Additionally, unpredictable behavior in split brain scenarios may arise. Typically, the switches may run a Spanning Tree Protocol to prevent loops in the network. If both devices go active (e.g. HA cable 118 is disconnected), then each switch may block a different device, causing a total loss of traffic through the pair.
In one aspect, a method useful for implementing high availability (HA) enhancements to a computer network, comprising the steps of: providing a first edge device of a local area network (LAN); providing a second edge device of the LAN; providing a gateway system to the LAN from a wide area network; detecting that an HA cable between the first edge device and the second edge device is disconnected; establishing a network connection between the gateway system and the second edge device; with the gateway system: determining that the first edge device is active and passing network traffic, implementing a network tunneling protocol with second edge device, signaling to the second edge device to go into a standby mode, detecting that the first edge device loses connectivity then the gateway, and signaling to the second edge device to take over as the active edge device of the LAN.
The Figures described above are a representative set, and are not exhaustive with respect to embodying the invention.
Disclosed are a system, method, and article of manufacture for method and system of a high availability enhancements to a computer network. The following description is presented to enable a person of ordinary skill in the art to make and use the various embodiments. Descriptions of specific devices, techniques, and applications are provided only as examples. Various modifications to the examples described herein can be readily apparent to those of ordinary skill in the art, and the general principles defined herein may be applied to other examples and applications without departing from the spirit and scope of the various embodiments.
Reference throughout this specification to “one embodiment,” “an embodiment,” ‘one example,’ or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.
Furthermore, the described features, structures, or characteristics of the invention may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided, such as examples of programming, software modules, user selections, network transactions, database queries, database structures, hardware modules, hardware circuits, hardware chips, etc., to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art can recognize, however, that the invention may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the invention.
The schematic flow chart diagrams included herein are generally set forth as logical flow chart diagrams. As such, the depicted order and labeled steps are indicative of one embodiment of the presented method. Other steps and methods may be conceived that are equivalent in function, logic, or effect to one or more steps, or portions thereof, of the illustrated method. Additionally, the format and symbols employed are provided to explain the logical steps of the method and are understood not to limit the scope of the method. Although various arrow types and line types may be employed in the flow chart diagrams, and they are understood not to limit the scope of the corresponding method. Indeed some, arrows or other connectors may be used to indicate only the logical flow of the method. For instance, an arrow may indicate a waiting or monitoring period of unspecified duration between enumerated steps of the depicted method. Additionally, the order in which a particular method occurs may or may not strictly adhere to the order of the corresponding steps shown.
Example definitions for some embodiments are now provided.
Address Resolution Protocol (ARP) is a communications protocol used for discovering the link layer address associated with a given Internet layer address, a critical function in the Internet protocol suite.
CE router (customer edge router) can be a router located on the customer premises that provides an Ethernet interface between the customer's LAN and the provider's core network. CE routers can be a component in an MPLS architecture.
Dynamic tunneling can refer to Multi Path tunnels (i.e. paths) that are established on-demand between two endpoints when there is VPN traffic to be sent between two Edges, and torn down after VPN traffic is completed.
Edge device can be a device that provides an entry point into enterprise or service provider core networks. An edge device can be software running in a virtual machine (VM) located in a branch office and/or customer premises.
Gateway can be a node (e.g. a router) on a computer network that serves as an access point to another network.
LAN is a local area network, a computer network covering a small local area.
Multiprotocol Label Switching (MPLS) is a type of data-carrying technique for high-performance telecommunications networks. MPLS directs data from one network node to the next based on short path labels rather than long network addresses, avoiding complex lookups in a routing table. The labels identify virtual links (paths) between distant nodes rather than endpoints. MPLS can encapsulate packets of various network protocols.
Orchestrator can include a software component that provides multi-tenant and role based centralized configuration management and visibility.
Split brain can refer to data or availability inconsistencies originating from the maintenance of two separate data sets with overlap in scope, either because of servers in a network design, or a failure condition based on servers not communicating and synchronizing their data to each other.
Tunneling protocol can allow a network user to access or provide a network service that the underlying network does not support or provide directly.
Wide area network (WAN) is a telecommunications network or computer network that extends over a large geographical distance.
Virtual private network (VPN) can extend a private network across a public network, such as the Internet. It can enable users to send and receive data across shared or public networks as if their computing devices were directly connected to the private network, and thus benefit from the functionality, security and management policies of the private network.
Additional example definitions are provided herein.
It is noted that the following systems and methods are backwards compatible with existing HA deployments, thus requiring no changes to existing user interfaces.
Now that each of the edge devices 212, 214 has its own individual set of WAN connections, a split-brain scenario can be easily determined by a gateway which has a full view of what is happening from the perspective of both edge devices 212, 214.
It is noted that each of the edge devices 212, 214 has its own individual set of WAN connections, a split-brain scenario can be determined by the Gateway. The Gateway can have a full view of the state of each of the edge devices 212, 214 from the perspective of both edge devices 212, 214.
A dynamic HA mode based on current WAN connectivity can be implemented. It is noted that a WAN switch is no longer required for HA deployments as links may be connected to individual edge devices. This can be accomplished by leveraging the link state which is already synchronized between the edge devices and, using a standby edge as a virtual switch to reach links attached to the standby edge only.
Although the present embodiments have been described with reference to specific example embodiments, various modifications and changes can be made to these embodiments without departing from the broader spirit and scope of the various embodiments. For example, the various devices, modules, etc. described herein can be enabled and operated using hardware circuitry, firmware, software or any combination of hardware, firmware, and software (e.g., embodied in a machine-readable medium).
In addition, it can be appreciated that the various operations, processes, and methods disclosed herein can be embodied in a machine-readable medium and/or a machine accessible medium compatible with a data processing system (e.g., a computer system), and can be performed in any order (e.g., including using means for achieving the various operations). Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. In some embodiments, the machine-readable medium can be a non-transitory form of machine-readable medium.
This application claims priority to U.S. Provisional Patent Application No. 62/583,733, titled METHOD AND SYSTEM OF A HIGH AVAILABILITY ENHANCEMENTS TO A COMPUTER NETWORK filed on 9 Nov. 2017. This application is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5652751 | Sharony | Jul 1997 | A |
5909553 | Campbell et al. | Jun 1999 | A |
6154465 | Pickett | Nov 2000 | A |
6157648 | Voit et al. | Dec 2000 | A |
6201810 | Masuda et al. | Mar 2001 | B1 |
6363378 | Conklin et al. | Mar 2002 | B1 |
6445682 | Weitz | Sep 2002 | B1 |
6744775 | Beshai et al. | Jun 2004 | B1 |
6976087 | Westfall et al. | Dec 2005 | B1 |
7003481 | Banka et al. | Feb 2006 | B2 |
7280476 | Anderson | Oct 2007 | B2 |
7313629 | Nucci et al. | Dec 2007 | B1 |
7320017 | Kurapati | Jan 2008 | B1 |
7581022 | Griffin et al. | Aug 2009 | B1 |
7680925 | Sathyanarayana et al. | Mar 2010 | B2 |
7681236 | Tamura et al. | Mar 2010 | B2 |
7962458 | Holenstein | Jun 2011 | B2 |
8094575 | Vadlakonda et al. | Jan 2012 | B1 |
8094659 | Arad | Jan 2012 | B1 |
8111692 | Ray | Feb 2012 | B2 |
8141156 | Mao et al. | Mar 2012 | B1 |
8224971 | Miller et al. | Jul 2012 | B1 |
8228928 | Parandekar et al. | Jul 2012 | B2 |
8243589 | Trost | Aug 2012 | B1 |
8259566 | Chen et al. | Sep 2012 | B2 |
8274891 | Averi et al. | Sep 2012 | B2 |
8301749 | Finklestein et al. | Oct 2012 | B1 |
8385227 | Downey | Feb 2013 | B1 |
8566452 | Goodwin et al. | Oct 2013 | B1 |
8630291 | Shaffer et al. | Jan 2014 | B2 |
8661295 | Khanna et al. | Feb 2014 | B1 |
8724456 | Hong | May 2014 | B1 |
8724503 | Johnsson et al. | May 2014 | B2 |
8745177 | Kazerani et al. | Jun 2014 | B1 |
8799504 | Capone et al. | Aug 2014 | B2 |
8804745 | Sinn | Aug 2014 | B1 |
8806482 | Nagargadde et al. | Aug 2014 | B1 |
8856339 | Mestery et al. | Oct 2014 | B2 |
8964548 | Keralapura et al. | Feb 2015 | B1 |
8989199 | Sella et al. | Mar 2015 | B1 |
9009217 | Nagargadde et al. | Apr 2015 | B1 |
9055000 | Ghosh et al. | Jun 2015 | B1 |
9071607 | Twitchell, Jr. | Jun 2015 | B2 |
9075771 | Gawali | Jul 2015 | B1 |
9137334 | Zhou | Sep 2015 | B2 |
9154327 | Marino et al. | Oct 2015 | B1 |
9306949 | Richard et al. | Apr 2016 | B1 |
9336040 | Dong | May 2016 | B2 |
9354983 | Yenamandra et al. | May 2016 | B1 |
9356943 | Lopilato et al. | May 2016 | B1 |
9379981 | Zhou et al. | Jun 2016 | B1 |
9413724 | Xu | Aug 2016 | B2 |
9419878 | Hsiao et al. | Aug 2016 | B2 |
9432245 | Sorenson et al. | Aug 2016 | B1 |
9438566 | Zhang | Sep 2016 | B2 |
9450817 | Bahadur et al. | Sep 2016 | B1 |
9450852 | Chen | Sep 2016 | B1 |
9462010 | Stevenson | Oct 2016 | B1 |
9467478 | Khan et al. | Oct 2016 | B1 |
9485163 | Fries | Nov 2016 | B1 |
9521067 | Michael et al. | Dec 2016 | B2 |
9525564 | Lee | Dec 2016 | B2 |
9602389 | Maveli et al. | Mar 2017 | B1 |
9608962 | Chang | Mar 2017 | B1 |
9621460 | Mehta et al. | Apr 2017 | B2 |
9641551 | Kariyanahalli | May 2017 | B1 |
9665432 | Kruse | May 2017 | B2 |
9686127 | Ramachandran et al. | Jun 2017 | B2 |
9715401 | Devine et al. | Jul 2017 | B2 |
9722815 | Mukundan et al. | Aug 2017 | B2 |
9747249 | Cherian et al. | Aug 2017 | B2 |
9755965 | Yadav et al. | Sep 2017 | B1 |
9787559 | Schroeder | Oct 2017 | B1 |
9807004 | Koley et al. | Oct 2017 | B2 |
9819565 | Djukic et al. | Nov 2017 | B2 |
9825822 | Holland | Nov 2017 | B1 |
9825911 | Brandwine | Nov 2017 | B1 |
9825992 | Xu | Nov 2017 | B2 |
9832128 | Ashner et al. | Nov 2017 | B1 |
9906401 | Rao | Feb 2018 | B1 |
9930011 | Clemons, Jr. et al. | Mar 2018 | B1 |
9935829 | Miller et al. | Apr 2018 | B1 |
9942787 | Tillotson | Apr 2018 | B1 |
10038601 | Becker et al. | Jul 2018 | B1 |
10057183 | Salle et al. | Aug 2018 | B2 |
10057294 | Xu | Aug 2018 | B2 |
10135789 | Mayya et al. | Nov 2018 | B2 |
10142226 | Wu et al. | Nov 2018 | B1 |
10178032 | Freitas | Jan 2019 | B1 |
10187289 | Chen et al. | Jan 2019 | B1 |
10229017 | Zou | Mar 2019 | B1 |
10237123 | Dubey | Mar 2019 | B2 |
10250498 | Bales et al. | Apr 2019 | B1 |
10263832 | Ghosh | Apr 2019 | B1 |
10320664 | Nainar et al. | Jun 2019 | B2 |
10320691 | Matthews et al. | Jun 2019 | B1 |
10326830 | Singh | Jun 2019 | B1 |
10348767 | Lee et al. | Jul 2019 | B1 |
10425382 | Mayya et al. | Sep 2019 | B2 |
10454708 | Mibu | Oct 2019 | B2 |
10454714 | Mayya et al. | Oct 2019 | B2 |
10498652 | Mayya et al. | Dec 2019 | B2 |
10511546 | Singarayan et al. | Dec 2019 | B2 |
10523539 | Mayya et al. | Dec 2019 | B2 |
10554538 | Spohn et al. | Feb 2020 | B2 |
10560431 | Chen et al. | Feb 2020 | B1 |
10565464 | Han et al. | Feb 2020 | B2 |
10574528 | Mayya et al. | Feb 2020 | B2 |
10594516 | Cidon et al. | Mar 2020 | B2 |
10594659 | El-Moussa et al. | Mar 2020 | B2 |
10608844 | Cidon et al. | Mar 2020 | B2 |
10637889 | Ermagan et al. | Apr 2020 | B2 |
10666460 | Cidon et al. | May 2020 | B2 |
20020198840 | Banka et al. | Dec 2002 | A1 |
20030088697 | Matsuhira | May 2003 | A1 |
20030112808 | Solomon | Jun 2003 | A1 |
20030126468 | Markham | Jul 2003 | A1 |
20030161313 | Jinmei et al. | Aug 2003 | A1 |
20030189919 | Gupta et al. | Oct 2003 | A1 |
20030202506 | Perkins et al. | Oct 2003 | A1 |
20030219030 | Gubbi | Nov 2003 | A1 |
20040059831 | Chu et al. | Mar 2004 | A1 |
20040068668 | Lor et al. | Apr 2004 | A1 |
20040165601 | Liu et al. | Aug 2004 | A1 |
20040224771 | Chen et al. | Nov 2004 | A1 |
20050078690 | DeLangis | Apr 2005 | A1 |
20050154790 | Nagata et al. | Jul 2005 | A1 |
20050172161 | Cruz | Aug 2005 | A1 |
20050265255 | Kodialam et al. | Dec 2005 | A1 |
20060002291 | Alicherry et al. | Jan 2006 | A1 |
20060114838 | Mandavilli et al. | Jun 2006 | A1 |
20060171365 | Borella | Aug 2006 | A1 |
20060182034 | Klinker et al. | Aug 2006 | A1 |
20060182035 | Vasseur | Aug 2006 | A1 |
20060193247 | Naseh et al. | Aug 2006 | A1 |
20060193252 | Naseh et al. | Aug 2006 | A1 |
20070064604 | Chen et al. | Mar 2007 | A1 |
20070064702 | Bates et al. | Mar 2007 | A1 |
20070091794 | Filsfils et al. | Apr 2007 | A1 |
20070121486 | Guichard et al. | May 2007 | A1 |
20070130325 | Lesser | Jun 2007 | A1 |
20070177511 | Das et al. | Aug 2007 | A1 |
20070237081 | Kodialam et al. | Oct 2007 | A1 |
20070260746 | Mirtorabi et al. | Nov 2007 | A1 |
20070268882 | Breslau et al. | Nov 2007 | A1 |
20080002670 | Bugenhagen et al. | Jan 2008 | A1 |
20080049621 | McGuire et al. | Feb 2008 | A1 |
20080080509 | Khanna et al. | Apr 2008 | A1 |
20080095187 | Jung et al. | Apr 2008 | A1 |
20080144532 | Chamarajanagar | Jun 2008 | A1 |
20080219276 | Shah | Sep 2008 | A1 |
20080240121 | Xiong et al. | Oct 2008 | A1 |
20090013210 | McIntosh et al. | Jan 2009 | A1 |
20090125617 | Klessig et al. | May 2009 | A1 |
20090154463 | Hines et al. | Jun 2009 | A1 |
20090247204 | Sennett et al. | Oct 2009 | A1 |
20090276657 | Wetmore | Nov 2009 | A1 |
20090303880 | Maltz et al. | Dec 2009 | A1 |
20100008361 | Guichard et al. | Jan 2010 | A1 |
20100017802 | Lojewski | Jan 2010 | A1 |
20100046532 | Okita | Feb 2010 | A1 |
20100088440 | Banks | Apr 2010 | A1 |
20100091823 | Retana et al. | Apr 2010 | A1 |
20100107162 | Edwards et al. | Apr 2010 | A1 |
20100118727 | Draves et al. | May 2010 | A1 |
20100191884 | Holenstein | Jul 2010 | A1 |
20100223621 | Joshi et al. | Sep 2010 | A1 |
20100309841 | Conte | Dec 2010 | A1 |
20100309912 | Mehta et al. | Dec 2010 | A1 |
20100322255 | Hao et al. | Dec 2010 | A1 |
20100332657 | Elyashev et al. | Dec 2010 | A1 |
20110007752 | Silva et al. | Jan 2011 | A1 |
20110032939 | Nozaki et al. | Feb 2011 | A1 |
20110040814 | Higgins | Feb 2011 | A1 |
20110075674 | Li et al. | Mar 2011 | A1 |
20110107139 | Middlecamp | May 2011 | A1 |
20110110370 | Moreno et al. | May 2011 | A1 |
20110141877 | Xu et al. | Jun 2011 | A1 |
20110142041 | Imai | Jun 2011 | A1 |
20110153909 | Dong | Jun 2011 | A1 |
20120008630 | Ould-Brahim | Jan 2012 | A1 |
20120027013 | Napierala | Feb 2012 | A1 |
20120136697 | Peles et al. | May 2012 | A1 |
20120157068 | Eichen et al. | Jun 2012 | A1 |
20120173694 | Yan et al. | Jul 2012 | A1 |
20120173919 | Patel | Jul 2012 | A1 |
20120221955 | Raleigh et al. | Aug 2012 | A1 |
20120250682 | Vincent et al. | Oct 2012 | A1 |
20120250686 | Vincent et al. | Oct 2012 | A1 |
20120300615 | Kempf et al. | Nov 2012 | A1 |
20120317291 | Wolfe | Dec 2012 | A1 |
20130019005 | Hui et al. | Jan 2013 | A1 |
20130021968 | Reznik et al. | Jan 2013 | A1 |
20130044764 | Casado et al. | Feb 2013 | A1 |
20130051399 | Zhang et al. | Feb 2013 | A1 |
20130054763 | Merwe et al. | Feb 2013 | A1 |
20130086267 | Gelenbe et al. | Apr 2013 | A1 |
20130103834 | Dzerve et al. | Apr 2013 | A1 |
20130124718 | Griffith | May 2013 | A1 |
20130124911 | Griffith | May 2013 | A1 |
20130124912 | Griffith | May 2013 | A1 |
20130128889 | Mathur et al. | May 2013 | A1 |
20130142201 | Kim et al. | Jun 2013 | A1 |
20130173788 | Song | Jul 2013 | A1 |
20130182712 | Aguayo et al. | Jul 2013 | A1 |
20130191688 | Agarwal et al. | Jul 2013 | A1 |
20130238782 | Zhao et al. | Sep 2013 | A1 |
20130242718 | Zhang | Sep 2013 | A1 |
20130254599 | Katkar | Sep 2013 | A1 |
20130258839 | Wang | Oct 2013 | A1 |
20130283364 | Chang et al. | Oct 2013 | A1 |
20130286846 | Atlas et al. | Oct 2013 | A1 |
20130297770 | Zhang | Nov 2013 | A1 |
20130301642 | Radhakrishnan et al. | Nov 2013 | A1 |
20130308444 | Sem-Jacobsen et al. | Nov 2013 | A1 |
20130315243 | Huang et al. | Nov 2013 | A1 |
20130329548 | Nakil et al. | Dec 2013 | A1 |
20130329601 | Yin et al. | Dec 2013 | A1 |
20130329734 | Chesla et al. | Dec 2013 | A1 |
20130346470 | Obstfeld et al. | Dec 2013 | A1 |
20140019604 | Twitchell, Jr. | Jan 2014 | A1 |
20140019750 | Dodgson et al. | Jan 2014 | A1 |
20140040975 | Raleigh et al. | Feb 2014 | A1 |
20140064283 | Balus et al. | Mar 2014 | A1 |
20140092907 | Sridhar et al. | Apr 2014 | A1 |
20140108665 | Arora et al. | Apr 2014 | A1 |
20140112171 | Pasdar | Apr 2014 | A1 |
20140115584 | Mudigonda et al. | Apr 2014 | A1 |
20140126418 | Brendel et al. | May 2014 | A1 |
20140156818 | Hunt | Jun 2014 | A1 |
20140156823 | Liu et al. | Jun 2014 | A1 |
20140164560 | Ko et al. | Jun 2014 | A1 |
20140164617 | Jalan et al. | Jun 2014 | A1 |
20140173113 | Vemuri | Jun 2014 | A1 |
20140173331 | Martin | Jun 2014 | A1 |
20140208317 | Nakagawa | Jul 2014 | A1 |
20140219135 | Li et al. | Aug 2014 | A1 |
20140223507 | Xu | Aug 2014 | A1 |
20140244851 | Lee | Aug 2014 | A1 |
20140258535 | Zhang | Sep 2014 | A1 |
20140269690 | Tu | Sep 2014 | A1 |
20140279862 | Dietz et al. | Sep 2014 | A1 |
20140280499 | Basavaiah et al. | Sep 2014 | A1 |
20140317440 | Biermayr | Oct 2014 | A1 |
20140337500 | Lee | Nov 2014 | A1 |
20140341109 | Cartmell et al. | Nov 2014 | A1 |
20140372582 | Ghanwani et al. | Dec 2014 | A1 |
20150016249 | Mukundan et al. | Jan 2015 | A1 |
20150029864 | Raileanu et al. | Jan 2015 | A1 |
20150046572 | Cheng et al. | Feb 2015 | A1 |
20150052247 | Threefoot et al. | Feb 2015 | A1 |
20150052517 | Raghu et al. | Feb 2015 | A1 |
20150056960 | Egner et al. | Feb 2015 | A1 |
20150058917 | Xu | Feb 2015 | A1 |
20150088942 | Shah | Mar 2015 | A1 |
20150089628 | Lang | Mar 2015 | A1 |
20150092603 | Aguayo et al. | Apr 2015 | A1 |
20150096011 | Watt | Apr 2015 | A1 |
20150134777 | Onoue | May 2015 | A1 |
20150139238 | Pourzandi et al. | May 2015 | A1 |
20150146539 | Mehta et al. | May 2015 | A1 |
20150163152 | Li | Jun 2015 | A1 |
20150169340 | Haddad et al. | Jun 2015 | A1 |
20150172121 | Farkas | Jun 2015 | A1 |
20150172169 | DeCusatis et al. | Jun 2015 | A1 |
20150188823 | Williams et al. | Jul 2015 | A1 |
20150189009 | Bemmel | Jul 2015 | A1 |
20150195178 | Bhattacharya et al. | Jul 2015 | A1 |
20150201036 | Nishiki | Jul 2015 | A1 |
20150222543 | Song | Aug 2015 | A1 |
20150222638 | Morley | Aug 2015 | A1 |
20150236945 | Michael et al. | Aug 2015 | A1 |
20150236962 | Veres et al. | Aug 2015 | A1 |
20150244617 | Nakil et al. | Aug 2015 | A1 |
20150249644 | Xu | Sep 2015 | A1 |
20150271056 | Chunduri et al. | Sep 2015 | A1 |
20150271104 | Chikkamath et al. | Sep 2015 | A1 |
20150271303 | Neginhal et al. | Sep 2015 | A1 |
20150312142 | Barabash et al. | Oct 2015 | A1 |
20150334696 | Gu et al. | Nov 2015 | A1 |
20150349978 | Wu et al. | Dec 2015 | A1 |
20150350907 | Timariu et al. | Dec 2015 | A1 |
20150363733 | Brown | Dec 2015 | A1 |
20150372943 | Hasan et al. | Dec 2015 | A1 |
20150372982 | Herle et al. | Dec 2015 | A1 |
20150381407 | Wang | Dec 2015 | A1 |
20150381493 | Bansal et al. | Dec 2015 | A1 |
20160035183 | Buchholz et al. | Feb 2016 | A1 |
20160036924 | Koppolu | Feb 2016 | A1 |
20160037434 | Gopal et al. | Feb 2016 | A1 |
20160072669 | Saavedra | Mar 2016 | A1 |
20160080502 | Yadav et al. | Mar 2016 | A1 |
20160105353 | Cociglio | Apr 2016 | A1 |
20160105392 | Thakkar et al. | Apr 2016 | A1 |
20160105471 | Nunes et al. | Apr 2016 | A1 |
20160134528 | Lin et al. | May 2016 | A1 |
20160134591 | Liao et al. | May 2016 | A1 |
20160142373 | Ossipov | May 2016 | A1 |
20160164832 | Bellagamba et al. | Jun 2016 | A1 |
20160164914 | Madhav et al. | Jun 2016 | A1 |
20160173338 | Wolting | Jun 2016 | A1 |
20160191363 | Haraszti | Jun 2016 | A1 |
20160191374 | Singh | Jun 2016 | A1 |
20160192403 | Gupta et al. | Jun 2016 | A1 |
20160197834 | Luft | Jul 2016 | A1 |
20160197835 | Luft | Jul 2016 | A1 |
20160198003 | Luft | Jul 2016 | A1 |
20160210209 | Verkaik | Jul 2016 | A1 |
20160218947 | Hughes et al. | Jul 2016 | A1 |
20160255169 | Kovvuri et al. | Sep 2016 | A1 |
20160261493 | Li | Sep 2016 | A1 |
20160261495 | Xia et al. | Sep 2016 | A1 |
20160261639 | Xu | Sep 2016 | A1 |
20160269926 | Sundaram | Sep 2016 | A1 |
20160308762 | Teng et al. | Oct 2016 | A1 |
20160315912 | Mayya et al. | Oct 2016 | A1 |
20160323377 | Einkauf et al. | Nov 2016 | A1 |
20160352588 | Subbarayan et al. | Dec 2016 | A1 |
20160359738 | Sullenberger et al. | Dec 2016 | A1 |
20160366187 | Kamble | Dec 2016 | A1 |
20160380886 | Blair et al. | Dec 2016 | A1 |
20160380906 | Hodique et al. | Dec 2016 | A1 |
20170005986 | Bansal et al. | Jan 2017 | A1 |
20170012870 | Blair et al. | Jan 2017 | A1 |
20170019428 | Cohn | Jan 2017 | A1 |
20170026283 | Williams et al. | Jan 2017 | A1 |
20170026355 | Mathaiyan et al. | Jan 2017 | A1 |
20170034046 | Cai et al. | Feb 2017 | A1 |
20170034129 | Sawant et al. | Feb 2017 | A1 |
20170053258 | Carney et al. | Feb 2017 | A1 |
20170055131 | Kong et al. | Feb 2017 | A1 |
20170063674 | Maskalik et al. | Mar 2017 | A1 |
20170063782 | Jain et al. | Mar 2017 | A1 |
20170063794 | Jain et al. | Mar 2017 | A1 |
20170064005 | Lee | Mar 2017 | A1 |
20170093625 | Pera et al. | Mar 2017 | A1 |
20170097841 | Chang et al. | Apr 2017 | A1 |
20170104755 | Arregoces et al. | Apr 2017 | A1 |
20170118173 | Arramreddy et al. | Apr 2017 | A1 |
20170123939 | Maheshwari | May 2017 | A1 |
20170126564 | Mayya et al. | May 2017 | A1 |
20170134186 | Mukundan et al. | May 2017 | A1 |
20170134520 | Abbasi et al. | May 2017 | A1 |
20170139789 | Fries | May 2017 | A1 |
20170155557 | Desai et al. | Jun 2017 | A1 |
20170163473 | Sadana | Jun 2017 | A1 |
20170171310 | Gardner | Jun 2017 | A1 |
20170181210 | Nadella et al. | Jun 2017 | A1 |
20170195169 | Mills | Jul 2017 | A1 |
20170201585 | Doraiswamy et al. | Jul 2017 | A1 |
20170207976 | Rovner | Jul 2017 | A1 |
20170214545 | Cheng et al. | Jul 2017 | A1 |
20170214701 | Hasan | Jul 2017 | A1 |
20170223117 | Messerli et al. | Aug 2017 | A1 |
20170237710 | Mayya et al. | Aug 2017 | A1 |
20170257260 | Govindan et al. | Sep 2017 | A1 |
20170257309 | Appanna | Sep 2017 | A1 |
20170264496 | Ao et al. | Sep 2017 | A1 |
20170279717 | Bethers et al. | Sep 2017 | A1 |
20170279803 | Desai et al. | Sep 2017 | A1 |
20170289002 | Ganguli et al. | Oct 2017 | A1 |
20170302565 | Ghobadi et al. | Oct 2017 | A1 |
20170310641 | Jiang et al. | Oct 2017 | A1 |
20170310691 | Vasseur et al. | Oct 2017 | A1 |
20170317974 | Masurekar et al. | Nov 2017 | A1 |
20170337086 | Zhu et al. | Nov 2017 | A1 |
20170339054 | Yadav et al. | Nov 2017 | A1 |
20170339070 | Chang et al. | Nov 2017 | A1 |
20170364419 | Lo | Dec 2017 | A1 |
20170366445 | Nemirovsky et al. | Dec 2017 | A1 |
20170374174 | Evens et al. | Dec 2017 | A1 |
20180006995 | Bickhart et al. | Jan 2018 | A1 |
20180007123 | Cheng et al. | Jan 2018 | A1 |
20180014051 | Phillips et al. | Jan 2018 | A1 |
20180034668 | Mayya et al. | Feb 2018 | A1 |
20180041425 | Zhang | Feb 2018 | A1 |
20180062914 | Boutros et al. | Mar 2018 | A1 |
20180062917 | Chandrashekhar et al. | Mar 2018 | A1 |
20180063036 | Chandrashekhar et al. | Mar 2018 | A1 |
20180063193 | Chandrashekhar et al. | Mar 2018 | A1 |
20180063233 | Park | Mar 2018 | A1 |
20180069924 | Tumuluru et al. | Mar 2018 | A1 |
20180074909 | Bishop | Mar 2018 | A1 |
20180077081 | Lauer et al. | Mar 2018 | A1 |
20180077202 | Xu | Mar 2018 | A1 |
20180084081 | Kuchibhotla et al. | Mar 2018 | A1 |
20180097725 | Wood et al. | Apr 2018 | A1 |
20180114569 | Strachan et al. | Apr 2018 | A1 |
20180131615 | Zhang | May 2018 | A1 |
20180131720 | Hobson et al. | May 2018 | A1 |
20180145899 | Rao | May 2018 | A1 |
20180159856 | Gujarathi | Jun 2018 | A1 |
20180167378 | Kostyukov et al. | Jun 2018 | A1 |
20180176073 | Dubey | Jun 2018 | A1 |
20180176082 | Katz | Jun 2018 | A1 |
20180176130 | Banerjee et al. | Jun 2018 | A1 |
20180213472 | Ishii et al. | Jul 2018 | A1 |
20180219765 | Michael et al. | Aug 2018 | A1 |
20180219766 | Michael et al. | Aug 2018 | A1 |
20180234300 | Mayya et al. | Aug 2018 | A1 |
20180260125 | Botes | Sep 2018 | A1 |
20180262468 | Kumar et al. | Sep 2018 | A1 |
20180270104 | Zheng et al. | Sep 2018 | A1 |
20180278541 | Wu et al. | Sep 2018 | A1 |
20180295529 | Jen et al. | Oct 2018 | A1 |
20180302286 | Mayya et al. | Oct 2018 | A1 |
20180302321 | Manthiramoorthy et al. | Oct 2018 | A1 |
20180351855 | Sood | Dec 2018 | A1 |
20180351862 | Jeganathan et al. | Dec 2018 | A1 |
20180351863 | Vairavakkalai et al. | Dec 2018 | A1 |
20180351882 | Jeganathan et al. | Dec 2018 | A1 |
20180373558 | Chang et al. | Dec 2018 | A1 |
20180375744 | Mayya et al. | Dec 2018 | A1 |
20180375824 | Mayya et al. | Dec 2018 | A1 |
20180375967 | Pithawala et al. | Dec 2018 | A1 |
20190014038 | Ritchie | Jan 2019 | A1 |
20190020588 | Twitchell, Jr. | Jan 2019 | A1 |
20190020627 | Yuan | Jan 2019 | A1 |
20190028552 | Johnson et al. | Jan 2019 | A1 |
20190036810 | Michael et al. | Jan 2019 | A1 |
20190046056 | Khachaturian et al. | Feb 2019 | A1 |
20190058657 | Chunduri et al. | Feb 2019 | A1 |
20190058709 | Kempf et al. | Feb 2019 | A1 |
20190068470 | Mirsky | Feb 2019 | A1 |
20190068493 | Ram et al. | Feb 2019 | A1 |
20190068500 | Hira | Feb 2019 | A1 |
20190075083 | Mayya et al. | Mar 2019 | A1 |
20190103990 | Cidon et al. | Apr 2019 | A1 |
20190103991 | Cidon et al. | Apr 2019 | A1 |
20190103992 | Cidon et al. | Apr 2019 | A1 |
20190103993 | Cidon et al. | Apr 2019 | A1 |
20190104035 | Cidon et al. | Apr 2019 | A1 |
20190104049 | Cidon et al. | Apr 2019 | A1 |
20190104050 | Cidon et al. | Apr 2019 | A1 |
20190104051 | Cidon et al. | Apr 2019 | A1 |
20190104052 | Cidon et al. | Apr 2019 | A1 |
20190104053 | Cidon et al. | Apr 2019 | A1 |
20190104063 | Cidon et al. | Apr 2019 | A1 |
20190104064 | Cidon et al. | Apr 2019 | A1 |
20190104109 | Cidon et al. | Apr 2019 | A1 |
20190104111 | Cidon et al. | Apr 2019 | A1 |
20190104413 | Cidon et al. | Apr 2019 | A1 |
20190140890 | Mayya et al. | May 2019 | A1 |
20190158605 | Markuze et al. | May 2019 | A1 |
20190199539 | Deng et al. | Jun 2019 | A1 |
20190220703 | Prakash et al. | Jul 2019 | A1 |
20190238364 | Boutros et al. | Aug 2019 | A1 |
20190238446 | Barzik et al. | Aug 2019 | A1 |
20190238449 | Michael et al. | Aug 2019 | A1 |
20190238450 | Michael et al. | Aug 2019 | A1 |
20190268421 | Markuze et al. | Aug 2019 | A1 |
20190280962 | Michael et al. | Sep 2019 | A1 |
20190280963 | Michael et al. | Sep 2019 | A1 |
20190280964 | Michael et al. | Sep 2019 | A1 |
20190313907 | Khachaturian et al. | Oct 2019 | A1 |
20190319847 | Nahar et al. | Oct 2019 | A1 |
20190342219 | Liu et al. | Nov 2019 | A1 |
20190356736 | Narayanaswamy et al. | Nov 2019 | A1 |
20190364099 | Thakkar et al. | Nov 2019 | A1 |
20190372888 | Michael et al. | Dec 2019 | A1 |
20190372889 | Michael et al. | Dec 2019 | A1 |
20190372890 | Michael et al. | Dec 2019 | A1 |
20200014615 | Michael et al. | Jan 2020 | A1 |
20200014616 | Michael et al. | Jan 2020 | A1 |
20200014661 | Mayya et al. | Jan 2020 | A1 |
20200021514 | Michael et al. | Jan 2020 | A1 |
20200021515 | Michael et al. | Jan 2020 | A1 |
20200036624 | Michael et al. | Jan 2020 | A1 |
20200059459 | Abraham et al. | Feb 2020 | A1 |
20200092207 | Sipra et al. | Mar 2020 | A1 |
20200099659 | Cometto et al. | Mar 2020 | A1 |
20200106696 | Michael et al. | Apr 2020 | A1 |
20200106706 | Mayya et al. | Apr 2020 | A1 |
20200119952 | Mayya et al. | Apr 2020 | A1 |
20200127905 | Mayya et al. | Apr 2020 | A1 |
20200153736 | Liebherr et al. | May 2020 | A1 |
20200218558 | Sreenath et al. | Jul 2020 | A1 |
20200235990 | Janakiraman et al. | Jul 2020 | A1 |
20200236046 | Jain et al. | Jul 2020 | A1 |
20200244721 | S et al. | Jul 2020 | A1 |
20200267184 | Vera-Schockner | Aug 2020 | A1 |
20200280587 | Janakiraman et al. | Sep 2020 | A1 |
20200296026 | Michael et al. | Sep 2020 | A1 |
Number | Date | Country |
---|---|---|
1912381 | Apr 2008 | EP |
3041178 | Jul 2016 | EP |
3509256 | Jul 2019 | EP |
03073701 | Sep 2003 | WO |
2012167184 | Dec 2012 | WO |
2017083975 | May 2017 | WO |
2019070611 | Apr 2019 | WO |
2019094522 | May 2019 | WO |
2020018704 | Jan 2020 | WO |
2020101922 | May 2020 | WO |
Entry |
---|
Non-Published Commonly owned International Patent Application PCT/US2018/059708, filed Nov. 7, 2018, 28 pages, Nicira, Inc. |
Non-Published commonly Owned U.S. Appl. No. 15/701,115, filed Sep. 11, 2017, 21 pages, Nicira, Inc. |
Non-Published commonly Owned U.S. Appl. No. 15/784,404, filed Oct. 16, 2017, 21 pages, Nicira, Inc. |
Non-Published commonly Owned U.S. Appl. No. 15/838,355, filed Dec. 12, 2017, 30 pages, Nicira, Inc. |
Petition for Post-Grant Review of U.S. Pat. No. 9,722,815, filed May 1, 2018, 106 pages. |
Mudigonda, Jayaram, et al., “NetLord: A Scalable Multi-Tenant Network Architecture for Virtualized Datacenters,” Proceedings of the ACM SIGCOMM 2011 Conference, Aug. 15-19, 2011, 12 pages, ACM, Toronto, Canada. |
PCT International Search Report and Written Opinion of Commonly Owned International Patent Application PCT/US2018/059708, dated Apr. 4, 2019, 19 pages, International Searching Authority—EPO. |
PCT Invitation to Pay Additional Fees for Commonly Owned International Patent Application PCT/US2018/059708, dated Feb. 13, 2019, 14 pages, International Searching Authority (EPO). |
Non-published Commonly Owned U.S. Appl. No. 16/656,555, filed Oct. 17, 2019, 40 pages, Nicira, Inc. |
Non-published Commonly Owned U.S. Appl. No. 16/699,719, filed Dec. 1, 2019, 42 pages, Nicira, Inc. |
Non-published Commonly Owned U.S. Appl. No. 16/724,154, filed Dec. 20, 2019, 27 pages, Nicira, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 16/785,628, filed Feb. 9, 2020, 44 pages, Nicira, Inc. |
Huang, Cancan, et al., “Modification of Q.SD-WAN,” Rapporteur Group Meeting—Doc, Study Period 2017-2020, Q4/11-DOC1 (190410), Study Group 11, Apr. 10, 2019, 19 pages, International Telecommunication Union, Geneva, Switzerland. |
Del Piccolo, Valentin, et al., “A Survey of Network Isolation Solutions for Multi-Tenant Data Centers,” IEEE Communications Society, Apr. 20, 2016, vol. 18, No. 4, 37 pages, IEEE. |
Fortz, Bernard, et al., “Internet Traffic Engineering by Optimizing OSPF Weights,” Proceedings IEEE INFOCOM 2000, Conference on Computer Communications, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Mar. 26-30, 2000, 11 pages, IEEE, Tel Aviv, Israel, Israel. |
Francois, Frederic, et al., “Optimizing Secure SDN-enabled Inter-Data Centre Overlay Networks through Cognitive Routing,” 2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), Sep. 19-21, 2016, 10 pages, IEEE, London, UK. |
Michael, Nithin, et al., “HALO: Hop-by-Hop Adaptive Link-State Optimal Routing,” IEEE/ACM Transactions on Networking, Dec. 2015, 14 pages, vol. 23, No. 6, IEEE. |
Mishra, Mayank, et al., “Managing Network Reservation for Tenants in Oversubscribed Clouds,” 2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems, Aug. 14-16, 2013, 10 pages, IEEE, San Francisco, CA, USA. |
Ray, Saikat, et al., “Always Acyclic Distributed Path Computation,” University of Pennsylvania Department of Electrical and Systems Engineering Technical Report, May 2008, 16 pages, University of Pennsylvania ScholarlyCommons. |
Webb, Kevin C., et al., “Blender: Upgrading Tenant-Based Data Center Networking,” 2014 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Oct. 20-21, 2014, 11 pages, IEEE, Marina del Rey, CA, USA. |
Yap, Kok-Kiong, et al., “Taking the Edge off with Espresso: Scale, Reliability and Programmability for Global Internet Peering,” SIGCOMM '17: Proceedings of the Conference of the ACM Special Interest Group on Data Communication, Aug. 21-25, 2017, 14 pages, Los Angeles, CA. |
Number | Date | Country | |
---|---|---|---|
20190140889 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
62583733 | Nov 2017 | US |