This application relates generally to computer networking, and more specifically to a system, article of manufacture and method connecting to a hub in a cluster.
Inherently, the size of a single VPN Network with a Hub may be constrained by the scale of the individual Hub. For large customers whose deployments reach twenty-thousand (20,000) sites, it may neither practical to scale an individual appliance to meet this scale nor mandate the customer manage individual separate Hubs to achieve this. In order to address this limitation, a clustering functionality can be used to easily expand the capacity of the Hub dynamically by creating a logical cluster, while also providing resiliency via the Active/Active HA topology that a cluster of Edges would provide. The Nodes in a Cluster can be either physical or virtual Edges. If they are virtual; they may exist on a single hypervisor or across hypervisors. The Edges within the cluster may communicate with the Gateway for control plane information and do not directly communicate nor exchange state.
In one aspect, a computerized method useful for connecting to a multipath hub in a cluster includes the step of, with a gateway in a same network as the cluster, receiving, from a branch edge, a request to connect to a logical Identifier (ID) of the multipath hub. The gateway recognizes a logical ID representing a cluster. The gateway determines a least-loaded edge in the cluster to be the multipath hub. The gateway returns a connectivity information for the multipath hub. The branch edge configures a tunnel to the multipath hub.
The Figures described above are a representative set, and are not exhaustive with respect to embodying the invention.
Disclosed are a system, method, and article of manufacture for connecting to a multipath hub in a cluster. The following description is presented to enable a person of ordinary skill In the art to make and use the various embodiments. Descriptions of specific devices, techniques, and applications are provided only as examples. Various modifications to the examples described herein can be readily apparent to those of ordinary skill in the art, and the general principles defined herein may be applied to other examples and applications without departing from the spirit and scope of the various embodiments.
Reference throughout this specification to “one embodiment,” “an embodiment,” ‘one example,’ or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.
Furthermore, the described features, structures, or characteristics of the invention may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided, such as examples of programming, software modules, user selections, network transactions, database queries, database structures, hardware modules, hardware circuits, hardware chips, etc., to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art can recognize, however, that the invention may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the invention.
The schematic flow chart diagrams included herein are generally set forth as logical flow chart diagrams. As such, the depicted order and labeled steps are indicative of one embodiment of the presented method. Other steps and methods may be conceived that are equivalent in function, logic, or effect to one or more steps, or portions thereof, of the illustrated method. Additionally, the format and symbols employed are provided to explain the logical steps of the method and are understood not to limit the scope of the method. Although various arrow types and line types may be employed in the flow chart diagrams, and they are understood not to limit the scope of the corresponding method. Indeed, some arrows or other connectors may be used to indicate only the logical flow of the method. For instance, an arrow may indicate a waiting or monitoring period of unspecified duration between enumerated steps of the depicted method. Additionally, the order in which a particular method occurs may or may not strictly adhere to the order of the corresponding steps shown.
Example definitions for some embodiments are now provided.
Border Gateway Protocol (BGP) can be a standardized exterior gateway protocol designed to exchange routing and reachability information among autonomous systems (AS) on the Internet.
Dynamic tunneling can refer to Multi Path tunnels (i.e. paths) that are established on-demand between two endpoints when there is VPN traffic to be sent between two Edges, and torn down after VPN traffic is completed.
Edge device can be a device that provides an entry point into enterprise or service provider core networks. An edge device can be software running in a virtual machine (VM) located in a branch office and/or customer premises.
Enterprise Data Center can include multiple data centers (e.g. each with a duty of sustaining key functions).
Gateway can be a node (e.g. a router) on a computer network that serves as an access point to another network.
Internet Protocol Security (IPsec) can be a protocol suite for securing Internet Protocol (IP) communications by authenticating and encrypting each IP packet of a communication session.
Inter-process communication (IPC) can include mechanisms an operating system provides to allow the processes to manage shared data. Typically, applications can use IPC, categorized as clients and servers, where the client requests data and the server responds to client requests.
Orchestrator can include a software component that provides multi-tenant and role based centralized configuration management and visibility.
Subnet can be a logical subdivision of an IP network.
Tunneling protocol can allow a network user to access or provide a network service that the underlying network does not support or provide directly.
Virtual private network (VPN) can extend a private network across a public network, such as the Internet. It can enable users to send and receive data across shared or public networks as if their computing devices were directly connected to the private network, and thus benefit from the functionality, security and management policies of the private network.
Additional example definitions are provided herein.
A variety of techniques can be used to maintain branch connectivity to data centers, cloud applications, etc. For example, in a data center topology, an edge device (e.g. an edge) can be deployed in two different ways. As a cluster, redundancy can be provided for a single data center leveraging multiple independent devices. Alternately, redundancy can be provided by deploying multiple physical edges in multiple data centers that are interconnected via routing external to a gateway. In the clustering topology, each edge in a cluster can report health statistics to a gateway at a specified period (e.g. every 30 seconds, etc.). This can enable it to make intelligent decisions about assignment and rebalancing.
Even though in this use case Branch Edge(s) 210 and 314 may be connected to different Hubs in Gateway 206. Gateway 206 can signal the creation of Dynamic Edge-to-Edge tunnels in case both Branch Edge(s) 210 and 314 are not connected to the same Hub in Gateway 206. Gateway 206 can include a controller (not shown) that functions as a control plane piece of the Gateway 206.
Returning to process 600, in step 604, traffic for Subnet B 406 is forwarded to the Switch 214. In step 606, the switch routes traffic to Hub 3506 as the switch has learned that route from Hub 3506 via a dynamic routing protocol (e.g. OSPF, BGP, etc.). In step 608, Hub 3506 sends the traffic to Edge B where it has learned the route for B via a routing protocol.
In step 610, upon receipt of the message sent in process 100, the gateway determines that Edge A 210 and Edge B 314 can directly connect. Edge A 210 and Edge B 314 are then connected.
Although the present embodiments have been described with reference to specific example embodiments, various modifications and changes can be made to these embodiments without departing from the broader spirit and scope of the various embodiments. For example, the various devices, modules, etc. described herein can be enabled and operated using hardware circuitry, firmware, software or any combination of hardware, firmware, and software (e.g., embodied in a machine-readable medium).
In addition, it can be appreciated that the various operations, processes, and methods disclosed herein can be embodied in a machine-readable medium and/or a machine accessible medium compatible with a data processing system (e.g., a computer system), and can be performed in any order (e.g., including using means for achieving the various operations). Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. In some embodiments, the machine-readable medium can be a non-transitory form of machine-readable medium.
This application is a continuation application of U.S. patent application Ser. No. 17/827,972, filed May 30, 2022. U.S. patent application Ser. No. 17/827,972 is a continuation application of U.S. patent application Ser. No. 16/945,867, filed Aug. 1, 2020, now issued as U.S. Pat. No. 11,349,722. U.S. patent application Ser. No. 16/945,867 is a continuation application of U.S. patent application Ser. No. 15/707,124, filed Sep. 18, 2017, now issued as U.S. Pat. No. 10,778,528. U.S. patent application Ser. No. 15/707,124 claims priority to U.S. Provisional Patent Application No. 62/457,816, titled METHOD AND SYSTEM OF OVERLAY FLOW CONTROL, filed on Feb. 11, 2017. U.S. patent application Ser. No. 15/707,124 claims priority to U.S. Provisional Patent Application No. 62/523,477, titled METHOD AND SYSTEM OF RESILIENCY AND VISIBILITY IN CLOUD-DELIVERED SD-WAN, filed on Jun. 22, 2017. All of these applications and patents are incorporated herein by reference in their entireties for all purposes.
Number | Date | Country | |
---|---|---|---|
62523477 | Jun 2017 | US | |
62457816 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17827972 | May 2022 | US |
Child | 18780390 | US | |
Parent | 16945867 | Aug 2020 | US |
Child | 17827972 | US | |
Parent | 15707124 | Sep 2017 | US |
Child | 16945867 | US |