None.
Electrosurgical procedures can be classified, at some level, based on the location associated with the body at which the procedure takes place. “Wet field” procedures generally take place inside the body, such as within the shoulder or within the knee. “Dry field” procedures generally take place on an outer surface of the body or surfaces exposed to atmosphere, such as the skin, within the mouth, or within the nasopharynx.
Regardless of whether a procedure is a wet field or dry field procedure, in most cases saline is delivered to the treatment site; however, in dry field procedures excess saline can easily migrate and cause secondary issues. For example, excess saline accumulating in the throat during procedures in the nose or mouth can cause unintended flow paths for electrical current through the body, or may allow the saline to enter the lungs.
Any advance that better controls saline fluid in and around the electrodes of an electrosurgical system would provide a competitive advantage.
For a detailed description of exemplary embodiments, reference will now be made to the accompanying drawings in which:
Certain terms are used throughout the following description and claims to refer to particular system components. As one skilled in the art will appreciate, companies that design and manufacture electrosurgical systems may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function.
In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . .” Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection or through an indirect connection via other devices and connections.
Reference to a singular item includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “an,” “said” and “the” include plural references unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement serves as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Lastly, it is to be appreciated that unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
“Active electrode” shall mean an electrode of an electrosurgical wand which produces an electrically-induced tissue-altering effect when brought into contact with, or close proximity to, a tissue targeted for treatment.
“Return electrode” shall mean an electrode of an electrosurgical wand which serves to provide a current flow return path with respect to an active electrode, and/or an electrode of an electrical surgical wand which does not itself produce an electrically-induced tissue-altering effect on tissue targeted for treatment.
A fluid conduit said to be “within” an elongate housing shall include not only a separate fluid conduit that physically resides within an internal volume of the elongate housing, but also situations where the internal volume of the elongate housing is itself the fluid conduit.
“Orientation”, with regard to an electrosurgical wand, shall mean inclination of the distal end of wand relative to the handle end of the wand, elevation of the distal end of the wand (e.g., relative to a source of conductive fluid), rotational orientation of the wand, or a combination thereof.
“Three-axis gyroscope” shall refer to a sensor that senses positional changes in position in all three spatial directions.
“Six-axis gyroscope” shall refer to a sensor that senses positional changes in position in all three spatial directions, and also senses acceleration in all three spatial directions.
Where a range of values is provided, it is understood that every intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein.
All existing subject matter mentioned herein (e.g., publications, patents, patent applications and hardware) is incorporated by reference herein in its entirety except insofar as the subject matter may conflict with that of the present invention (in which case what is present herein shall prevail). The referenced items are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such material by virtue of prior invention.
Before the various embodiments are described in detail, it is to be understood that this invention is not limited to particular variations set forth herein as various changes or modifications may be made, and equivalents may be substituted, without departing from the spirit and scope of the invention. As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the present invention. All such modifications are intended to be within the scope of the claims made herein.
Though not visible in the view of
In some embodiments, flexible tubular member 118 is used to provide suction for aspiration at the distal end 108 of the wand. The suction for aspiration may be provided from any suitable source (e.g., wall suction in a hospital environment, or suction provided from a peristaltic pump). In one example system, the flexible tubular member 118 is a hose having a 0.25 inch outside diameter, and a 0.17 inch internal diameter, but other sizes may be equivalently used.
Still referring to
In some embodiments the electrosurgical system 100 also comprises a foot pedal assembly 130. The foot pedal assembly 130 may comprise one or more pedal devices 132 and 134, a flexible multi-conductor cable 136 and a pedal connector 138. While only two pedal devices 132, 134 are shown, one or more pedal devices may be implemented. The outer surface 122 of the controller 104 may comprise a corresponding connector 140 that couples to the pedal connector 138. The foot pedal assembly 130 may be used to control various aspects of the controller 104, such as the operational mode. For example, a pedal device, such as pedal device 132, may be used for on-off control of the application of radio frequency (RF) energy to the wand 102. A second pedal device, such as pedal device 134, may be used to control and/or set the operational mode of the electrosurgical system. For example, actuation of pedal device 134 may switch between energy levels. In yet still further embodiments, the wand 102 may further comprise switches accessible on an outside portion, where the switches may control the operational modes of the controller 104.
The electrosurgical system 100 of the various embodiments may have a variety of operational modes. One such mode employs Coblation® technology. In particular, the assignee of the present disclosure is the owner of Coblation® technology. Coblation® technology involves the application of a RF energy between one or more active electrodes and one or more return electrodes of the wand 102 to develop high electric field intensities in the vicinity of the target tissue. The electric field intensities may be sufficient to vaporize an electrically conductive fluid over at least a portion of the one or more active electrodes in the region near the one or more active electrodes and the target tissue. Electrically conductive fluid may be inherently present in the body, such as blood, puss, or in some cases extracellular or intracellular fluid. In other embodiments, the electrically conductive fluid may be a liquid or gas, such as isotonic saline. In a particular embodiment of wound treatment, the electrically conductive fluid is delivered in the vicinity of the active electrode and/or to the target site by the wand 102, such as by way of the internal fluid conduit and flexible tubular member 116.
When the electrically conductive fluid is heated to the point that the atoms of the fluid vaporize faster than the atoms recondense, a gas is formed. When sufficient energy is applied to the gas, the atoms collide with each other causing a release of electrons in the process, and an ionized gas or plasma is formed (the so-called “fourth state of matter”). Stated otherwise, plasmas may be formed by heating a gas and ionizing the gas by driving an electric current through the gas, or by directing electromagnetic waves into the gas. The methods of plasma formation give energy to free electrons in the plasma directly, electron-atom collisions liberate more electrons, and the process cascades until the desired degree of ionization is achieved. A more complete description of plasma can be found in Plasma Physics, by R. J. Goldston and P. H. Rutherford of the Plasma Physics Laboratory of Princeton University (1995), the complete disclosure of which is incorporated herein by reference.
As the density of the plasma becomes sufficiently low (i.e., less than approximately 1020 atoms/cm3 for aqueous solutions), the electron mean free path increases such that subsequently injected electrons cause impact ionization within the plasma. When the ionic particles in the plasma layer have sufficient energy (e.g., 3.5 electron-Volt (eV) to 5 eV), collisions of the ionic particles with molecules that make up the target tissue break molecular bonds of the target tissue, dissociating molecules into free radicals which then combine into gaseous or liquid species. Often, the electrons in the plasma carry the electrical current or absorb the electromagnetic waves and, therefore, are hotter than the ionic particles. Thus, the electrons, which are carried away from the target tissue toward the active or return electrodes, carry most of the plasma's heat, enabling the ionic particles to break apart the target tissue molecules in a substantially non-thermal manner.
By means of the molecular dissociation (as opposed to thermal evaporation or carbonization), the target tissue is volumetrically removed through molecular dissociation of larger organic molecules into smaller molecules and/or atoms, such as hydrogen, oxygen, oxides of carbon, hydrocarbons and nitrogen compounds. The molecular dissociation completely removes the tissue structure, as opposed to dehydrating the tissue material by the removal of liquid within the cells of the tissue and extracellular fluids, as occurs in related art electrosurgical desiccation and vaporization. A more detailed description of the molecular dissociation can be found in commonly assigned U.S. Pat. No. 5,697,882, the complete disclosure of which is incorporated herein by reference.
In addition to the Coblation® mode, the electrosurgical system 100 of
The energy density produced by electrosurgical system 100 at the distal end 108 of the wand 102 may be varied by adjusting a variety of factors, such as: the number of active electrodes; electrode size and spacing; electrode surface area; asperities and/or sharp edges on the electrode surfaces; electrode materials; applied voltage; current limiting of one or more electrodes (e.g., by placing an inductor in series with an electrode); electrical conductivity of the fluid in contact with the electrodes; density of the conductive fluid; and other factors. Accordingly, these factors can be manipulated to control the energy level of the excited electrons. Since different tissue structures have different molecular bonds, the electrosurgical system 100 may be configured to produce energy sufficient to break the molecular bonds of certain tissue but insufficient to break the molecular bonds of other tissue.
A more complete description of the various phenomena can be found in commonly assigned U.S. Pat. Nos. 6,355,032; 6,149,120 and 6,296,136, the complete disclosures of which are incorporated herein by reference.
The illustrative wand 102 of
An illustrative two active electrodes 202 and 204 are coupled to the support member 206. Each active electrode is a metallic structure, around which plasma is created during use in some operational modes. In some case, the wire is stainless steel, but other types of metallic wire (e.g., tungsten, molybdenum) may be equivalently used. As illustrated, each active electrode 202 and 204 is a loop of wire having a particular diameter. In wands designed for other uses (e.g., ablation of tissue of the soft palate), the active electrode may take the form of a screen or metallic plate with one or more apertures through the metallic plate leading to the suction lumen. Each example active electrode 202 and 204 is electrically coupled to the controller 104 (
The distal end 108 of the example wand 102 further comprises a return electrode in the form of a conductive plate 210. In particular, the conductive plate 210 abuts the source lumen 208, and in the embodiments of
Some example wands for dry field procedures are designed and constructed such that the conductive fluid flow exits the source lumen, flows to and/or across the active electrode(s), and then is aspirated into the suction lumen. In the example case of
The inventors of the present specification have found a shortcoming of related-art devices in the form of variable conductive fluid flow based on orientation of the wand. In the related-art, prior to performing the surgical procedure the conductive fluid flow is manually adjusted, such as by partially clamping the tubing member 116 (e.g., clamping using a hemostat). The adjustment involves setting a flow of conductive fluid out of the source lumen that is substantially aspirated back into the suction lumen (i.e., no or very few drips of conductive fluid when the fluid is flowing out the source lumen). Once the flow of conductive fluid is set, the surgeon performs the procedure; however, an issue arises related to the orientation of the wand, which issue is illustrated with respect to
Now consider that during use the surgeon changes the inclination of the distal end 108 in relation to the handle end 110. Stated another way, consider that the elevation of the distal end 108 changes such that the relative height H changes.
Now consider that during use, the surgeon changes the orientation of the distal end 108 in relation to the handle end 110 as shown in
In some example systems, the length L of the wand 102 measured from the handle end 110 to the distal end 108 may be six to eight inches. It follows that, even holding the handle end 110 at a constant elevation, the change in elevation of the distal end 108 caused by the change in inclination as between
In accordance with the various embodiments, the issues associated with changes in conductive fluid flow based on changes in relative height H are addressed, at least in part, by a system and related method which senses changes in orientation of the wand 102, and automatically (i.e., without human involvement at the time of the change) compensates for orientation changes of the wand 102 and/or changes in elevation of the wand 102 (even if orientation remains constant).
In accordance with the various embodiments, the surgeon holds the wand in a particular orientation, and sets the flow rate of the conductive fluid such that there are no or very few drips of conductive fluid from the distal end 108 of the wand 102 (i.e., most if not all the conductive fluid flow is aspirated into the suction lumen). Setting the flow may take many forms. In some example systems, the flow may be set or adjusted by the surgeon interfacing with controller 104, such as by pushing buttons 126. In these example systems, interaction with the controller 104 sends a signal to the flow control device to raise or lower the flow allowed to pass through the flow control device. In other cases, the flow may be set by the surgeon interfacing with an interface device 606 on the flow control device 152 itself. For example, the interface device 606 may be a knob that when rotated in a first direction increases the flow of conductive fluid, and when rotated in a second direction decreases the flow the conductive fluid.
Once the initial conductive fluid flow is set (and regardless of the mechanism by which the initial flow is set), the surgeon may begin to use the wand in the electrosurgical procedure, and in using the wand 102 the orientation of the distal end 108 may change. However, the orientation sensor 600 and flow control device 152 (and in some systems the controller 104) work together to control the flow of conductive fluid to reduce the effects of changes in pressure of conductive fluid caused by changes in orientation of the wand 102. For example, if the distal end 108 of the wand 102 is lowered, the relative height H increases which would tend to increase pressure and therefore increase conductive fluid flow; however, sensing the lowering of the distal end 108 of the wand 102 by way of the orientation sensor 600, the system increases flow restriction presented by the flow control device such that conductive fluid flow remains substantially constant. Oppositely, if the distal end 108 of the wand 102 is raised, the relative height H decreases which would tend to decrease pressure and therefore decrease conductive fluid flow; however, sensing the raising of the distal end 108 of the wand 102 by way of the orientation sensor 600, the system decreases flow restriction presented by the flow control device such that conductive fluid flow remains substantially constant.
In yet still other example systems, the control of flow implemented as a function of orientation of the wand may implement orientation specific flow control strategies that differ. For example, if the orientation sensor 600 provides an indication that the distal end 108 is lower than the handle end 110, the system may reduce flow of conductive fluid (as compared to the initial setting) as in the distal-end low orientation gravity may cause increased loss of conductive fluid. Oppositely, if the orientation sensor 600 provides an indication that the distal end 108 is higher than the handle end 110, the system may increase flow of conductive fluid (as compared to the initial setting) as in the distal-end high orientation the effects of gravity may decrease the likelihood of loss of conductive fluid.
Some orientation sensors may be able to sense rotational orientation of the wand 102, and implement rotational-orientation specific flow control strategies. For example, if the system senses that the wand is rotationally-oriented such that source lumen 208 is above the active electrodes and suction lumen, in such an orientation gravity assists the flow toward the suction lumen and thus the system may increase conductive fluid flow. Oppositely, if the system senses that the wand is rotationally-oriented such that source lumen 208 is below the active electrodes and suction lumen 200, in such an orientation gravity works against flow toward the suction lumen and thus the system may decrease conductive fluid flow to reduce the likelihood of loss of conductive fluid. The rotational-orientation changes may be implemented in addition to, or in place of, inclination and/or elevation based control of the conductive fluid flow.
The orientation sensor may take many forms. In some example systems the orientation sensor 600 is an inclinometer that provides and analog or digital value indicative of the relative positions of the handle end 110 and the distal end 108. For example, part number ADIS16209 Digital Inclinometer and Accelerometer available from Analog Device of Englewood, Colo., may be used as inclinometer. However, using an inclinometer as the orientation sensor 600 may not provide the ability to sense elevation changes (with constant inclination) or sense rotational orientation changes. Thus, in other example systems the orientation sensor 600 may be implemented with a digital gyroscope, such as a part number ITG-3050 Integrated Triple-Axis Digital-Output Gyroscope available from InvenSense, Inc. of Sunnyvale, Calif. Using a three-axis gyroscope the system may be able to sense not only changes in inclination of the wand 102, but also sense changes in elevation of the wand 102—that is, sense changes in all three spatial directions. Gyroscopes, whether digital or physical, are slow to “settle” and thus have limitations as to accuracy that reduce with continued measurement time, but where the time frame may span several seconds. Thus, in yet still further embodiments the orientation sensor 600 may be a six-axis gyroscope. “Six-axis” gyroscope is a term of art referring to a device that implements a three-axis gyroscope, as well as a corresponding three-axis accelerometer. By combining the readings of the gyroscope and accelerometer, more accurate measurements of orientation may be provided. Thus, in yet still other systems the orientation sensor 600 may be a six-axis gyroscope, such as a part no. MPU-6000/6050 Six-Axis MEMS MotionTracking Device available from InvenSense, Inc.
ROM 904 stores instructions executable by the processor 900. In particular, the ROM 904 may store a software program that implements the various embodiments of controlling flow control device 152 based on orientation of the wand 102 as read from the orientation sensor 600, as well as controlling the voltage generator 816 and interfacing with the user by way of the display device 124 and/or the foot pedal assembly 130 (
Voltage generator 916 generates selectable alternating current (AC) voltages that are applied to the electrodes of the wand 102. In various embodiments, the voltage generator defines two terminals 924 and 926. The terminals 924 and 926 may couple to active electrodes and return electrodes. As an example, terminal 924 couples to illustrative active electrodes 202 and 204, and terminal 926 couples to the conductive plate 210 acting as return electrode. In accordance with the various embodiments, the voltage generator generates an alternating current (AC) voltage across the terminals 924 and 926. In at least some embodiments the voltage generator 916 is electrically “floated” from the balance of the supply power in the controller 104, and thus the voltage on terminals 924, 926, when measured with respect to the earth ground or common (e.g., common 928) within the controller 104, may or may not show a voltage difference even when the voltage generator 916 is active. A description of one suitable voltage generator 916 can be found in commonly assigned U.S. Pat. Nos. 6,142,992 and 6,235,020, the complete disclosure of both patents are incorporated herein by reference for all purposes.
In some embodiments, the various operational modes of the voltage generator 916 may be controlled by way of digital-to-analog converter 906. That is, for example, the processor 900 may control the output voltage by providing a variable voltage to the voltage generator 916, where the voltage provided is proportional to the voltage generated by the voltage generator 916. In other embodiments, the processor 900 may communicate with the voltage generator by way of one or more digital output signals from the digital output 908 device, or by way of packet based communications using the communication device 912 (connection not specifically shown so as not to unduly complicate
Still referring to
The flow control device 152 (not shown in
The example systems discussed to this point have assumed that the controller 104 is directly responsible for reading orientation information from the orientation sensor 600 and commanding the flow control device 152 to change the restriction to the flow of conductive fluid. However, in yet still other example embodiment the adjustments to conductive fluid flow may be controlled logically outside the controller 104.
Operation of the example system of
The example flow control device 1000 further comprises a power supply 1120 which may supply power to all the devices of the flow control device that need power. The electrical connections between the power supply 1120 and the remaining components of the flow control device 1000 are not shown so as not to unduly complicate the figure. In some example systems, the power supply 1120 is a battery or battery system. In other cases, the power supply 1120 takes power from a standard wall socket, and coverts the energy into a correct format for the various devices of the flow control device 1000 (e.g, converts 120 VAC from the wall socket to 3.3 VDC for the electronic components, and 12 VDC for valve operator 1150). In the example system standalone system, operational power for the orientation sensor 600 may be provided from the flow control device 1000.
From the description provided herein, those skilled in the art are readily able to combine software created as described with appropriate general-purpose or special-purpose computer hardware to create a computer system and/or computer sub-components in accordance with the various embodiments, to create a computer system and/or computer sub-components for carrying out the methods of the various embodiments and/or to create a non-transitory computer-readable medium (i.e., not a carrier wave) that stores a software program to implement the method aspects of the various embodiments.
While preferred embodiments of this disclosure have been shown and described, modifications thereof can be made by one skilled in the art without departing from the scope or teaching herein. The embodiments described herein are exemplary only and are not limiting. Because many varying and different embodiments may be made within the scope of the present inventive concept, including equivalent structures, materials, or methods hereafter though of, and because many modifications may be made in the embodiments herein detailed in accordance with the descriptive requirements of the law, it is to be understood that the details herein are to be interpreted as illustrative and not in a limiting sense.
Number | Name | Date | Kind |
---|---|---|---|
2050904 | Trice | Apr 1936 | A |
2056377 | Wappler | Oct 1939 | A |
2611365 | Rubens | Sep 1952 | A |
3434476 | Shaw et al. | Mar 1969 | A |
3633425 | Sanford | Jan 1972 | A |
3707149 | Hao et al. | Dec 1972 | A |
3718617 | Royal | Feb 1973 | A |
3815604 | O'Malley et al. | Jun 1974 | A |
3828780 | Morrison, Jr. et al. | Aug 1974 | A |
3901242 | Storz | Aug 1975 | A |
3920021 | Hiltebrandt | Nov 1975 | A |
3939839 | Curtiss | Feb 1976 | A |
3963030 | Newton | Jun 1976 | A |
3964487 | Judson | Jun 1976 | A |
3970088 | Morrison | Jul 1976 | A |
4033351 | Hetzel | Jul 1977 | A |
4040426 | Morrison, Jr. | Aug 1977 | A |
4043342 | Morrison, Jr. | Aug 1977 | A |
4074718 | Morrison, Jr. | Feb 1978 | A |
4092986 | Schneiderman | Jun 1978 | A |
D249549 | Pike | Sep 1978 | S |
4114623 | Meinke et al. | Sep 1978 | A |
4116198 | Roos | Sep 1978 | A |
4181131 | Ogiu | Jan 1980 | A |
4184492 | Meinke et al. | Jan 1980 | A |
4202337 | Hren et al. | May 1980 | A |
4228800 | Degler, Jr. et al. | Oct 1980 | A |
4232676 | Herczog | Nov 1980 | A |
4240441 | Khalil | Dec 1980 | A |
4248231 | Herczog et al. | Feb 1981 | A |
4301801 | Schneiderman | Nov 1981 | A |
4326529 | Doss | Apr 1982 | A |
4346715 | Gammell | Aug 1982 | A |
4363324 | Kusserow | Dec 1982 | A |
4378801 | Oosten | Apr 1983 | A |
4381007 | Doss | Apr 1983 | A |
4418692 | Guay | Dec 1983 | A |
4474179 | Koch | Oct 1984 | A |
4476862 | Pao | Oct 1984 | A |
4509532 | DeVries | Apr 1985 | A |
4520818 | Mickiewicz | Jun 1985 | A |
4532924 | Auth et al. | Aug 1985 | A |
4548207 | Reimels | Oct 1985 | A |
4567890 | Ohta et al. | Feb 1986 | A |
4572206 | Geddes et al. | Feb 1986 | A |
4580557 | Hertzmann | Apr 1986 | A |
4587975 | Salo et al. | May 1986 | A |
4590934 | Malis et al. | May 1986 | A |
4593691 | Lindstrom et al. | Jun 1986 | A |
4658817 | Hardy | Apr 1987 | A |
4660571 | Hess et al. | Apr 1987 | A |
4674499 | Pao | Jun 1987 | A |
4682596 | Bales et al. | Jul 1987 | A |
4706667 | Roos | Nov 1987 | A |
4709698 | Johnston et al. | Dec 1987 | A |
4727874 | Bowers et al. | Mar 1988 | A |
4750902 | Wuchinich et al. | Jun 1988 | A |
4765331 | Petruzzi et al. | Aug 1988 | A |
4785823 | Eggers et al. | Nov 1988 | A |
4805616 | Pao | Feb 1989 | A |
4823791 | D'Amelio et al. | Apr 1989 | A |
4832048 | Cohen | May 1989 | A |
4846179 | O'Connor | Jul 1989 | A |
4860752 | Turner | Aug 1989 | A |
4898169 | Norman et al. | Feb 1990 | A |
4907589 | Cosman | Mar 1990 | A |
4920978 | Colvin | May 1990 | A |
4931047 | Broadwin et al. | Jun 1990 | A |
4936281 | Stasz | Jun 1990 | A |
4936301 | Rexroth et al. | Jun 1990 | A |
4943290 | Rexroth et al. | Jul 1990 | A |
4955377 | Lennox et al. | Sep 1990 | A |
4966597 | Cosman | Oct 1990 | A |
4967765 | Turner et al. | Nov 1990 | A |
4976711 | Parins et al. | Dec 1990 | A |
4979948 | Geddes et al. | Dec 1990 | A |
4998933 | Eggers et al. | Mar 1991 | A |
5007908 | Rydell | Apr 1991 | A |
5009656 | Reimels | Apr 1991 | A |
5026387 | Thomas | Jun 1991 | A |
5035696 | Rydell | Jul 1991 | A |
5047026 | Rydell | Sep 1991 | A |
5047027 | Rydell | Sep 1991 | A |
5057105 | Malone et al. | Oct 1991 | A |
5057106 | Kasevich et al. | Oct 1991 | A |
5078717 | Parins et al. | Jan 1992 | A |
5080660 | Buelna | Jan 1992 | A |
5083565 | Parins et al. | Jan 1992 | A |
5084044 | Quint | Jan 1992 | A |
5085659 | Rydell | Feb 1992 | A |
5086401 | Glassman et al. | Feb 1992 | A |
5088997 | Delahuerga et al. | Feb 1992 | A |
5092339 | Geddes et al. | Mar 1992 | A |
5098431 | Rydell | Mar 1992 | A |
5099840 | Goble | Mar 1992 | A |
5102410 | Dressel | Apr 1992 | A |
5108391 | Flachenecker et al. | Apr 1992 | A |
RE33925 | Bales et al. | May 1992 | E |
5112330 | Nishigaki et al. | May 1992 | A |
5122138 | Manwaring | Jun 1992 | A |
5125928 | Parins et al. | Jun 1992 | A |
5156151 | Imran | Oct 1992 | A |
5167659 | Ohtomo et al. | Dec 1992 | A |
5171311 | Rydell et al. | Dec 1992 | A |
5174304 | Latina et al. | Dec 1992 | A |
5178620 | Eggers et al. | Jan 1993 | A |
5183338 | Wickersheim et al. | Feb 1993 | A |
5190517 | Zieve et al. | Mar 1993 | A |
5192280 | Parins | Mar 1993 | A |
5195959 | Smith | Mar 1993 | A |
5197466 | Marchosky et al. | Mar 1993 | A |
5197963 | Parins | Mar 1993 | A |
5207675 | Canady | May 1993 | A |
5217457 | Delahuerga et al. | Jun 1993 | A |
5217459 | Kamerling | Jun 1993 | A |
5249585 | Turner et al. | Oct 1993 | A |
5255980 | Thomas et al. | Oct 1993 | A |
5261410 | Alfano et al. | Nov 1993 | A |
5267994 | Gentelia et al. | Dec 1993 | A |
5267997 | Farin et al. | Dec 1993 | A |
5273524 | Fox et al. | Dec 1993 | A |
5277201 | Stern | Jan 1994 | A |
5281216 | Klicek | Jan 1994 | A |
5281218 | Imran | Jan 1994 | A |
5282799 | Rydell | Feb 1994 | A |
5290282 | Casscells | Mar 1994 | A |
5300069 | Hunsberger et al. | Apr 1994 | A |
5306238 | Fleenor | Apr 1994 | A |
5312400 | Bales et al. | May 1994 | A |
5314406 | Arias et al. | May 1994 | A |
5318563 | Malis et al. | Jun 1994 | A |
5324254 | Phillips | Jun 1994 | A |
5330470 | Hagen | Jul 1994 | A |
5334140 | Phillips | Aug 1994 | A |
5334183 | Wuchinich | Aug 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5336172 | Bales et al. | Aug 1994 | A |
5336220 | Ryan et al. | Aug 1994 | A |
5336443 | Odashima | Aug 1994 | A |
5342357 | Nardella | Aug 1994 | A |
5348026 | Davidson | Sep 1994 | A |
5348554 | Imran et al. | Sep 1994 | A |
5354291 | Bales et al. | Oct 1994 | A |
5366443 | Eggers et al. | Nov 1994 | A |
5370675 | Edwards et al. | Dec 1994 | A |
5374261 | Yoon | Dec 1994 | A |
5375588 | Yoon | Dec 1994 | A |
5380277 | Phillips | Jan 1995 | A |
5380316 | Aita | Jan 1995 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5383876 | Nardella | Jan 1995 | A |
5383917 | Desai et al. | Jan 1995 | A |
5389096 | Aita | Feb 1995 | A |
5395312 | Desai | Mar 1995 | A |
5400267 | Denen et al. | Mar 1995 | A |
5401272 | Perkins | Mar 1995 | A |
5403311 | Abele et al. | Apr 1995 | A |
5417687 | Nardella et al. | May 1995 | A |
5419767 | Eggers et al. | May 1995 | A |
5423810 | Goble et al. | Jun 1995 | A |
5423882 | Jackman et al. | Jun 1995 | A |
5436566 | Thompson et al. | Jul 1995 | A |
5437662 | Nardella | Aug 1995 | A |
5438302 | Goble | Aug 1995 | A |
5441499 | Fritzsch | Aug 1995 | A |
5449356 | Walbrink et al. | Sep 1995 | A |
5451224 | Goble et al. | Sep 1995 | A |
5454809 | Janssen | Oct 1995 | A |
5458596 | Lax et al. | Oct 1995 | A |
5458597 | Edwards et al. | Oct 1995 | A |
5472443 | Cordis et al. | Dec 1995 | A |
5472444 | Huebner et al. | Dec 1995 | A |
5486161 | Lax et al. | Jan 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5496314 | Eggers | Mar 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5505730 | Edwards | Apr 1996 | A |
5507743 | Edwards et al. | Apr 1996 | A |
5514130 | Baker | May 1996 | A |
5540683 | Ichikawa et al. | Jul 1996 | A |
5542915 | Edwards et al. | Aug 1996 | A |
5549598 | O'Donnell, Jr. | Aug 1996 | A |
5554152 | Aita | Sep 1996 | A |
5556397 | Long et al. | Sep 1996 | A |
5562703 | Desai | Oct 1996 | A |
5569242 | Lax et al. | Oct 1996 | A |
5571100 | Goble et al. | Nov 1996 | A |
5573533 | Strul | Nov 1996 | A |
5584872 | LaFontaine et al. | Dec 1996 | A |
5588960 | Edwards et al. | Dec 1996 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5609151 | Mulier et al. | Mar 1997 | A |
5609573 | Sandock | Mar 1997 | A |
5633578 | Eggers et al. | May 1997 | A |
5634921 | Hood et al. | Jun 1997 | A |
5643304 | Schechter et al. | Jul 1997 | A |
5647869 | Goble et al. | Jul 1997 | A |
5658278 | Imran et al. | Aug 1997 | A |
5660567 | Nierlich et al. | Aug 1997 | A |
5662680 | Desai | Sep 1997 | A |
5676693 | LaFontaine et al. | Oct 1997 | A |
5681282 | Eggers et al. | Oct 1997 | A |
5683366 | Eggers et al. | Nov 1997 | A |
5697281 | Eggers et al. | Dec 1997 | A |
5697536 | Eggers et al. | Dec 1997 | A |
5697882 | Eggers et al. | Dec 1997 | A |
5697909 | Eggers et al. | Dec 1997 | A |
5697925 | Taylor | Dec 1997 | A |
5697927 | Imran et al. | Dec 1997 | A |
5700262 | Acosta et al. | Dec 1997 | A |
5715817 | Stevens-Wright et al. | Feb 1998 | A |
5722975 | Edwards et al. | Mar 1998 | A |
5725524 | Mulier et al. | Mar 1998 | A |
5749869 | Lindenmeier et al. | May 1998 | A |
5749871 | Hood et al. | May 1998 | A |
5749914 | Janssen | May 1998 | A |
5755753 | Knowlton | May 1998 | A |
5766153 | Eggers et al. | Jun 1998 | A |
5769847 | Panescu et al. | Jun 1998 | A |
5785705 | Baker | Jul 1998 | A |
5786578 | Christy et al. | Jul 1998 | A |
5800429 | Edwards | Sep 1998 | A |
5807395 | Mulier et al. | Sep 1998 | A |
5810764 | Eggers et al. | Sep 1998 | A |
5810802 | Panescu et al. | Sep 1998 | A |
5810809 | Rydell | Sep 1998 | A |
5836875 | Webster, Jr. | Nov 1998 | A |
5836897 | Sakurai et al. | Nov 1998 | A |
5843019 | Eggers et al. | Dec 1998 | A |
5860951 | Eggers | Jan 1999 | A |
5860974 | Abele | Jan 1999 | A |
5860975 | Goble et al. | Jan 1999 | A |
5871469 | Eggers et al. | Feb 1999 | A |
5873855 | Eggers et al. | Feb 1999 | A |
5873877 | McGaffigan et al. | Feb 1999 | A |
5874039 | Edelson | Feb 1999 | A |
5885277 | Korth | Mar 1999 | A |
5888198 | Eggers et al. | Mar 1999 | A |
5891095 | Eggers et al. | Apr 1999 | A |
5891134 | Goble et al. | Apr 1999 | A |
5897553 | Mulier | Apr 1999 | A |
5902272 | Eggers et al. | May 1999 | A |
5944715 | Goble et al. | Aug 1999 | A |
5954716 | Sharkey et al. | Sep 1999 | A |
5964786 | Ochs et al. | Oct 1999 | A |
6004319 | Goble et al. | Dec 1999 | A |
6013076 | Goble et al. | Jan 2000 | A |
6015406 | Goble et al. | Jan 2000 | A |
6024733 | Eggers et al. | Feb 2000 | A |
6027501 | Goble et al. | Feb 2000 | A |
6039734 | Goble et al. | Mar 2000 | A |
6047700 | Eggers et al. | Apr 2000 | A |
6056746 | Goble et al. | May 2000 | A |
6063079 | Hovda et al. | May 2000 | A |
6066134 | Eggers et al. | May 2000 | A |
6066489 | Fields et al. | May 2000 | A |
6068628 | Fanton et al. | May 2000 | A |
6074386 | Goble et al. | Jun 2000 | A |
6086585 | Hovda et al. | Jul 2000 | A |
6090106 | Goble et al. | Jul 2000 | A |
6090107 | Borgmeier et al. | Jul 2000 | A |
6093186 | Goble et al. | Jul 2000 | A |
6102046 | Weinstein et al. | Aug 2000 | A |
6103298 | Edelson et al. | Aug 2000 | A |
6105581 | Eggers et al. | Aug 2000 | A |
6109268 | Thapliyal et al. | Aug 2000 | A |
6117109 | Eggers et al. | Sep 2000 | A |
6126682 | Sharkey et al. | Oct 2000 | A |
6135999 | Fanton et al. | Oct 2000 | A |
6142992 | Cheng et al. | Nov 2000 | A |
6149620 | Baker et al. | Nov 2000 | A |
6156334 | Meyer-ingold et al. | Dec 2000 | A |
6159194 | Eggers et al. | Dec 2000 | A |
6159208 | Hovda et al. | Dec 2000 | A |
6162217 | Kannenberg et al. | Dec 2000 | A |
6168593 | Sharkey et al. | Jan 2001 | B1 |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6179824 | Eggers et al. | Jan 2001 | B1 |
6179836 | Eggers et al. | Jan 2001 | B1 |
6183469 | Thapliyal et al. | Feb 2001 | B1 |
6190381 | Olsen et al. | Feb 2001 | B1 |
6197021 | Panescu et al. | Mar 2001 | B1 |
6203542 | Ellsberry et al. | Mar 2001 | B1 |
6210402 | Olsen et al. | Apr 2001 | B1 |
6210405 | Goble et al. | Apr 2001 | B1 |
6217574 | Webster | Apr 2001 | B1 |
6224592 | Eggers et al. | May 2001 | B1 |
6228078 | Eggers | May 2001 | B1 |
6228081 | Goble | May 2001 | B1 |
6234178 | Goble et al. | May 2001 | B1 |
6235020 | Cheng et al. | May 2001 | B1 |
6237604 | Burnside et al. | May 2001 | B1 |
6238391 | Olsen et al. | May 2001 | B1 |
6238393 | Mulier et al. | May 2001 | B1 |
6241723 | Heim et al. | Jun 2001 | B1 |
6249706 | Sobota et al. | Jun 2001 | B1 |
6254600 | Willink et al. | Jul 2001 | B1 |
6258087 | Edwards et al. | Jul 2001 | B1 |
6261286 | Goble et al. | Jul 2001 | B1 |
6261311 | Sharkey et al. | Jul 2001 | B1 |
6264652 | Eggers et al. | Jul 2001 | B1 |
6270460 | McCartan et al. | Aug 2001 | B1 |
6277112 | Underwood et al. | Aug 2001 | B1 |
6280441 | Ryan | Aug 2001 | B1 |
6283961 | Underwood et al. | Sep 2001 | B1 |
6293942 | Goble et al. | Sep 2001 | B1 |
6296636 | Cheng et al. | Oct 2001 | B1 |
6296638 | Davison et al. | Oct 2001 | B1 |
6306134 | Goble et al. | Oct 2001 | B1 |
6308089 | von der Ruhr et al. | Oct 2001 | B1 |
6309387 | Eggers et al. | Oct 2001 | B1 |
6312408 | Eggers et al. | Nov 2001 | B1 |
6319007 | Livaditis | Nov 2001 | B1 |
6322549 | Eggers et al. | Nov 2001 | B1 |
6346104 | Daly et al. | Feb 2002 | B2 |
6346107 | Cucin | Feb 2002 | B1 |
6355032 | Hovda et al. | Mar 2002 | B1 |
6363937 | Hovda et al. | Apr 2002 | B1 |
6364877 | Goble et al. | Apr 2002 | B1 |
6379350 | Sharkey et al. | Apr 2002 | B1 |
6379351 | Thapliyal et al. | Apr 2002 | B1 |
6391025 | Weinstein et al. | May 2002 | B1 |
6409722 | Hoey et al. | Jun 2002 | B1 |
6416507 | Eggers et al. | Jul 2002 | B1 |
6416508 | Eggers et al. | Jul 2002 | B1 |
6416509 | Goble et al. | Jul 2002 | B1 |
6425912 | Knowlton | Jul 2002 | B1 |
6432103 | Ellsberry et al. | Aug 2002 | B1 |
6440129 | Simpson | Aug 2002 | B1 |
6468274 | Alleyne et al. | Oct 2002 | B1 |
6468275 | Wampler et al. | Oct 2002 | B1 |
6482201 | Olsen et al. | Nov 2002 | B1 |
6500173 | Underwood et al. | Dec 2002 | B2 |
6514248 | Eggers et al. | Feb 2003 | B1 |
6514250 | Jahns et al. | Feb 2003 | B1 |
6517498 | Burbank et al. | Feb 2003 | B1 |
6530922 | Cosman | Mar 2003 | B2 |
6558382 | Jahns et al. | May 2003 | B2 |
6565560 | Goble et al. | May 2003 | B1 |
6578579 | Burnside | Jun 2003 | B2 |
6589237 | Woloszko et al. | Jul 2003 | B2 |
6602248 | Sharps et al. | Aug 2003 | B1 |
6620156 | Garito et al. | Sep 2003 | B1 |
6632193 | Davison et al. | Oct 2003 | B1 |
6632220 | Eggers et al. | Oct 2003 | B1 |
6635034 | Cosmescu | Oct 2003 | B1 |
6640128 | Vilsmeier et al. | Oct 2003 | B2 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6663554 | Babaev | Dec 2003 | B2 |
6663627 | Francischelli et al. | Dec 2003 | B2 |
6702810 | McClurken et al. | Mar 2004 | B2 |
6730080 | Harano et al. | May 2004 | B2 |
6746447 | Davison et al. | Jun 2004 | B2 |
6749604 | Eggers et al. | Jun 2004 | B1 |
6749608 | Garito et al. | Jun 2004 | B2 |
D493530 | Reschke | Jul 2004 | S |
6770071 | Woloszko et al. | Aug 2004 | B2 |
6780178 | Palanker et al. | Aug 2004 | B2 |
6780180 | Goble et al. | Aug 2004 | B1 |
6780184 | Tanrisever | Aug 2004 | B2 |
6802842 | Ellman et al. | Oct 2004 | B2 |
6805130 | Tasto et al. | Oct 2004 | B2 |
6830558 | Flaherty et al. | Dec 2004 | B2 |
6837887 | Woloszko et al. | Jan 2005 | B2 |
6837888 | Ciarrocca et al. | Jan 2005 | B2 |
6855143 | Davison et al. | Feb 2005 | B2 |
6864686 | Novak et al. | Mar 2005 | B2 |
6866671 | Tierney et al. | Mar 2005 | B2 |
6872183 | Sampson et al. | Mar 2005 | B2 |
6878149 | Gatto | Apr 2005 | B2 |
6890307 | Kokate et al. | May 2005 | B2 |
6892086 | Russell | May 2005 | B2 |
6911027 | Edwards et al. | Jun 2005 | B1 |
6920883 | Bessette et al. | Jul 2005 | B2 |
6921398 | Carmel et al. | Jul 2005 | B2 |
6929640 | Underwood et al. | Aug 2005 | B1 |
6949096 | Davison et al. | Sep 2005 | B2 |
6953461 | McClurken et al. | Oct 2005 | B2 |
6960204 | Eggers et al. | Nov 2005 | B2 |
6974453 | Woloszko et al. | Dec 2005 | B2 |
6979328 | Baerveldt et al. | Dec 2005 | B2 |
6979601 | Marr et al. | Dec 2005 | B2 |
6984231 | Goble et al. | Jan 2006 | B2 |
6986770 | Hood | Jan 2006 | B2 |
6991631 | Woloszko et al. | Jan 2006 | B2 |
7001382 | Gallo | Feb 2006 | B2 |
7004941 | Tvinnereim et al. | Feb 2006 | B2 |
7010353 | Gan et al. | Mar 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7070596 | Woloszko et al. | Jul 2006 | B1 |
7090672 | Underwood et al. | Aug 2006 | B2 |
7094215 | Davison et al. | Aug 2006 | B2 |
7094231 | Ellman et al. | Aug 2006 | B1 |
7104986 | Hovda et al. | Sep 2006 | B2 |
7115139 | McClurken et al. | Oct 2006 | B2 |
7131969 | Hovda et al. | Nov 2006 | B1 |
7169143 | Eggers et al. | Jan 2007 | B2 |
7179255 | Lettice et al. | Feb 2007 | B2 |
7186234 | Dahla et al. | Mar 2007 | B2 |
7192428 | Eggers et al. | Mar 2007 | B2 |
7201750 | Eggers et al. | Apr 2007 | B1 |
7217268 | Eggers et al. | May 2007 | B2 |
7223265 | Keppel | May 2007 | B2 |
7241293 | Davison | Jul 2007 | B2 |
7247155 | Hoey et al. | Jul 2007 | B2 |
7270658 | Woloszko et al. | Sep 2007 | B2 |
7270659 | Ricart et al. | Sep 2007 | B2 |
7270661 | Dahla et al. | Sep 2007 | B2 |
7271363 | Lee et al. | Sep 2007 | B2 |
7276061 | Schaer et al. | Oct 2007 | B2 |
7276063 | Davison et al. | Oct 2007 | B2 |
7278994 | Goble | Oct 2007 | B2 |
7282048 | Goble et al. | Oct 2007 | B2 |
7297143 | Woloszko et al. | Nov 2007 | B2 |
7297145 | Woloszko et al. | Nov 2007 | B2 |
7318823 | Sharps et al. | Jan 2008 | B2 |
7331956 | Hovda et al. | Feb 2008 | B2 |
7335199 | Goble et al. | Feb 2008 | B2 |
RE40156 | Sharps et al. | Mar 2008 | E |
7338489 | Kadoch | Mar 2008 | B2 |
7344532 | Goble et al. | Mar 2008 | B2 |
7357798 | Sharps et al. | Apr 2008 | B2 |
7387625 | Hovda et al. | Jun 2008 | B2 |
7419488 | Ciarrocca et al. | Sep 2008 | B2 |
7429260 | Underwood et al. | Sep 2008 | B2 |
7429262 | Woloszko et al. | Sep 2008 | B2 |
7435247 | Woloszko et al. | Oct 2008 | B2 |
7442191 | Hovda et al. | Oct 2008 | B2 |
7445618 | Eggers et al. | Nov 2008 | B2 |
7449021 | Underwood et al. | Nov 2008 | B2 |
7462178 | Woloszko et al. | Dec 2008 | B2 |
7468059 | Eggers et al. | Dec 2008 | B2 |
7491200 | Underwood et al. | Feb 2009 | B2 |
7507236 | Eggers et al. | Mar 2009 | B2 |
7527624 | Dubnack et al. | May 2009 | B2 |
7572251 | Davison et al. | Aug 2009 | B1 |
7632267 | Dahla | Dec 2009 | B2 |
7678069 | Baker et al. | Mar 2010 | B1 |
7691101 | Davison et al. | Apr 2010 | B2 |
7699830 | Martin | Apr 2010 | B2 |
7704249 | Woloszko et al. | Apr 2010 | B2 |
7708733 | Sanders et al. | May 2010 | B2 |
7722601 | Wham et al. | May 2010 | B2 |
7785322 | Penny et al. | Aug 2010 | B2 |
7824398 | Woloszko et al. | Nov 2010 | B2 |
7862560 | Marion | Jan 2011 | B2 |
7879034 | Woloszko et al. | Feb 2011 | B2 |
7887538 | Bleich et al. | Feb 2011 | B2 |
7892230 | Woloszko et al. | Feb 2011 | B2 |
7901403 | Woloszko et al. | Mar 2011 | B2 |
7985072 | Belikov et al. | Jul 2011 | B2 |
7988689 | Woloszko et al. | Aug 2011 | B2 |
8012153 | Woloszko et al. | Sep 2011 | B2 |
8114071 | Woloszko et al. | Feb 2012 | B2 |
D658760 | Cox et al. | May 2012 | S |
8192424 | Woloszko | Jun 2012 | B2 |
8257350 | Marion | Sep 2012 | B2 |
8303583 | Hosier et al. | Nov 2012 | B2 |
8372067 | Woloszko et al. | Feb 2013 | B2 |
8568405 | Cox et al. | Oct 2013 | B2 |
8574187 | Marion | Nov 2013 | B2 |
8685018 | Cox et al. | Apr 2014 | B2 |
8747399 | Woloszko et al. | Jun 2014 | B2 |
8870866 | Woloszko | Oct 2014 | B2 |
20020029036 | Goble et al. | Mar 2002 | A1 |
20020042612 | Hood et al. | Apr 2002 | A1 |
20020052600 | Davison | May 2002 | A1 |
20020151882 | Marko et al. | Oct 2002 | A1 |
20020183739 | Long | Dec 2002 | A1 |
20030013986 | Saadat | Jan 2003 | A1 |
20030014045 | Russell | Jan 2003 | A1 |
20030014047 | Woloszko et al. | Jan 2003 | A1 |
20030088245 | Woloszko et al. | May 2003 | A1 |
20030158545 | Hovda et al. | Aug 2003 | A1 |
20030167035 | Flaherty et al. | Sep 2003 | A1 |
20030171743 | Tasto et al. | Sep 2003 | A1 |
20030181903 | Hood et al. | Sep 2003 | A1 |
20030208196 | Stone | Nov 2003 | A1 |
20030212395 | Woloszko | Nov 2003 | A1 |
20030212396 | Eggers et al. | Nov 2003 | A1 |
20030216725 | Woloszko et al. | Nov 2003 | A1 |
20030216726 | Eggers et al. | Nov 2003 | A1 |
20030216732 | Truckai et al. | Nov 2003 | A1 |
20030232048 | Yang et al. | Dec 2003 | A1 |
20040030330 | Brassell et al. | Feb 2004 | A1 |
20040058153 | Ren et al. | Mar 2004 | A1 |
20040092925 | Rizoiu et al. | May 2004 | A1 |
20040102044 | Mao et al. | May 2004 | A1 |
20040116922 | Hovda et al. | Jun 2004 | A1 |
20040127893 | Hovda | Jul 2004 | A1 |
20040186418 | Karashima | Sep 2004 | A1 |
20040215183 | Hoey et al. | Oct 2004 | A1 |
20040230190 | Dahla et al. | Nov 2004 | A1 |
20050004634 | Ricart et al. | Jan 2005 | A1 |
20050010205 | Hovda et al. | Jan 2005 | A1 |
20050015085 | McClurken et al. | Jan 2005 | A1 |
20050033278 | McClurken et al. | Feb 2005 | A1 |
20050197657 | Goth et al. | Sep 2005 | A1 |
20050212870 | Chiao | Sep 2005 | A1 |
20050245923 | Christopherson et al. | Nov 2005 | A1 |
20050261754 | Woloszko et al. | Nov 2005 | A1 |
20050273091 | Booth et al. | Dec 2005 | A1 |
20060036237 | Davison et al. | Feb 2006 | A1 |
20060095031 | Ormsby | May 2006 | A1 |
20060097615 | Tsakalakos et al. | May 2006 | A1 |
20060161148 | Behnke | Jul 2006 | A1 |
20060189971 | Tasto et al. | Aug 2006 | A1 |
20060253117 | Hovda et al. | Nov 2006 | A1 |
20060259025 | Dahla | Nov 2006 | A1 |
20060287650 | Cao | Dec 2006 | A1 |
20070106288 | Woloszko et al. | May 2007 | A1 |
20070149966 | Dahla et al. | Jun 2007 | A1 |
20070161981 | Sanders et al. | Jul 2007 | A1 |
20070179491 | Kratoska et al. | Aug 2007 | A1 |
20070179495 | Mitchell et al. | Aug 2007 | A1 |
20080004615 | Woloszko et al. | Jan 2008 | A1 |
20080077128 | Woloszko et al. | Mar 2008 | A1 |
20080097476 | Peh et al. | Apr 2008 | A1 |
20080138761 | Pond | Jun 2008 | A1 |
20080140069 | Filloux et al. | Jun 2008 | A1 |
20080154255 | Panos et al. | Jun 2008 | A1 |
20080167645 | Woloszko | Jul 2008 | A1 |
20080234674 | McClurken et al. | Sep 2008 | A1 |
20080243116 | Anderson | Oct 2008 | A1 |
20080261368 | Ramin et al. | Oct 2008 | A1 |
20080300590 | Horne et al. | Dec 2008 | A1 |
20090209956 | Marion | Aug 2009 | A1 |
20090209958 | Davison et al. | Aug 2009 | A1 |
20090222001 | Greeley et al. | Sep 2009 | A1 |
20100042101 | Inagaki et al. | Feb 2010 | A1 |
20100121317 | Lorang et al. | May 2010 | A1 |
20100152726 | Cadouri et al. | Jun 2010 | A1 |
20100228246 | Marion | Sep 2010 | A1 |
20100292689 | Davison et al. | Nov 2010 | A1 |
20100318083 | Davison et al. | Dec 2010 | A1 |
20100331883 | Schmitz et al. | Dec 2010 | A1 |
20110137308 | Woloszko et al. | Jun 2011 | A1 |
20110208177 | Brannan | Aug 2011 | A1 |
20110245826 | Woloszko et al. | Oct 2011 | A1 |
20110270256 | Nelson et al. | Nov 2011 | A1 |
20110319887 | Keppel | Dec 2011 | A1 |
20120083782 | Stalder et al. | Apr 2012 | A1 |
20120095453 | Cox et al. | Apr 2012 | A1 |
20120095454 | Cox et al. | Apr 2012 | A1 |
20120109123 | Woloszko et al. | May 2012 | A1 |
20120190969 | Kameli | Jul 2012 | A1 |
20120191089 | Gonzalez | Jul 2012 | A1 |
20120196251 | Taft et al. | Aug 2012 | A1 |
20120197344 | Taft et al. | Aug 2012 | A1 |
20120215221 | Woloszko | Aug 2012 | A1 |
20120296328 | Marion | Nov 2012 | A1 |
20130116680 | Woloszko | May 2013 | A1 |
20140018798 | Cox et al. | Jan 2014 | A1 |
20140025065 | Marion | Jan 2014 | A1 |
20140135760 | Cadouri et al. | May 2014 | A1 |
20140155882 | Cox et al. | Jun 2014 | A1 |
20140236141 | Woloszko et al. | Aug 2014 | A1 |
20140257277 | Woloszko et al. | Sep 2014 | A1 |
20140257278 | Woloszko et al. | Sep 2014 | A1 |
20140257279 | Woloszko et al. | Sep 2014 | A1 |
20140276725 | Cox | Sep 2014 | A1 |
20150032101 | Woloszko et al. | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
3119735 | Jan 1983 | DE |
3930451 | Mar 1991 | DE |
69635311 | Apr 2007 | DE |
10201003288 | Sep 2014 | DE |
423757 | Mar 1996 | EP |
0703461 | Mar 1996 | EP |
0740926 | Nov 1996 | EP |
0754437 | Jan 1997 | EP |
0694290 | Nov 2000 | EP |
1334699 | Aug 2003 | EP |
1428480 | Jun 2004 | EP |
1707147 | Oct 2006 | EP |
2055254 | Feb 2015 | EP |
2313949 | Jan 1977 | FR |
467502 | Jun 1937 | GB |
2160102 | Dec 1985 | GB |
2299216 | Sep 1996 | GB |
2 308 979 | Jul 1997 | GB |
2 308 980 | Jul 1997 | GB |
2 308 981 | Jul 1997 | GB |
2 327 350 | Jan 1999 | GB |
2 327 351 | Jan 1999 | GB |
2 327 352 | Jan 1999 | GB |
2333455 | Jul 1999 | GB |
2406793 | Apr 2005 | GB |
2514442 | Nov 2014 | GB |
57-57802 | Apr 1982 | JP |
57-117843 | Jul 1982 | JP |
9003152 | Apr 1990 | WO |
9007303 | Jul 1990 | WO |
9221278 | Dec 1992 | WO |
9313816 | Jul 1993 | WO |
9320747 | Oct 1993 | WO |
9404220 | Mar 1994 | WO |
9408654 | Apr 1994 | WO |
9410921 | May 1994 | WO |
9426228 | Nov 1994 | WO |
9534259 | Dec 1995 | WO |
9600040 | Jan 1996 | WO |
9600042 | Jan 1996 | WO |
9639086 | Dec 1996 | WO |
9700646 | Jan 1997 | WO |
9700647 | Jan 1997 | WO |
9718768 | May 1997 | WO |
9724073 | Jul 1997 | WO |
9724074 | Jul 1997 | WO |
9724993 | Jul 1997 | WO |
9724994 | Jul 1997 | WO |
9743971 | Nov 1997 | WO |
9748345 | Dec 1997 | WO |
9748346 | Dec 1997 | WO |
9807468 | Feb 1998 | WO |
9826724 | Jun 1998 | WO |
9827879 | Jul 1998 | WO |
9827880 | Jul 1998 | WO |
9856324 | Dec 1998 | WO |
9920213 | Apr 1999 | WO |
9951155 | Oct 1999 | WO |
9951158 | Oct 1999 | WO |
9956648 | Nov 1999 | WO |
0000098 | Jan 2000 | WO |
0009053 | Feb 2000 | WO |
0062685 | Oct 2000 | WO |
0124720 | Apr 2001 | WO |
0187154 | May 2001 | WO |
0195819 | Dec 2001 | WO |
0236028 | May 2002 | WO |
02102255 | Dec 2002 | WO |
03024305 | Mar 2003 | WO |
03092477 | Nov 2003 | WO |
2004026150 | Apr 2004 | WO |
2004071278 | Aug 2004 | WO |
2005125287 | Dec 2005 | WO |
2007006000 | Jan 2007 | WO |
2007056729 | May 2007 | WO |
2010052717 | May 2010 | WO |
2012050636 | Apr 2012 | WO |
2012050637 | Apr 2012 | WO |
Entry |
---|
Barry et al., “The Effect of Radiofrequency-generated Thermal Energy on the Mechanical and Histologic Characteristics of the Arterial Wall in Vivo: Implications of Radiofrequency Angioplasty” American Heart Journal vol. 117, pp. 332-341, 1982. |
BiLAP Generator Settings, Jun. 1991. |
BiLAP IFU 910026-001 Rev A for BiLAP Model 3525, J-Hook, 4 pgs, May 20, 1991. |
BiLAP IFU 910033-002 Rev A for BiLAP Model 3527, L-Hook; BiLAP Model 3525, J-Hook; BiLAP Model 3529, High Angle, 2 pgs, Nov. 30, 1993. |
Codman & Shurtleff, Inc. “The Malis Bipolar Coagulating and Bipolar Cutting System CMC-II” brochure, early, 2 pgs, 1991. |
Codman & Shurtleff, Inc. “The Malis Bipolar Electrosurgical System CMC-III Instruction Manual” , 15 pgs, Jul. 1991. |
Cook et al., “Therapeutic Medical Devices: Application and Design” , Prentice Hall, Inc., 3pgs, 1982. |
Dennis et al. “Evolution of Electrofulguration in Control of Bleeding of Experimental Gastric Ulcers,” Digestive Diseases and Sciences, vol. 24, No. 11, 845-848, Nov. 1979. |
Dobbie, A.K., “The Electrical Aspects of Surgical Diathermy, Bio Medical Engineering” Bio-Medical Engineering vol. 4, pp. 206-216, May 1969. |
Elsasser, V.E. et al., “An Instrument for Transurethral Resection without Leakage of Current” Acta Medicotechnica vol. 24, No. 4, pp. 129-134, 1976. |
Geddes, “Medical Device Accidents: With Illustrative Cases” CRC Press, 3 pgs, 1998. |
Honig, W., “The Mechanism of Cutting in Electrosurgery” IEEE pp. 58-65, 1975. |
Kramolowsky et al. “The Urological App of Electorsurgery” J. of Urology vol. 146, pp. 669-674, 1991. |
Kramolowsky et al. “Use of 5F Bipolar Electrosurgical Probe in Endoscopic Urological Procedures” J. of Urology vol. 143, pp. 275-277, 1990. |
Lee, B et al. “Thermal Compression and Molding of Artherosclerotic Vascular Tissue with Use” JACC vol. 13(5), pp. 1167-1171, 1989. |
Letter from Department of Health to Jerry Malis dated Jan. 24, 1991, 3 pgs. |
Letter from Department of Health to Jerry Malis dated Jul. 25, 1985, 1 pg. |
Letter from Jerry Malis to FDA dated Jul. 25, 1985, 2 pgs. |
Lu, et al., “Electrical Thermal Angioplasty: Catheter Design Features, In Vitro Tissue Ablation Studies and In Vitro Experimental Findings,” Am J. Cardiol vol. 60, pp. 1117-1122, Nov. 1, 1987. |
Malis, L., “Electrosurgery, Technical Note,” J. Neursurg., vol. 85, pp. 970-975, Nov. 1996. |
Malis, L., “Excerpted from a seminar by Leonard I. Malis, M.D. at the 1995 American Association of Neurological Surgeons Meeting,” 1pg, 1985. |
Malis, L., “Instrumentation for Microvascular Neurosurgery” Cerebrovascular Surgery, vol. 1, pp. 245-260, 1985. |
Malis, L., “New Trends in Microsurgery and Applied Technology,” Advanced Technology in Neurosurgery, pp. 1-16, 1988. |
Malis, L., “The Value of Irrigation During Bipolar Coagulation” See ARTC 21602, 1 pg, Apr. 9, 1993. |
Nardella, P.C., SPIE 1068: pp. 42-49, Radio Frequency Energy and Impedance Feedback, 1989. |
O'Malley, Schaum's Outline of Theory and Problems of Basic Circuit Analysis, McGraw-Hill, 2nd Ed., pp. 3-5, 1992. |
Olsen MD, Bipolar Laparoscopic Cholecstectomy Lecture (marked confidential), 12 pgs, Oct. 7, 1991. |
Pearce, John A. “Electrosurgery”, pp. 17, 69-75, 87, John Wiley & Sons, New York, 1986. |
Pearce, John A., “Electrosurgery”, Handbook of Biomedical Engineering, chapter 3, Academic Press Inc., N.Y., pp. 98-113, 1988. |
Piercey et al., “Electrosurgical Treatment of Experimental Bleeding Canine Gastric Ulcers” Gastroenterology vol. 74(3), pp. 527-534, 1978. |
Protell et al., “Computer-Assisted Electrocoagulation: Bipolar v. Monopolar in the Treatment of Experimental Canine Gastric Ulcer Bleeding,” Gastroenterology vol. 80, No. 3, pp. 451-455, 1981. |
Ramsey et al., “A Comparison of Bipolar and Monopolar Diathermy Probes in Experimental Animals”, Urological Research vol. 13, pp. 99-102, 1985. |
Selikowitz et al., “Electric Current and Voltage Recordings on the Myocardium During Electrosurgical Procedures in Canines,” Surgery, Gynecology & Obstetrics, vol. 164, pp. 219-224, Mar. 1987. |
Shuman, “Bipolar Versus Monopolar Electrosurgery: Clinical Applications,” Dentistry Today, vol. 20, No. 12, 7 pgs, Dec. 2001. |
Slager et al. “Spark Erosion of Arteriosclerotic Plaques” Z. Kardiol. 76:Suppl. 6, pp. 67-71, 1987. |
Slager et al. “Vaporization of Atherosclerotice Plaques by Spark Erosion” JACC 5(6): pp. 1382-1386, Jun. 1985. |
Stoffels, E. et al., “Investigation on the Interaction Plasma-Bone Tissue”, E-MRS Spring Meeting, 1 pg, Jun. 18-21, 2002. |
Stoffels, E. et al., “Biomedical Applications of Plasmas”, Tutorial presented prior to the 55th Gaseous Electronics Conference in Minneapolis, MN, 41 pgs, Oct. 14, 2002. |
Stoffels, E. et al., “Plasma Interactions with Living Cells”, Eindhoven University of Technology, 1 pg, 2002. |
Stoffels, E. et al., “Superficial Treatment of Mammalian Cells using Plasma Needle”, J. Phys. D: Appl. Phys. 26, pp. 2908-2913, Nov. 19, 2003. |
Stoffels, E. et al., “Plasma Needle”, Eindhoven University of Technology, 1 pg, Nov. 28, 2003. |
Stoffels, E. et al., “Plasma Physicists Move into Medicine”, Physicsweb, 1 pg, Nov. 2003. |
Stoffels, E. et al., “Plasma Treated Tissue Engineered Skin to Study Skin Damage”, Biomechanics and Tissue Engineering, Materials Technology, 1 pg, 2003. |
Stoffels, E. et al., “Plasma Treatment of Dental Cavities: a Feasibility Study”, IEEE Transaction on Plasma Science, vol. 32, No. 4, pp. 1540-1542, Aug. 2004. |
Stoffels, E. et al., “The Effects of UV Irradiation and Gas Plasma Treatment on Living Mammalian Cells and Bacteria: a Comparative Approach”, IEEE Transaction on Plasma Science, vol. 32, No. 4, pp. 1544-1550, Aug. 2004. |
Stoffels, E. et al., “Electrical and Optical Characterization of the Plasma Needle”, New Journal of Physics 6, pp. 1-14, Oct. 28, 2004. |
Stoffels, E. et al., “Where Plasma Meets Plasma”, Eindhoven University of Technology, 23 pgs, 2004. |
Stoffels, E. et al., “Gas Plasma effects on Living Cells”, Physica Scripta, T107, pp. 79-82, 2004. |
Stoffels, E. et al., “Plasma Treatment of Mammalian Vascular Cells: a Quantitative Description”, IEEE Transaction on Plasma Science, vol. 33, No. 2, pp. 771-775, Apr. 2005. |
Stoffels, E. et al., “Deactivation of Escherichia coli by the Plasma Needle”, J. Phys. D: Appl. Phys. 38, pp. 1716-1721, May 20, 2005. |
Stoffels, E. et al., “Development of a Gas Plasma Catheter for Gas Plasma Surgery”, XXVIIth ICPIG, Endoven University of Technology, pp. 18-22, Jul. 2005. |
Stoffels, E. et al., “Development of a Smart Positioning Sensor for the Plasma Needle”, Plasma Sources Sci. Technol. 15, pp. 582-589, Jun. 27, 2006. |
Stoffels, E. et al., Killing of S. Mutans Bacteria Using a Plasma Needle at Atmospheric Pressure, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1317-1324, Aug. 2006. |
Stoffels, E. et al., “Plasma-Needle Treatment of Substrates with Respect to Wettability and Growth of Excherichia coli and Streptococcus mutans”, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1325-1330, Aug. 2006. |
Stoffels, E. et al., “Reattachment and Apoptosis after Plasma-Needle Treatment of Cultured Cells”, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1331-1336, Aug. 2006. |
Stoffels, E. et al., “UV Excimer Lamp Irradiation of Fibroblasts: The Influence on Antioxidant Homostasis”, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1359-1364, Aug. 2006. |
Stoffels, E. et al., “Plasma Needle for In Vivo Medical Treatment: Recent Developments and Perspectives”, Plasma Sources Sci. Technol. 15, pp. S169-S180, Oct. 6, 2006. |
Swain, C.P., et al., “Which Electrode, a Comparison of four endoscopic methods of electrocoagulation in experimental bleeding ulcers” Gut vol. 25, pp. 1424-1431, 1987. |
Tucker, R. et al., Abstract p. 14-11, p. 248, “A Bipolar Electrosurgical Turp Loop”, Nov. 1989. |
Tucker, R. et al. “A Comparison of Urologic Application of Bipolar Versus Monopolar Five French Electrosurgical Probes” J. of Urology vol. 141, pp. 662-665, 1989. |
Tucker, R. et al. “In vivo effect of 5 French Bipolar and Monopolar Electrosurgical Probes on the Porcine Bladder” Urological Research vol. 18, pp. 291-294, 1990. |
Tucker, R. et al., “Demodulated Low Frequency Currents from Electrosurgical Procedures,” Surgery, Gynecology and Obstetrics, 159:39-43, 1984. |
Tucker et al. “The interaction between electrosurgical generators, endoscopic electrodes, and tissue,” Gastrointestinal Endoscopy, vol. 38, No. 2, pp. 118-122, 1992. |
Valley Forge Scientific Corp., “Summary of Safety and Effective Information from 510K”, 2pgs, 1991. |
Valley Forge's New Products, Clinica, 475, 5, Nov. 6, 1991. |
Valleylab SSE2L Instruction Manual, 11 pgs, Jan. 6, 1983. |
Valleylab, Inc. “Valleylab Part No. 945 100 102 A” Surgistat Service Manual, pp. 1-46, Jul. 1988. |
Wattiez, Arnaud et al., “Electrosurgery in Operative Endoscopy,” Electrosurgical Effects, Blackwell Science, pp. 85-93, 1995. |
Wyeth, “Electrosurgical Unit” pp. 1181-1202, 2000. |
Buchelt, et al. “Excimer Laser Ablation of Fibrocartilage: an In Vitro and In Vivo Study”, Lasers in Surgery and Medicine, vol. 11, pp. 271-279, 1991. |
Costello et al., “Nd: YAG Laser Ablation of the Prostate as a Treatment for Benign Prostatic Hypertrophy”, Lasers in Surgery and Medicine, vol. 12, pp. 121-124, 1992. |
O'Neill et al., “Percutaneous Plasma Discectomy Stimulates Repair in Injured Porcine Intervertebral Discs”, Dept. of Orthopaedic Surgery, Dept. of Radiology University of California at San Francisco, CA, 3 pgs No date. |
Rand et al., “Effect of Elecctrocautery on Fresh Human Articular Cartilage”, J. Arthro. Surg., vol. 1, pgs. 242-246, 1985. |
European Examination Report for EP 02773432 4 pgs. Sep. 22, 2009. |
European Examination Report for EP 05024974 4 pgs, Dec. 5, 2008. |
European Examination Report (1st) for EP 04708664 7pgs, Sep. 7, 2009. |
European Examination Report for EP 02749601.7 4pgs, Dec. 2, 2009. |
European Examination Report (2nd) for EP 04708664 5pgs, May 3, 2010. |
European Examination Report (3rd) for EP 04708664 6pgs, Nov. 6, 2012. |
European Search Report for EP 02773432 3pgs, Dec. 19, 2008. |
European Search Report for EP 04708664.0 5pgs, Apr. 6, 2009. |
European Search Report for EP 98953859, 2 pgs, Jul. 2, 2001. |
Suppl European Search Report for EP 98953859, 3 pgs, Oct. 18, 2001. |
Extended European Search Report for EP09152846, 8pgs, Jan. 5, 2010. |
European Search Report for EP 99945039.8, 3 pgs, Oct. 1, 2001. |
European Search Report for EP 09152850, 2 pgs, Dec. 29, 2009. |
PCT International Preliminary Examination Report for PCT/US02/19261, 3pgs, Mar. 25, 2003. |
PCT International Search Report for PCT/US02/19261, 1 pg, Mailed Sep. 18, 2002. |
PCT International Search Report for PCT/US02/29476, 1 pg, Mailed May 24, 2004. |
PCT International Search Report for PCT/US03/13686, 1 pg Mailed Nov. 25, 2003. |
PCT International Search Report for PCT/US04/03614, 1 pg, Mailed Sep. 14, 2004. |
PCT International Search Report for PCT/US98/22323, 1 pg, Mailed Mar. 3, 1999. |
PCT International Search Report for PCT/US99/14685, 1 pg, Mailed Oct. 21, 1999. |
PCT International Search Report for PCT/US99/18289, 1 pg, Mailed Dec. 7, 1999. |
PCT Notification of International Preliminary Examination Report for PCT/US98/22323, 5 pgs, Mailed Nov. 28, 2000. |
PCT Notification of International Preliminary Examination Report for PCT/US99/14685, 4 pgs, Mailed Feb. 20, 2001. |
PCT Notification of International Preliminary Examination Report for PCT/US99/18289, 4 pgs, Mailed Jul. 7, 2000. |
PCT Notification of International Search Report and Written Opinion for PCT/US06/26321, 8pgs, Mailed Apr. 25, 2007. |
PCT Notification of the International Search Report and Written Opinion for PCT/US06/60618, 7pgs Mailed Oct. 5, 2007. |
PCT Notification of the International Search Report and Written Opinion for PCT/US07/69856, 7pgs Mailed Jun. 5, 2008. |
PCT Written Opinion of the International Searching Authority for PCT/US04/03614, 4 pgs, Mailed Sep. 14, 2004. |
PCT Notification of the International Search Report and Written Opinion for PCT/US2011/033784 11 pgs, Mailed Jul. 18, 2011. |
PCT Notification of the International Search Report and Written Opinion for PCT/US2011/033761 11 pgs, Mailed Jul. 22, 2011. |
UK Search Report for GB0800129.9 2pgs, May 8, 2008. |
UK Search Report for GB0805062.7 1 pg, Jul. 16, 2008. |
UK Search Report for GB0900604.0 4 pgs, May 15, 2009. |
UK Search Report for GB1110342.1 3pgs, Oct. 18, 2011. |
UK Suppl Search Report for GB1110342.1 2pgs, Aug. 16, 2012. |
Slager et al., “Electrical nerve and Muscle Stimulation by Radio Frequency Surgery: Role of Direct Current Loops Around the Active Electrode”, IEEE Transactions on Biomedical engineering, vol. 40, No. 2, pp. 182-187, Feb. 1993. |
UK Combined Search and Exam Report for GB1403997.8 5pgs, Sep. 17, 2014. |
Elgrabli, D., Abella-Gallart, S., Aguerre-Chariol, O., Robidel F.R., Boczkowski, J., Lacroix, G. (2007). Effect of BSA on carbon nanotube dispersion in vivi and in vitro studies. vol. 1, No. 4, pp. 266-278. |
“Work functions for photoelectric effect”. (2001). Retrieved on Jun. 11, 2014 from http://hyperphysics.phyastr.gsu.edu/hbase/tables/photoelec.html. |
Wikipedia Field Electron Emission. Retrieved on Dec. 29, 2014 from http://en.wikipedia.org/wiki/Field—electron—emission. |
Refractory Metal alloys Metallurgy and Technology7: Proceedings of a Symposium on Metallurgy and Tech of Refractory Metals held in Washington, D.C., Apr. 25-26, 1968. Google ebook retried on Apr. 27, 2015 from http://books,google.com/books?id=bcPeBwAAQBAJ&dq=doping+metallurgy&source=gbs—navlinks—s. |
Khanna, Work Function in Alkali and Noble Metals. 1980. Phys. Stat. Sol (b) 100,315. |
Number | Date | Country | |
---|---|---|---|
20140276725 A1 | Sep 2014 | US |