accessible medium. Those of ordinary skill in the art will appreciate that other instructions and operations necessary to implement the described invention may also be stored on the machine-accessible medium.
Thus, the present invention is not limited by the details described. Instead, the present invention can be practiced with modifications and alternations within the spirit and scope of the appended claims.
This application is a continuation of U.S. application Ser. No. 09/755,736, filed Jan. 5, 2001 now U.S. Pat. No. 6,618,388.
Number | Name | Date | Kind |
---|---|---|---|
4897874 | Lidinsky et al. | Jan 1990 | A |
5027350 | Marshall | Jun 1991 | A |
5088032 | Bosack | Feb 1992 | A |
5095480 | Fenner | Mar 1992 | A |
5115431 | Williams et al. | May 1992 | A |
5136580 | Videlock et al. | Aug 1992 | A |
5241682 | Bryant et al. | Aug 1993 | A |
5243342 | Kattemalalavadi et al. | Sep 1993 | A |
5251205 | Callon et al. | Oct 1993 | A |
5274631 | Bhardwaj | Dec 1993 | A |
5287103 | Kasprzyk et al. | Feb 1994 | A |
5304992 | Harashima | Apr 1994 | A |
5309430 | Verhille et al. | May 1994 | A |
5311509 | Heddes et al. | May 1994 | A |
5313582 | Hendel et al. | May 1994 | A |
5317562 | Nardin et al. | May 1994 | A |
5319644 | Liang | Jun 1994 | A |
5345446 | Hiller et al. | Sep 1994 | A |
5353283 | Tsuchiya | Oct 1994 | A |
5353383 | Uchimura et al. | Oct 1994 | A |
5361256 | Doeringer et al. | Nov 1994 | A |
5371852 | Attanasio et al. | Dec 1994 | A |
5394394 | Crowther et al. | Feb 1995 | A |
5394402 | Ross | Feb 1995 | A |
5408469 | Opher et al. | Apr 1995 | A |
5423002 | Hart | Jun 1995 | A |
5426637 | Derby et al. | Jun 1995 | A |
5473599 | Li et al. | Dec 1995 | A |
5473607 | Hausman et al. | Dec 1995 | A |
5485455 | Dobbins et al. | Jan 1996 | A |
5500860 | Perlman et al. | Mar 1996 | A |
5519704 | Farinacci et al. | May 1996 | A |
5526489 | Nilakantan et al. | Jun 1996 | A |
5555256 | Calamvokis | Sep 1996 | A |
5604868 | Komine et al. | Feb 1997 | A |
5617421 | Chin et al. | Apr 1997 | A |
5651002 | Van Seters et al. | Jul 1997 | A |
5666363 | Osakabe et al. | Sep 1997 | A |
5684800 | Dobbins et al. | Nov 1997 | A |
5740171 | Mazzola et al. | Apr 1998 | A |
5742604 | Edsall et al. | Apr 1998 | A |
5752003 | Hart | May 1998 | A |
5764636 | Edsall | Jun 1998 | A |
5872783 | Chin | Feb 1999 | A |
5892912 | Suzuki et al. | Apr 1999 | A |
5910955 | Nishimura et al. | Jun 1999 | A |
5946308 | Dobbins et al. | Aug 1999 | A |
5956335 | Backers et al. | Sep 1999 | A |
5959968 | Chin et al. | Sep 1999 | A |
5959990 | Frantz et al. | Sep 1999 | A |
5978378 | Van Seters et al. | Nov 1999 | A |
6023563 | Shani | Feb 2000 | A |
6035105 | McCloghrie et al. | Mar 2000 | A |
6075776 | Tanimoto et al. | Jun 2000 | A |
6128666 | Muller et al. | Oct 2000 | A |
6157647 | Husak | Dec 2000 | A |
6163543 | Chin et al. | Dec 2000 | A |
6181699 | Crinion et al. | Jan 2001 | B1 |
6209649 | Pringle et al. | Apr 2001 | B1 |
6219699 | McCloghrie et al. | Apr 2001 | B1 |
6226771 | Hilla et al. | May 2001 | B1 |
6771673 | Baum et al. | Aug 2004 | B1 |
7154889 | Rekhter et al. | Dec 2006 | B1 |
20010005381 | Sugiyama | Jun 2001 | A1 |
20030123448 | Chang | Jul 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 09755736 | Jan 2001 | US |
Child | 10617911 | US |