This application claims the priority benefit of Taiwan application serial no. 101149578, filed on Dec. 24, 2012. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
The disclosure relates to a method and a system of detecting a tilt angle of an object surface and a method and a system of compensating the same.
In nowadays, when purchasing consumer products, consumers not only consider the functionalities but also gradually pay attention to the product appearances, such that processing molding methods of appearance elements of the consumer products become diversified and important. Accordingly, applications and demands for performing processing procedures, such as cutting, welding, drilling, mold micro-machining and so forth, on a non-plane object or a workpiece become more widespread.
A processing machine performs a positioning process by using a laser light source to project on the workpiece, and enables the processing equipment to perform a processing procedure according to positioning point. If a processing surface is a curved or a non-plane surface, the pros and cons of the processing effect will be directly influenced by a relationship between a focal-point position of the laser light source and a tilt angle on the processing surface. If an operator desires to perform an automated processing procedure on workpieces of the same type by the processing machine, there are few differences of a distance and an angle between each workpiece and each processing equipment (e.g. an automated robot arm), which leads to errors occurring in each operation. Further, even though the processing machine would dutifully perform the processing procedure according to the data inputted by the operator, the stereoscopic workpieces still have their own tolerances, and as a result, the errors occur.
Accordingly, manufacturers would like an apparatus capable of detecting relations between laser light spots and the tilt angles on the workpiece surfaces to be installed on the processing machine, such that the processing machine may perform the processing procedures on the workpieces more accurately. Currently, devices for determining the tilt angle on the workpiece may be implemented by various manners. A first manner is to project a laser light source on a workpiece and monitor a distance and a tilt angle between the workpiece and the processing machine according to the reflection of the laser light source. However, such reflective measurement is limited by the roughness and reflectivity of the processing surface and requires a more tilting angle for the laser light to reflect. Additionally, the reflective measurement is incapable of simultaneously measuring tilt angles of two dimensions, and therefore, more time-consuming. A second manner is to detect the distance between the processing equipment and the workpiece by using a sensing capacitor; however, such capacitive measurement is influenced by environmental factors (e.g. degrees of a temperature and humidity) and thus, requires a compensating process and is difficult to be applied to non-metal workpieces.
The disclosure relates to a method and a system of detecting a tilt angle of an object surface and a method and a system of compensating the same, by which positional relationships among a plurality of light spots on the object surface are captured by using an image sensing device and accordingly calculated. The detection and compensation system are not limited to the material composition of the object, the reflectivity and flatness of the object surface and capable of simultaneously measuring tilt angles in two dimensions on the object surface.
According to an exemplary embodiment of the disclosure, a method of detecting a tilt angle of an object surface is introduced. The method includes the following steps. A plurality of light beams are projected by a light source device to an object surface, wherein a number of the light beams is greater than or equal to 3. An image of the object surface is captured so as to obtain a plurality of light spots generated on the object surface by the light beams. A vertical distance between the light source device and the object surface is adjusted to execute a focus program so as to gather the light spots in a focal point on the object surface. And, the vertical distance is adjusted, and a correction angle between the light beams and the object surface is calculated according to the light spots.
According to another exemplary embodiment of the disclosure, a system of detecting a tilt angle of an object surface is introduced. The system includes a light source device, an image capture device, an axial direction controller, an object carrying device and a computing device. The light source device projects a plurality of light beams to the object surface, wherein a number of the light beams is greater than or equal to 3. The image capture device captures an image of the object surface. The axial direction controller is coupled to the light source device and adjusts angles of the light beams of the light source device projecting to the object surface. The object carrying device adjusts a vertical distance between the light source device and the object surface. And, the computing device is coupled to the image capture device and receives the image so as to obtain a plurality of light spots generated on the object surface by the light beams. The computing device calculates a correction angle between the light source device and the object surface according to the light spots.
According to still another exemplary embodiment of the disclosure, a method of compensating a tilt angle of an object surface is introduced. The method includes the following steps. A plurality of light beams are projected by a light source device to an object surface, wherein a number of the light beams is greater than or equal to 3. An image of the object surface is captured so as to obtain a plurality of light spots generated on the object surface by the light beams. A vertical distance between the light source device and the object surface is adjusted to execute a focus program so as to gather the light spots in a focal point on the object surface. And, a correction angle and the vertical distance between the light source device and the object surface are adjusted and calculated according to the light spots.
Further, according to yet another exemplary embodiment of the disclosure, a system of compensating a tilt angle of an object surface is introduced. The system includes a light source device, an image capture device, an axial direction controller, an object carrying device and a computing device. The light source device projects a plurality of light beams to an object surface, wherein a number of the light beams is greater than or equal to 3. The image capture device captures an image of the object surface. The axial direction controller is coupled to the light source device and adjusts angles of the light beams of the light source device projecting to the object surface. The object carrying device is configured to adjust a vertical distance between the light source device and the object surface. The computing device is coupled to the image capture device and receives the image so as to obtain a plurality of light spots generated on the object surface by the light beams. The computing device executes a focus program according to the light spots, adjusts the vertical distance through the axial direction controller so as to gather the light spots in a focal point on the object surface and calculates and adjusts a correction angle and the vertical distance between the light source device and the object surface according to the light spots.
To sum up, in the method and the system of detecting the tilt angle of the object surface as well as the method and the system of compensating the same introduced by the disclosure, a positional relationship among a the plurality of light spots is obtained by the coaxially disposed light source device and the image sensing device, and a spatial relationship (such a distance and a tilt angle) between a laser light source (or a processing equipment) and the object surface is adjusted through algorithm calculations, such that the detection device is not limited to the material composition of the object, the reflectivity and flatness of the object surface and capable of simultaneously measuring the tilt angles in two dimensions on the object surface. In addition, in the compensation method and system introduced by the exemplary embodiments of the disclosure, a processing equipment may be further installed, and the relative spatial relationship between the processing equipment and the object surface is adjusted according to the tilt angle obtained through the calculations. Accordingly, an effect and quality of processing the object may be enhanced so as to facilitate in industrial equipments which perform laser processing procedures.
In order to make the disclosure more comprehensible, several exemplary embodiments accompanied with figures are described in detail below to further describe the disclosure in details.
The accompanying drawings are included to provide further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments and, together with the description, serve to explain the principles of the disclosure.
Reference will now be made in detail to the exemplary embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
Referring to
The detecting system 100 of the present exemplary embodiment includes a light source device 110, an image capture device 120, an axial direction controller 130, an object carrying device 150 and a computing device 140. The light source device 110 projects a plurality of light beams LB1˜LB4 to the object surface 170 of the object 160. The object 160 may be a plane workpiece, a curved-surface workpiece or any other non-plane workpiece, such as a mold, a vehicle part, a product housing, a glass panel and so forth. The light source device 110 may be implemented by a transmitter of a laser light source with a visible light wavelength, such that the image capture device 120 may implement capturing an image IM by a camera with a generally-used resolution. Those that apply the present exemplary embodiment may also be implemented by a transmitter of a laser light source with a invisible light wavelength; however, the image capture device 120 in this case requires a camera having a corresponding specification to capture the image IM. Thus, the image IM may have a plurality of light spots P1˜P4 formed on the object surface 170 by the light beams LB1˜LB4. Each of the light beams LB1˜LB4 of the light source device 110 has a fixed emitting angle and is configured relatively. Thus, if an light beam emitting surface 115 of the light source device 110 is separated from the object surface 170 by a specific vertical distance Z, the light spots P1˜P4 generated by the light beams LB1˜LB4 mat be focused on a same point, no matter whether the light beam emitting surface 115 is parallel to the object surface 170 or not.
It is to be mentioned that the detecting system 100 requires the light spots P1˜P4 formed on the object surface 170 to calculate a tilt angle between the object surface 170 and the light source device 110. Thus, when a number of the light beams is 2, the detecting system 100 may detect a tilt angle on a single axial (e.g. a one-dimensional line segment) on the object surface 170. When the number of the light beams is greater than 3, the detecting system 100 may detect a tilt angle on two axes (i.e. a two-dimensional surface) on the object surface 170. Corresponding calculation methods and mechanisms of the detecting system 100 in the scenarios where the number of the light beams is 3, 4 and 5 respectively will be described in the following exemplary embodiments. Additionally, an arrangement of the light beams presents a specific geometric shape on the same horizontal plane, such that the tilt angle of the object surface may be calculated. Those apply the present exemplary embodiment may know from the exemplary embodiments illustrated by the disclosure about the related implementations in the scenarios where the number of the light beams is equal to or greater than 3. A description in related to the exemplary embodiment of four light beams LB1˜LB4 and four light spots P1˜P4 generated thereby will be made with reference to
The image capture device 120 captures an image located adjacently to the object surface 170 so as to obtain a plurality of light spots P1˜P4 on the object surface 170. In the present exemplary embodiment, the image capture device 120 is coaxially disposed with the light source device 110. Namely, the image capture device 120 is disposed at a position same as or adjacent to the light source device 110, and these two devices are simultaneously controlled by the axial direction controller 130 to rotate and move with respect to the same axial center. Thus, the image capture device 120 keeps obtaining the light spots P1˜P4 generated by the light source device 110. In other exemplary embodiments, the image capture device 120 may also be independently disposed without being coaxially disposed with the light source device 110.
The axial direction controller 130 is coupled to the light source device 110 and may also be coupled to the image capture device 120 simultaneously. The axial direction controller 130 obtains an axial-direction adjustment signal AS from the computing device 140 so as to adjust angles of the light beams LB1˜LB4 of the light source device 110 projecting to the object surface 170. If the image capture device 120 is coaxially disposed with the light source device 110, the axial direction controller 130 simultaneously adjusts angles and spatial positions of the image capture device 120 and the light source device 110.
The object carrying device 150 is used to carry the object 160 and obtains a position adjustment signal PS from the computing device 140 so as to adjust a vertical distance between the light source device 110 and the object surface 170. In the present exemplary embodiment, the light source device 110 is disposed vertically on the object 160 so as to project the light beams LB1˜LB4 and accurately measure a tilt angle of the object surface 170 relative to the light source device 110. The object carrying device 150 may be a carrier of the processing equipment and may perform operations, such as vertical uplift, vertical descent, rotation with an angle, horizontal movement and so forth, on the object 160 so as to finely adjust the computing device 140 during object positioning or processing.
The computing device 140 is coupled to the image capture device 120, the axial direction controller 130 and the object carrying device 150. The computing device 140 receives the captured image IM by the image capture device 120 and resolves the image IM through an image algorithm so as to obtain the light spots P1˜P4 generated on the object surface 170 by the light beams LB1˜LB4 therefrom. Accordingly, the computing device 140 may calculate a correction angle to be finely adjusted between the light source device 110 and the object surface 170 according to the light spots P1˜P4. Thus, the detecting system 100 of the disclosure detects the plurality of light spots P1˜P4 on the object surface 170 by the image capture device 120 and adjust an error of laser positioning by the computing device 140 using a corresponding calculation mechanism, without being limited to the material, surface reflectivity and flatness adopted by the object 160. Positions of the light spots P1˜P4 detected by the image capture device 120 are in a two-dimensional distribution, and thus, a tilt angle in two dimensions may be simultaneously measured. For example, a tilt angle on the X axis and the Y axis on the object surface 170 may be simultaneously measured.
In the exemplary embodiments of the disclosure, the computing device 140 of the detecting system 100 may further execute a focus program according to the positions of the light spots P1˜P4, by which a vertical distance Z between the light source device 110 and the object surface 170 is adjusted through the axial direction controller 130 so that the light spots P1˜P4 of the object surface 170 may be focused on the focal point for accurate laser positioning. The computing device 140 of the present exemplary embodiment determines whether the light spots P1˜P4 coincide in the focal point through the image IM. When the light spots do not coincide in the focal point, the computing device 140 repeatedly adjusts the vertical distance Z and calculates an interval between each of the light spots, such that the light spots P1˜P4 coincide in the focal point. The description in connection with the enabling method and process of the focus program will be made with reference to
In step S230, the computing device 140 utilizes the object carrying device 150 to adjust the vertical distance Z between the light source device 110 and the object surface so as to execute the focus program. As such, the light spots P1˜P4 on the object surface 170 are gathered in the focal point. After executing the focus program, it represents that the light beam emitting surface 115 of the light source device 110 is apart from the object surface 170 by the specific vertical distance Z, and thus, the light beam emitting surface 115 is different from the object surface 170 by only the tilt angle. Accordingly, in step S240, the computing device 140 adjusts the vertical distance Z by the object carrying device 150, obtains the two-dimensional distribution of the positions of the light spots P1˜P4 on the object surface 170 by the image capture device 120 and calculates the correction angle between the light beams LB1˜LB4 (i.e. the light beam emitting surface 115) and the object surface 170 according to the positions of the light spots. In brief, when executing the focus program, whether the light spots coincide in the focal point is determined first. When the light spots do not coincide in the focal point, the light spots are coincided in the focal point by adjusting the vertical distance and calculating the interval between each of the light spots.
Herein, the focus program executed by the computing device 140, i.e. step S230 depicted in
In step S330, the computing device 140 determines whether all the first intervals (i.e. the intervals L12, L13, L14, L24 and L34) are equal to 0. When all the first intervals are 0, the light spots are determined as coinciding in the focal point, which represents that the light spots P1˜P4 are focused on the same point. Accordingly, step S370 is entered to finalize the focus program. Otherwise, when none of the first intervals is 0, step S332 is entered, where the computing device 140 controls the object carrying device 150 to adjust the vertical distance Z along a first vertical direction. For example, the object surface 170 may be uplifted to shorten the vertical distance Z. The first vertical direction is from the object 160 facing toward the light source device 110.
In step S334, the computing device 140 acquire again the two-dimensional distribution illustrated in
In step S336, if all the second intervals are equal to 0, it represents that the light spots P1˜P4 are focused on the same point, and thus, step S370 is entered to finalize the focus program. Otherwise, when all the second intervals are not equal to 0, step S338 is entered, and the computing device 140 calculates a difference between each of the first intervals (L12, L13, L14, L24 and L34) and each of the corresponding second intervals (M12, M23, M13, M14, M24 and M34).
In step S340, the computing device 140 determines whether the differences are positive values. When the differences are positive values, it represents that the interval between each of the light spots is gradually enlarged. Namely, the height of the object 160 is required to decrease to elongate the vertical distance Z, such that each of the light spots would approach to each other for being focused. Accordingly, step S350 is entered, and the computing device 140 configures each of the second intervals as each of the corresponding first intervals. For example, the second interval M12 is configured as the first interval L12, and the vertical distance Z is adjusted along a second vertical direction reversed to the first vertical direction, for example, by decreasing the height of the object 160 to elongate the vertical distance Z. Then, step S334 is entered from step 350, and the second interval between each of the light spots is measured. Then, steps S334˜S340 are repeated to adjust the vertical distance Z, such that the light spots P1˜P4 are gathered in the same focal point. On the other hand, in step S340, when the computing device 140 determines that the differences are negative values, it represents that the interval between each of the light spots is gradually decreased. Namely, the adjustment of the vertical distance Z along the first vertical direction is correct, but should be continued. Thus, step S360 is entered, and the computing device 140 configures each of the second intervals as each of the corresponding first intervals and continues to adjust the vertical distance Z along the first vertical direction. Then, step S334 is entered from step S360, where the second interval between each of the light spots is measured and steps S334˜S340 is repeated to finalize the focus program.
Herein, how the detecting system 100 calculates the correction angle between the light beams and the object surface 170 according to the light spots will be described, and namely, step S240 depicted in
Referring to
In step S520 depicted in
Therein, the predetermined interval α is a tangent function value of the adjustment value ΔZ of the vertical distance Z being multiplied by the incident angle of each of the light beams.
Each of the measured intervals Λ is an actually measured distance from one of the first P1 through the fourth light spot P4 to the fifth light spot P5 obtained by the computing device 140 through the image IM. Referring to
However, it is to be noticed that since the image capture device 120 captures the image IM from top to bottom in
Then in step S540 of
Otherwise, when the computing device 140 determines that that the measured interval ΛP45 is not equal to the predetermined interval α, it represents that the object surface 170 is not located above the predetermined measuring surface 720, but uplifted to the actual measuring surface 730. Thus, in the present exemplary embodiment, step S550 is performed according the following algorithm, where the correction angle, such as a correction angle θtiltX of the first dimension (the X axis) and a correction angle θtiltY of the second dimension (the Y axis), between the light beam emitting surface 115 and the object surface 170 is calculated according to the predetermined interval α, the incident angle θset of each of the light beams, the measured interval ΛP45 between the light spots P4 and P5 and the adjustment value ΔZ of the vertical distance Z.
When the number of the light beams is 5, and the incident angle θset of the light beam LB4 projecting to the focal point AP is 45 degrees, as shown in
The correction angle θtiltX may be obtained by the following formulas (2) and (3):
Namely, when the incident angle θset of the light beam LB4 is 45 degrees, the correction angle θtiltX of the first dimension (the X axis) is a arctangent function value of the measured interval ΛP45 minus the predetermined interval α being divided by the measured interval ΛP45. The line segment K2 is a value of the measured interval ΛP45 minus the predetermined interval α, i.e. K2=ΛP45−α. A relationship formula between the predetermined interval α, the incident angle θset of the light beam and the adjustment value ΔZ of the vertical distance Z may be acquired by the formula (1) in the above.
The formula (3) may be rewritten as the following formula (4) according to the formula (1):
That is, the correction angle θtiltX of the first dimension is an arctangent function value of the measured interval ΛP45 minus the tangent function value of the incident angle θset of the light beam being multiplied by the adjustment value ΔZ of the vertical distance Z and then being divided by the measured interval ΛP45.
Additionally, since in the present exemplary embodiment, each of the actual measured intervals between each of the light spots P1˜P5 may be obtained, the computing device 140 depicted in
In detail, the correction angle θtiltX of the first dimension and the correction angle θtiltY of the second dimension is obtained by the following formulas (5) and (6):
In the exemplary embodiment described in the above, the incident angle θset of the light beam LB4 is set as 45 degrees. However, if the incident angle θset of the light beam LB4 projecting to the focal point AP is not predetermined 45 degrees, the vertical line segment K1 illustrated in
The formula (3) for calculating the correction angle θtiltX of the first dimension is rewritten as the following formula (8) according to the formulas (1) and (7):
The correction angle θtiltY of the second dimension may be obtained by the following formula (9):
Namely, the correction angle θtiltX of the first dimension is an arctangent function value of the measured interval ΛP45 minus the tangent function value of the incident angle θset of the light beam of the first dimension being multiplied by the adjustment value ΔZ of the vertical distance Z, then being multiplied by the cotangent function value of the incident angle θset and being divided by the measured interval ΛP45. If the incident angle θset is 45 degrees, the cotangent function value of the incident angle θset is 1 so as to conform to the formula (4).
In
The foregoing embodiment is implemented according to the condition where the number of the light beams is 5 and the algorithm formulas in step S550. Hereinafter, exemplary embodiments implemented according to the conditions where the number of the light beams is respectively 4 and 3 will be described.
Thus, referring to both
The measured interval ΛP14 may be obtained according to a distance LP24 between the light spots P2 and P4 and the predetermined angle β of the triangle formed by the light spots P1˜P3, as shown in the following formula (11):
ΛP14=LP24×cos(β/2) (11)
Namely, the measured interval ΛP14 is a value obtained by multiplying the distance between the second light spot P2 and the fourth light spot P4 on the surface formed by the connection of the light spots P1˜P2 by a cosine function value of a half of the predetermined angle β.
The correction angle θtilt on a connection of the first light spot P1 through the second light spot P2 may be acquired by calculating an adjusted formula (12) according to the formula (8):
Therein, θtilt is the correction angle on the connection of the first light spot P1 through the second light spot P2, LP24 is the distance between the second light spot P2 and the fourth light spot P4, β is the predetermined angle of each corner of the equilateral triangle 410, θset is the incident angle of each of the light beams LB1 and LB2 respectively corresponding to the first light spot P1 and the second light spot P2, and ΔZ is the adjustment value of the vertical distance Z. In other words, the correction angle θtilt located on the connection of the first light spot P1 through the second light spot P2 is an arctangent function value of the measured interval ΛP14 minus the tangent function value of the incident angle θset of each of the light beams LB1 and LB2 corresponding to the first light spot P1 and the second light spot P2, which is multiplied by the adjustment value ΔZ of the vertical distance Z and then multiplied by the cotangent function value of the incident angle θset, and divided by the measured interval ΛP14. If the incident angle θset of each of the light beam is set as 45 degrees, the cotangent function value of the incident angle θset is 1.
Here, the predetermined interval α of the present exemplary embodiment is an expected distance between one of the first light spot P1 through the second light spot P2 to the third light spot P3. Each measured interval Λ is a measured distance from one of the first light spot P1 and the second light spot P2 to the third light spot P3. For example, the measured interval ΛP13 is the measured distance between the light spots P1 and P3.
Accordingly, a connection between the first light spot P1 and the third light spot P3 may be considered as the first dimension (the X axis), and the connection between the second light spot P2 and the third light spot P3 may be considered as the second dimension (the Y axis). Thus, the correction angle θtiltX of the first dimension and the correction angle θtiltY of the second dimension are respectively obtained by the following formulas (13) and (14):
Namely, the correction angle θtiltX located on the connection between the first light spot P1 through the third light spot P3 is an arctangent function value of the measured interval ΛP13 minus the tangent function value of the incident angle of the light beam corresponding to the first light spot P1, which is multiplied by the adjustment value ΔZ of the vertical distance Z, and divided by the measured interval ΛP13. Other detailed of the present exemplary embodiment may refer to the foregoing exemplary embodiments, and will not be repeated hereinafter.
In the present exemplary embodiment, the detecting system 100 depicted in
Based on the above, in the method and system of detecting the tilt angle and the method and the system of compensating the same according to the exemplary embodiments of the disclosure, the positional relationship among a plurality of light spots on the object surface is obtained by utilizing the light source device and the image sensing device which are coaxially disposed, and spatial relationships (such a distance and a tilt angle) between the laser light source (or the processing equipment) and the object surface is adjusted through algorithm calculations, such that the detection device is not limited to the material composition of the object, the reflectivity and flatness of the object surface and capable of simultaneously measuring the tilt angles of two dimensions on the object surface. In addition, in the compensation method and system introduced by the exemplary embodiments of the disclosure, a processing equipment may be further installed, and the relative spatial relationship between the processing equipment and the object surface is adjusted according to the tilt angle obtained through the calculations. Accordingly, an effect and quality of processing the object may be enhanced so as to facilitate in industrial equipments which perform laser processing procedures.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the disclosed embodiments without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the disclosure cover modifications and variations of this disclosure provided they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
101149578 A | Dec 2012 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
3928790 | Schmall | Dec 1975 | A |
4541723 | Pirlet | Sep 1985 | A |
4606645 | Matthews et al. | Aug 1986 | A |
5929983 | Lu | Jul 1999 | A |
6205243 | Migdal et al. | Mar 2001 | B1 |
6304050 | Skaar et al. | Oct 2001 | B1 |
6480802 | Flormann | Nov 2002 | B1 |
6727994 | Hsieh et al. | Apr 2004 | B2 |
7092105 | Lim et al. | Aug 2006 | B2 |
20040184653 | Baer et al. | Sep 2004 | A1 |
20050062939 | Tamura | Mar 2005 | A1 |
20080297921 | Kodaira | Dec 2008 | A1 |
20120206706 | Hsu et al. | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
102089619 | Jun 2011 | CN |
2306142 | Apr 2011 | EP |
200535398 | Nov 2005 | TW |
200908015 | Feb 2009 | TW |
201128164 | Aug 2011 | TW |
Entry |
---|
Lu et al., “Image-Based System for Measuring Objects on an Oblique Plane and Its Applications in 2-D Localization,” IEEE Sensors Journal 12 (6), Jun. 2012, pp. 2249-2261. |
Hsu et al., “A Novel Fiber Alignment Shift Measurement and Correction Technique in Laser-Welded Laser Module Packaging,” Journal of Lightwave Technology 23 (2), Feb. 2005, pp. 486-494. |
Cousin et al, “An auto-focus system for reproducible focusing in laser ablation inductively coupled plasma mass spectrometry,” Spectrochimica Acta Part B: Atomic Spectroscopy 50B (1), Jan. 1995, pp. 63-66. |
Girao et al., “An Overview and a Contribution to the Optical Measurement of Linear Displacement,” IEEE Sensors Journal 1 (4), Dec. 2001, pp. 322-331. |
Raghuramaiah et al., “Simultaneous measurement of pulse front tilt and pulse duration of a femtosecond laser beam,” Optics Communications 223, Jul. 15, 2003, pp. 163-168. |
“Notice of Allowance of Taiwan Counterpart Application”, issued on Aug. 26, 2014, p. 1-p. 4, in which the listed references were cited. |
Number | Date | Country | |
---|---|---|---|
20140176938 A1 | Jun 2014 | US |