The present invention relates to illumination field, especially to a method and system of controlling illumination characteristics of a plurality of lighting segments. The invention further relates to a light guide means, which can be used in the system and method.
Illumination based on light emitting diode (LED) has become an effective means for producing the multicolor lighting effects, especially for a dynamic display. Now, the techniques of producing various colors from red light, green light, blue light or more lights with base colors, have been developed.
Nevertheless, there are some problems existing in the application of LED light source, for example, performance of the LED may vary with temperatures and time, as a result, space/color maintenance or human eyes' sensing requirement in some situations could not be achieved. There are some control solutions in the prior art using negative feedback to overcome these problems.
For example, in a negative feedback intensity/color controlled light source, a flux sensor or color sensor is used to detect the output light and the detected result is compared with a pre-calibrated reference. Then an error between the detected result and the pre-calibrated reference is further dealt with the control algorithm and is used to determine the driving current of the LEDs either by means of pulse width modulation or amplitude modulation. In this way, the detected results can be kept to accord with the pre-calibrated reference, and the output illumination intensity or color is accordingly kept steady.
However, there are some problems existing in the prior art. For example, for some solutions, different lighting segments are usually detected in different time periods, which may cause the detected results not real-time. Furthermore, a plurality of sensors may be needed to meet one sensor for one LED array, which may bring side effect on the structure design and cost control of the illumination system. Individual differences among different sensors, as well as differences of the changes of detection performance (e.g. performance attenuation) varying with time among different sensors may lead to differences in the close-loop controlling effects of the illumination system, which is expected to be eliminated in the actual application.
The invention provides a method and system of controlling illumination characteristics of a plurality of lighting segments.
According to one aspect of the invention, a method of controlling illumination characteristics of a plurality of lighting segments is provided, and the method comprises steps of: providing driving currents to each lighting segment; detecting an illumination intensity and/or color of lights emitted from each lighting segment; and adjusting the driving currents of each lighting segment respectively with a set of driving signals so as to adjust the illumination intensity and/or color of each lighting segment in accordance with an predetermined illumination setting, wherein each set of driving signals has a unique period feature which is distinguished from that of other sets of driving signals corresponding to other lighting segments, and each set of driving signals is in response to the detected illumination intensity and/or color of the light emitted from each corresponding lighting segment.
In this invention, the driving signals with a unique period feature are used to adjust the driving currents of each lighting segment, thus the lights emitted from each lighting segment have different period (frequency) feature and the detected signals have the unique period (frequency) feature accordingly, therefore, signals of each lighting segment can be detected at the same time and can be identified exactly.
According to one embodiment of the method provided by the invention, the detecting step comprises sub-steps of: detecting an mixed illumination intensity and/or color of a combination of at least part of the lights emitted from each lighting segment, by using one sensor, that is a common sensor; and identifying respective illumination intensity and/or color of lights emitted from each lighting segment from the mixed illumination intensity and/or color.
In the prior arts, a plurality of sensors may be used to detect illumination intensity and/or color of a plurality of lighting segments, even each lighting segment is equipped with one sensor. However, since there are individual performance differences among different sensors, and there also exist performance attenuation differences varying with time among different sensors, such controlling could hardly achieve the best effect. In the aforesaid embodiment of the invention, only one common sensor is used to detect illumination intensity and/or color of all lighting segments, which can overcome the aforesaid limitation of the prior arts and provides uniform detected results. Since the performance attenuation of the common sensor brings the same effect to each lighting segment, the controlling effects can be kept in a stable level.
According to the second aspect of the invention, there is provided a light guide means, comprising: a light guide and a plurality of light deflection units, wherein the plurality of light deflection units are located on one same surface of the light guide along the extending direction of the light guide, and are configured such that each light deflection units is capable of deflecting at least part of the lights coming from its opposite side to one same direction of the extending direction of the light guide.
According to the third aspect of the invention, there is provided an illumination system, comprising: a plurality of lighting segments, a detecting subsystem and a controller; wherein the detecting subsystem is configured to detect an illumination intensity and/or color of lights emitted from each lighting segment; and the controller is configured to receive output signals of the detecting subsystem representing illumination intensity and/or color of lights emitted from each lighting segment and to generate sets of driving signals to respectively adjust the driving currents of each lighting segment in response to the output signals, so as to adjust the illumination intensity and/or color of each lighting segment in accordance with an predetermined illumination setting; wherein each set of driving signals has a unique period feature which is distinguished from that of other sets of driving signals corresponding to other lighting segments.
In one embodiment of the illumination system of the invention, the detecting subsystem comprises a common sensor, which is configured to detect an mixed illumination intensity and/or color of a combination of at least part of the lights emitted from each lighting segment; the detecting subsystem further comprises an identifying unit, which is configured to identify respective illumination intensity and/or color of lights emitted from each lighting segment from the mixed illumination intensity and/or color.
In one embodiment of the illumination system of the invention, the detecting subsystem further comprises a common light guide means, which is configured to guide at least part of the lights emitted from each lighting segment to the common sensor.
Other features, purposes and advantages of the present invention will become more apparent from the following detailed description of non-limiting exemplary embodiments taken in conjunction with the accompanying drawings, in which:
Wherein, the identical or similar reference signs indicate the identical or similar step feature or device (module).
In step S1, driving current is provided to each lighting segment, respectively.
In step S3, an illumination intensity and/or color of lights emitted from each lighting segment is detected, respectively. For example, if each lighting segment only comprises one monochromatic LED array, then an intensity sensor can be used to merely detect the illumination intensity of lights emitted from each lighting segment. As is well known, two or more base colors can be mixed to get various mixed colors by adjusting the percentage (or contribution) of different base colors. If each lighting segment comprises a plurality of lighting sources with different base colors, then a color sensor can be used to detect an illumination intensity and/or color of lights emitted from each lighting segment.
In step S5, the driving current of each lighting segment is adjusted respectively with a set of driving signals, wherein each set of driving signals has a unique period feature which is distinguished from that of other sets of driving signals corresponding to other lighting segments, and each set of driving signals is in response to the detected illumination intensity and/or color of the light emitted from corresponding lighting segment, so as to adjust the illumination intensity and/or color of each lighting segment in accordance with an predetermined illumination setting. For example, the period of the first set of driving signals corresponding to the first lighting segment can be set as 2 ms, the period of the second set of driving signals corresponding to the second lighting segment can be set as 3 ms, the period of the third set of driving signals corresponding to the third lighting segment can be set as 7 ms, etc. The predetermined illumination setting can vary with different circumstances. For example, if each lighting segment can only emit white light, then the predetermined illumination setting can be to require each lighting segment at an approximately identical illumination intensity so as to provide stable and uniform illumination; if each lighting segment comprises a plurality of LED arrays of different base colors, then the illumination setting can be to require the lights emitted from each lighting segment to form a specific pattern; of course, the illumination setting can also be changeable with time, so that each lighting segment can form changeable patterns, which is similar to a movie projection.
A closed-loop control is formed by circularly executing the steps S1, S3, S5. By detecting the characteristics of lights emitted from each lighting segment, the contribution of different base colors can be adjusted to achieve color control on lights emitted from the light segments. In one embodiment of the invention, by detecting the illumination intensity and color of lights emitted from each lighting segment, a detected signal can be attained, which can be used to compare with a certain predetermined color setting to obtain a feedback information, the feedback information can be converted into driving signals used to adjust the driving currents of each lighting segment, thereby the desired color can be obtained. The method of the invention comprises driving signals with a unique period feature to adjust the driving currents of each lighting segment, so the lights emitted from each lighting segment also have unique period feature and the detected signals of each lighting segment have a unique period (frequency) feature as well, therefore, the illumination intensity and/or color of each lighting segment can be detected at the same time and be identified exactly.
In the detecting sub-step S31, a mixed illumination intensity and/or color of a combination of at least part of the lights emitted from each lighting segment is detected by using a common sensor. In the identifying sub-step S33, respective illumination intensity and/or color of lights emitted from each lighting segment is identified from the mixed illumination intensity and/or color. In the detecting sub-step S31, the at least part of the lights emitted from each lighting segment is guided to the common sensor via a common light guide means. Since each set of driving signals respectively corresponding to each lighting segment has different period feature, thus the lights emitted from each lighting segment have unique period feature as well, therefore, output of the common sensor is a superposition signal of electrical signals with different period feature. Therefore, in the identifying sub-step S33, the illumination intensity and/or color of each lighting segment could be extracted from the common sensor's output signals by means of analogue signal filtering or digital signal processing etc.
In another embodiment of the method of the invention, the detecting step S3 comprises a sub-step of using a plurality of light guide means to respectively guide at least part of the lights emitted from each lighting segment to a common sensor. For example, an optical fiber can be used as the light guide means, at least part of the lights emitted from each lighting segment can be respectively transmitted to the common sensor through one of a plurality of optical fibers. The common sensor is used to detect the illumination intensity and/or color of a combination of lights from each lighting segment.
According to one embodiment of the method of the invention, each lighting segment only comprises one LED array, the driving current of LED array of each lighting segment can be respectively adjusted by an independent driving signal, each driving signal has period feature different from that of others.
According to another embodiment of the method of the invention, each lighting segment comprises a plurality of LED arrays, color of each LED array in the same lighting segment can be different from each other, the driving current of each LED array in the same lighting segment can be adjusted by an independent driving signal in the same set of driving signals, each driving signal in the same set has the same period feature, each set of driving signals has period feature different from that of other sets.
In this embodiment, light deflection unit 13 preferably consists of a plurality of V-Cut prism structures 14 with a sawtooth-like shape, based on the design of number of the prisms, size and tilt angle of each prism, it is convenient to control the percentage of light intensity deflected by the light deflection units 13. Light deflection unit 13 can be built by a plurality of V-Cut prism structures 14 lining up discontinuously or incompletely continuously, as shown in
The farther a light deflection unit is away from the detecting end, the more losses the lights deflected by the light deflection unit would suffer, because of the further distances of transmission and the dispersion of other light deflection unit on the way, so numbers of the prisms comprised in each light deflection unit are not completely the same. Those light deflection units with closer distance to the detecting end comprise less prisms; while those light deflection units with further distance to the detecting end comprise more prisms. The aforesaid design allows the light intensities of lights which are deflected by each light deflection unit and transmitted to the detecting end to be almost the same, so as to lower the requirement of the sensor's detecting scope.
Light guide 12 could be made of at least one of the following materials: polyethylene, polyamide, polypropylene, polymethylmethacrylate (PMMA), polycarbonate (PC), polystyrene (PS). The light guide 12 can also be made of silicon dioxide or any other materials used for fabricating optical glass. As is well known, all the aforesaid materials have good capability of light transmission.
As shown in
Normally, the illumination systems implementing any aforesaid method will be configured with corresponding devices to accomplish the purposes of the invention, each device is respectively used to implement each step or sub-step of the aforesaid method.
In the embodiment, each lighting segment 21 comprises three LED arrays 22a, 22b and 22c. The LED array 22a emits red light, the LED array 22b emits green light, the LED array 22c emits blue light. The common sensor 26 is a color sensor, which can distinguish lights of three colors, namely the red ones, the green ones and the blue ones. In other embodiments of the invention, each lighting segment could comprises LED arrays with two or more different colors, the color of each LED array is not limited to red, green and blue, and the base colors which can be distinguished by the color sensor are not limited to red, green and blue, too.
Controller 29 generates a set of three independent driving signals to adjust the driving currents of three LED arrays of each lighting segment, respectively. Each set of driving signals has different period feature, for example, the period of the driving signals of the first lighting segment 21-1 is 2 ms, the period of the driving signals of the second lighting segment 21-2 is 3 ms, etc. Preferably, all driving signals are amplitude modulated sine signals. For example, all driving signals of three LED arrays of the first lighting segment 21-1 are amplitude modulated sine signals with frequency of 0.5 kHz, all driving signals of three LED arrays of the second lighting segment 21-2 are amplitude modulated sine signals with frequency of 0.33 kHz, etc.
Light guide means 11 can be selected from one of the light guide means described above with reference to the
Part of the lights emitted from red LED array 22a of all lighting segments 21 are deflected by deflection means, and are transmitted and superposed in the light guide means 11, the common sensor 26 then detects a light intensity of the mixed red and output an electrical signal of red light. Because each red LED array 22a can be respectively adjusted by sine signals with different frequencies, thus the detected electrical signal of red light comprises various frequency elements, wherein the main frequency elements comprises 0.5 kHz, 0.33 kHz, i.e. the frequency of the driving signal of each lighting segment, and their frequency multipliers. These frequency multiplier signals are mainly caused by nonlinear characteristic of light emitting and detecting.
A/D converter 27 converts the detected electrical signal of red light into a digital signal and sends the digital signal to DSP28 for being processed. Processing in DSP28 comprise discrete Fourier transform, digital filtering etc, so as to distinguish the intensity of the red LED array of each lighting segment. Because the frequency of the driving signals of each lighting segment is unique, so the processing of filtering, identifying is accordingly easy. For example, the signals with frequency element of 0.5 kHz and its frequency multipliers are identified as coming from the red LED array of the first lighting segment 21-1; the signals with frequency element of 0.33 kHz and its frequency multipliers are identified as coming from the red LED array of the second lighting segment 21-2, etc. The frequency of the driving signals of each lighting segment can be set specially, so as to decrease the mutual interference of their frequency multiplier elements as much as possible. The energy of each frequency element coming from the red LED array of the first lighting segment 21-1 add up to its detected illumination intensity, the illumination intensity of the red LED array of other lighting segments can be obtained by similar means. The detecting and identifying of each green LED array and each blue LED array are similar to that of each red array.
Controller 29 compares the detected illumination intensity of each LED array with a predetermined illumination setting, and adjusts the driving signals of each LED array according to the result of comparison.
In general, lights emitted from each LED array are mainly used for illumination, the percentage of lights deflected for detecting therein is less than 5%, influence to the illumination effects sensed by human eye which is caused by such a percentage of light splitting (the percentage of lights used for detecting in the total lights emitted from the LED array) can be ignored. Preferably, the controller 29 can also compensate the driving signals of each LED array according to the percentage of light splitting of each LED array.
In other embodiments of the illumination systems of the invention, each lighting segment 21 only comprises one LED array, such as one LED array emitting white lights, in this situation the common sensor 26 can only be used to detect light intensity.
In other embodiments of the illumination systems of the invention, A/D converter 27, digital signal processor 28 can be replaced by circuits or devices like an analog filter.
In other embodiments of the illumination systems of the invention, the illumination system comprises a plurality of light guide means, e.g. optical fiber, and each lighting segment is equipped with a light guide means, respectively. Part of the lights emitted from each lighting segment can be transmitted to the common sensor via one of the plurality of light guide means, and illumination intensity and/or color of the mixed lights can be sensed by the common sensor.
The embodiments of the invention are described above, but the invention is not limited to these specific systems, devices or materials, those skilled in the art can make various changes or modifications within the scope of the attached claims.
Number | Date | Country | Kind |
---|---|---|---|
200810177114.8 | Dec 2008 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2009/055346 | 11/26/2009 | WO | 00 | 6/2/2011 |