The present invention relates to printer ribbon supply spindles and particularly to sensing the ribbon width of a ribbon loaded on such a printer ribbon supply spindle.
Generally speaking certain printers employing ribbons on spindles allow various printer ribbon widths to be loaded on the spindle for different printing media. Printer ribbons of different widths have different torque requirements. The torque requirements affect print quality, print registration, ribbon slippage, and ribbon wrinkling. Thus it is important for the printer torque value to be set appropriate to the ribbon width loaded on the ribbon spindle.
While systems exist to automatically sense the size of print media loaded into a printer by having an electrical feedback connected to the media size adjustment mechanism, nothing such exists for printer ribbon rolls. Further such systems would not be tell the printer or user anything about the proper torque values to be used for any given printing job.
Therefore, a need exists for an automatic system which can sense a printer ribbon width on a printer ribbon spindle assembly and feedback this information to an onboard processor which can implement torque requirements.
Accordingly, in one aspect, the present invention embraces a printer ribbon supply spindle assembly. Generally, the printer ribbon supply spindle assembly has a base and multiple segments. The first of the multiple segments being contiguous to the base, and each subsequent segment of the multiple segments being contiguous to the previous segment of the multiple segments.
In an exemplary embodiment, the printer ribbon supply spindle is comprised of a commutator disposed circumferentially on the first segment of the ribbon spindle, and at least two carbon brushes connected to a voltage source. The carbon brushes are disposed generally on either side of the commutator and in electrical contact with the commutator. Thus, the voltage source, the carbon brushes, and the commutator form a closed electrical circuit. The printer ribbon supply spindle further is comprised of a c-shaped conductive spring disposed on each of the multiple segments. The c-shaped conductive springs each have two ends and a center portion. The c-shaped conductive springs are in an uncompressed state when there is no printer ribbon on the ribbon spindle positioned over the c-shaped conductive spring on each of the segments. The c-shaped conductive springs compress when a printer ribbon is positioned on the ribbon spindle over the c-shaped conductive spring on each of the segments. In particular, the c-shaped conductive spring over the second of the multiple segments has a length such that when the c-shaped conductive spring is in the compressed state, the two ends of the c-shaped conductive spring make electrical contact with the commutator, completing a first additional electrical circuit in parallel with the closed electrical circuit. Further, the c-shaped conductive springs over subsequent segments of the multiple segments have lengths such that when the c-shaped conductive springs are in the compressed state, the two ends of the c-shaped conductive springs make electrical contact with the c-shaped conductive spring of the previous segment, thus completing additional electrical circuits in parallel with the closed electrical circuit. The printer ribbon supply spindle assembly is further comprised of a basic electronic element disposed proximate to each of the center portions of the c-shaped conductive springs and in electrical contact with the center portion of the c-shaped conductive springs.
In another exemplary embodiment of the printer ribbon supply spindle assembly, the basic electronic element is a resistor.
In another exemplary embodiment of the printer ribbon supply spindle assembly, the basic electronic element is a dielectric material.
In another exemplary embodiment of the printer ribbon supply spindle assembly, the center portion of the c-shaped conductive springs is comprised of two conductive plates and a dielectric material. The conductive plates are disposed on either side of the dielectric material. The conductive plates come into contact with the dielectric material based upon the c-shaped conductive springs being compressed.
In yet another exemplary embodiment, the printer ribbon supply spindle assembly further comprises, a meter in the closed electrical circuit. The meter is sensitive to the electrical properties of the basic electronic element, such that the reading on the meter indicates how many additional parallel circuits are completed.
In another exemplary embodiment of the printer ribbon supply spindle assembly, the closed electrical circuit comprised of the voltage source, the carbon brushes, and the commutator also includes the basic electronic element.
In another exemplary embodiment of the printer ribbon supply spindle assembly, the c-shaped conductive springs are metallic.
In another aspect, the present invention embraces a printer spindle assembly.
In an exemplary embodiment, the printer spindle assembly is comprised of multiple segments. The first segment of the multiple segments is adjacent to a base. Each subsequent segment of the multiple segments is adjacent to the previous segment of the multiple segments. The printer spindle assembly is also comprised of a commutator, at least two brushes, and a c-shaped conductive spring disposed on each of the multiple segments. The commutator is disposed circumferentially on the first segment of the spindle. The brushes are connected to a voltage source and are disposed generally on either side of the commutator. The brushes are in electrical contact with the commutator. The voltage source, the brushes, and the commutator form a closed electrical circuit. The c-shaped conductive spring has two ends and a center portion. Further, the c-shaped conductive springs are in an uncompressed state in the absence of a printer ribbon over the one or more c-shaped conductive springs. The c-shaped conductive springs are in a compressed state in the presence of a printer ribbon positioned over the one or more c-shaped conductive springs.
In another exemplary embodiment of the printer spindle assembly, the c-shaped conductive spring on each segment of the multiple segments has a length such that when the c-shaped conductive spring is in the compressed state, the two ends of the c-shaped conductive spring make electrical contact with the commutator or the c-shaped conductive spring of a previous segment, thus completing an additional electrical circuit in parallel with the closed electrical circuit.
In another exemplary embodiment of the printer spindle assembly, a basic electronic element is disposed proximate to the center portions of each of the c-shaped conductive springs and in electrical contact with the center portion of the c-shaped conductive springs.
In another exemplary embodiment of the printer spindle assembly, the basic electronic element is a resistor.
In another exemplary embodiment of the printer spindle assembly, the basic electronic element is a dielectric material.
In another exemplary embodiment of the printer spindle assembly, the center portion of the c-shaped conductive springs is comprised of two conductive plates and a dielectric material. The conductive plates are disposed on either side of the dielectric material. The conductive plates come in contact with the dielectric material when upon the c-shaped conductive springs are compressed.
In yet another exemplary embodiment, the printer spindle assembly further comprises a meter. The meter is connected to the closed electrical circuit, such that the reading on the meter indicates how many additional parallel circuits are completed.
In another exemplary embodiment of the printer spindle assembly, each additional circuit includes the basic electronic element.
In another exemplary embodiment of the printer spindle assembly, the c-shaped conductive springs are metallic.
In yet another exemplary embodiment, the printer spindle assembly further comprises a processor communicatively linked to the meter. The processor is configured to determine a width of a ribbon roll loaded on the printer spindle based upon a reading on the meter and to implement printer functions based upon the reading on the meter.
In another exemplary embodiment of the printer spindle, the processor is further configured to send information on the width of the ribbon roll loaded on the spindle to a display.
In another exemplary embodiment of the printer spindle assembly, the printer functions include torque requirements of the printer.
In another exemplary embodiment of the printer spindle, the basic electronic element is a resistor. The printer spindle assembly further comprises a meter. The meter is connected to the closed electrical circuit. The meter reads the resistance of the completed circuits.
In another exemplary embodiment of the printer spindle assembly, the basic electronic element is a dielectric material. The printer spindle assembly further comprises a meter. The meter is connected to the closed electrical circuit. The meter reads capacitance changes in the circuits completed.
In another aspect, the present invention embraces a system for determining the width of a ribbon roll mounted on a printer ribbon spindle.
In an exemplary embodiment, the system is comprised of: a printer ribbon supply spindle having a base and multiple segments. The first of the multiple segments are contiguous to the base, and each subsequent segment of the multiple segments is contiguous to the previous segment of the multiple segments. The system further comprises a commutator disposed circumferentially on the first segment of the ribbon spindle and at least two carbon brushes connected to a voltage source. The carbon brushes are disposed generally on either side of the commutator and are in electrical contact with the commutator. Thus, the voltage source, the carbon brushes, and the commutator form a closed electrical circuit. The system further comprises a c-shaped conductive spring disposed on each of the multiple segments. Each of the c-shaped conductive springs has two ends and a center portion. The c-shaped conductive springs are in an uncompressed state when no printer ribbon is loaded on the ribbon spindle over the c-shaped conductive spring on each of the segments. On the other hand, the c-shaped conductive springs are in a compressed state when a printer ribbon is loaded on the spindle and positioned over the c-shaped conductive spring on each of the segments. In particular, the c-shaped conductive spring over the second of the multiple segments has a length such that when the c-shaped conductive spring is in the compressed state, the two ends of the c-shaped conductive spring make electrical contact with the commutator, thus completing a first additional electrical circuit in parallel with the closed electrical circuit. In a similar way, the c-shaped conductive springs over subsequent segments of the multiple segments have lengths such that when the c-shaped conductive springs are in the compressed state, the two ends of the c-shaped conductive springs make electrical contact with the c-shaped conductive spring of the previous segment, thus completing additional electrical circuits in parallel with the closed electrical circuit. The system further is comprised of a basic electronic element disposed proximate to each of the center portions of the c-shaped conductive springs and in electrical contact with the center portion of the c-shaped conductive springs. Further, a meter is provided in the closed electrical circuit. The meter is sensitive to the electrical properties of the basic electronic element, such that the reading on the meter indicates how many additional parallel circuits are completed. The system further comprises a processor communicatively linked to the meter. The processor is configured to determine the width of the ribbon roll loaded on the printer ribbon supply spindle based upon the reading on the meter. Further, the processor is configured to implement printer functions based upon the reading on the meter.
In another exemplary embodiment of the system, the basic electronic element is a resistor, and the meter reads the resistance of the completed circuits.
In another exemplary embodiment of the system, the basic electronic element is a dielectric material, and the meter reads capacitance changes in the circuits completed.
In another exemplary embodiment of the system, the processor is further configured to send information on the width of the ribbon roll loaded on the printer ribbon supply spindle to a display on the printer.
In another exemplary embodiment of the system, the printer functions include torque requirements of the printer.
In another aspect, the invention embraces a method of determining a width of a printer ribbon loaded on a ribbon spindle having multiple segments.
In an exemplary embodiment, the method comprises the steps of: providing, on a base segment of the ribbon spindle, a commutator electrically in contact with two carbon brushes disposed on either side of the commutator; forming a closed electrical circuit by connecting the two carbon brushes to a voltage source; providing compressible conductive elements on each of the multiple segment, and being in electrical contact with each other and with the closed electrical circuit when compressed, thus forming additional completed parallel electrical circuits with the closed electrical circuit when the conductive elements are compressed; loading the printer ribbon on the ribbon spindle; compressing at least one of the compressible conductive elements under the printer ribbon; measuring the change in electrical properties of the closed electrical circuit due to the additional completed parallel electrical circuits; determining, based upon the measuring step, how many compressible conductive elements are compressed under the loaded printer ribbon; and determining the printer ribbon width from the determination of the number of compressible conductive elements being compressed under the loaded printer ribbon.
In another exemplary embodiment, the method further comprises the step of: providing the compressible conductive elements with a basic electronic element. The change in electrical properties measured in the measuring are due to the basic electronic elements included in the completed additional parallel circuits formed by the compressing step.
In another exemplary embodiment of the method, the basic electronic element is a resistor, and the measuring step measures a change in resistance.
In another exemplary embodiment of the method, the basic electronic element is a dielectric material, and the measuring step measures a change in capacitance.
In another exemplary embodiment, the method further comprises the step of displaying the ribbon width determined in the second determining step on a printer display.
In yet another exemplary embodiment, the method further comprises the step of implementing printer functions based upon the ribbon width determined in the second determining step.
In another exemplary embodiment of the method, the implementing step is accomplished with a processor. The printer functions implemented by the processor include torque requirements.
In another exemplary embodiment of the method, the measuring step is accomplished with an electrical meter sensitive to the electrical properties of the basic electronic element.
In another aspect, the present invention embraces a method of determining a width of a printer media loaded on a media spindle having multiple segments.
In an exemplary embodiment, the method includes the steps of: (i) loading a printer media on a spindle; (ii) providing, on a base segment of a spindle, a commutator electrically in contact with two brushes disposed on either side of the commutator; (iii) forming a closed electrical circuit by connecting the two brushes to a voltage source; (iv) providing compressible conductive elements on each of the multiple segments on the spindle; (v) compressing one or more of the compressible conductive elements under the printer media, the compressible conductive elements when compressed being in electrical contact with each other and with the closed electrical circuit, thus forming additional completed parallel electrical circuits with the closed electrical circuit; (vi) measuring a change in electrical properties of the closed electrical circuit due to the additional completed parallel electrical circuits; (vii) determining, based upon the measured change, how many compressible conductive elements are compressed under the loaded printer media; and (viii) determining a printer media width from the determination of the number of compressible conductive elements being compressed under the loaded printer media.
In another exemplary embodiment of the method, the media is selected from a ribbon, a label, a receipt, and a thermal transfer ribbon.
In another exemplary embodiment, the method further comprises the step (ix) of providing the compressible conductive elements with a basic electronic element.
In another exemplary embodiment of the method, the change in electrical properties measured in the measuring step are due to the basic electronic elements included in the completed additional parallel circuits formed by the compressing step.
In another exemplary embodiment of the method, the basic electronic element is a resistor.
In another exemplary embodiment of the method, the measuring step measures a change in resistance.
In another exemplary embodiment of the method, the basic electronic element is a dielectric material. The measuring step measures a change in capacitance.
In yet another exemplary embodiment, the method further comprises the step (x) of displaying the media width determined in the second determining step on a display.
In another exemplary embodiment, the method further comprises the step (xi) of implementing printer functions based upon the media width determined in the second determining step.
In another exemplary embodiment of the method, the printer functions include torque requirements.
In another exemplary embodiment of the method, the measuring step is accomplished with an electrical meter sensitive to the electrical properties of the basic electronic element.
The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.
The present invention embraces a printer ribbon supply spindle assembly. The printer ribbon supply spindle assembly generally has a base and multiple segments. The first of the multiple segments is contiguous to the base, and each subsequent segment of the multiple segments is contiguous to the previous segment of the multiple segments.
Referring now to
In an exemplary embodiment schematically depicted in the present
Referring back to
The printer ribbon spindle assembly (10) is further comprised of a series of c-shaped conductive springs (30a-30g) disposed on each of the multiple segments. Each of the c-shaped conductive springs (30a-30g) has two ends (32a and 32b) and a center portion (34a-30h). The c-shaped conductive springs (30a-30g) remain in an uncompressed state (as shown) when no printer supply ribbon is loaded on the printer ribbon spindle assembly (10). Preferably, the c-shaped conductive springs (30a-30g) are metallic.
The c-shaped conductive spring (30a) over the second (14b) of the multiple segments has a length such that when the c-shaped conductive spring (30a) is compressed, the two ends (32a and 32b) of the c-shaped conductive spring (30a) will make electrical contact with the commutator (20), thus completing a first additional electrical circuit in parallel with the closed electrical circuit of the voltage source (24), the carbon brushes (22a and 22b), and the commutator (20).
The c-shaped conductive springs (30b-30g) over subsequent segments of the multiple segments (14c-14h), have lengths such that when the c-shaped conductive springs (30b-30g) are compressed, the two ends (32a and 32b) of each of the c-shaped conductive springs (30b-30g) make electrical contact with the c-shaped conductive spring of the previous segment, thus completing additional electrical circuits in parallel with the closed electrical circuit consisting of conductive spring (30a) and the voltage source (24), the carbon brushes (22a and 22b), and the commutator (20). This arrangement will be shown more clearly herein below in conjunction with
The printer ribbon spindle assembly (10) is further comprised of basic electronic elements (40b-40h) disposed proximate to each of the center portions (34) of the c-shaped conductive springs (30a-30g) and in electrical contact with the center portions (34a-34h) of the c-shaped conductive springs (30a-30g). Additionally a basic electronic element (40a) may be provided at in the closed electrical circuit on the commutator.
In the present figure, the basic electronic elements (40a-4h) are resistors of known value. Thus the resistance of the closed electrical circuit will change depending on how many additional parallel electrical circuits are connected to the closed electrical circuit. When a resistance meter is placed in the electrical circuit, the change in resistance can be measured when a printer ribbon (not shown) is loaded on the printer ribbon supply spindle (10) indicating how many segments have been added to the circuit.
Referring now to
Referring now to
In the present embodiment, the center portions of the c-shaped conductive springs (30a-30g) are comprised of two conductive plates (36a and 36b). The dielectric material (42a-42h) lies between the two conductive plates (36a and 36b). The two conductive plates (36a and 36b) come in contact with the dielectric material (42a-42h) when the c-shaped conductive springs (30a-30g) are compressed.
Referring now to
In another exemplary embodiment, depicted in
C-shaped conductive springs (30a-30e) are disposed over each of the multiple segments. The c-shaped conductive springs (30a-30e) each has two ends and a center portion as described hereinbefore. The c-shaped conductive springs (30a-30e) are in an uncompressed state when no printer ribbon is loaded over c-shaped conductive springs (30a-30e). When a printer ribbon is loaded over the c-shaped conductive springs c-shaped conductive springs (30a-30e), the c-shaped conductive springs c-shaped conductive springs (30a-30e) compress.
The c-shaped conductive spring (30a) over the second of the multiple segments has a length such that when the c-shaped conductive spring (30a) is in the compressed state, the two ends of the c-shaped conductive spring (30a) make electrical contact with the commutator (20) completing a first additional electrical circuit in parallel with the closed electrical circuit. In the present Figure, the c-shaped conductive spring (30a) is in a compressed state.
The c-shaped conductive springs (30b-30e) over subsequent segments of the multiple segments have lengths such that when the c-shaped conductive springs 30b-30e) are in the compressed state, the two ends of the c-shaped conductive springs make electrical contact with the c-shaped conductive spring of the previous segment, completing additional electrical circuits in parallel with the closed electrical circuit. In the present Figure, c-shaped constructive springs (30b-30c) are in a compressed state and conductive springs (30d-30e) are in an uncompressed state. This condition of the conductive springs (30a-30c) signifies that a printer ribbon that has a length of four segments is loaded on the printer ribbon spindle.
The system (60) further comprises a basic electronic element (40) disposed proximate to each of the center portions of the c-shaped conductive springs (30a-30e) and in electrical contact with the center portion of the c-shaped conductive springs (30a-30e). The basic electronic elements (40) are included in the additional electrical circuits in parallel with the closed electrical circuit when the c-shaped conductive springs (30a-30e) are compressed.
The system (60) further comprises a meter (28) in the closed electrical circuit. The meter (28) is sensitive to the electrical properties of the basic electronic element (40) such that the reading on the meter (28) indicates how many additional parallel circuits are completed.
The system further comprises a processor (50) communicatively linked to the meter (28). The processor is configured to determine the width of the ribbon roll loaded on the printer ribbon supply spindle based upon the reading on the meter (28). The processor is further configured to implement printer functions (52) based upon the reading on the meter (28). The printer functions (52) include torque requirements of the printer.
In a further exemplary embodiment, depicted in
The basic electronic elements (40) may be resistors or dielectric material. If the basic electronic element (40) is a resister, then the meter (28) is an ohm-meter and reads the resistance of the completed circuits. If the basic electronic elements (40) are of a dielectric material, then the meter (28) reads capacitance changes in the circuits completed.
Referring now to
The method hereinabove described is particularly suitable to be used in conjunction with the system shown in
In an exemplary embodiment, the method (200) may further comprised the step of (290) providing the compressible conductive elements with a basic electronic element. The change in electrical properties measured in the (260) measuring step are due to the basic electronic elements included in the completed additional parallel circuits formed by the (250) compressing step. In an exemplary embodiment, the basic electronic element is a resistor. The (260) measuring step measures a change in resistance.
In another exemplary embodiment, the basic electronic element is a dielectric material. The (260) measuring step measures a change in capacitance.
In another exemplary embodiment, the method (200) further includes the step of (300) displaying the ribbon width determined in the second (280) determining step on a printer display.
In another exemplary embodiment, the method (200) further includes the step of (310) implementing printer functions based upon the ribbon width determined in the second (280) determining step. The (310) implementing step is accomplished with a processor. The printer functions include torque requirements for the printer ribbon.
In the method (200) the (260) measuring step is accomplished with an electrical meter sensitive to the electrical properties of the basic electronic element.
Referring now to
The media loaded on the printer spindle may be a conventional printer ribbon, labels, receipts, a thermal transfer ribbon, and the like.
The method (500) preferably also includes the step (590) of providing the compressible conductive elements with a basic electronic element. The change in electrical properties measured in the measuring step (560) is due to the basic electronic elements included in the completed additional parallel circuits formed by the compressing step (550).
The basic electronic element may be a resistor. The measuring step (560) measures a change in resistance when the basic electronic element is a resister.
Alternatively, the basic electronic element may be a dielectric material. In the present case, the measuring step (560) measures a change in capacitance.
The method (500) may also include the step of (600) displaying the media width determined in the second determining step (580) on a display. The display may be on the printer or on a display communicatively linked to the printer.
The method (500) may also include a step (610) of implementing printer functions based upon the media width determined in the second determining step (580). The printer functions may advantageously include torque requirements. For example, the printer may be provided with a processor to accomplish the second determining step (580), the displaying step (600), and the implementing step (610).
The measuring step (560) may be advantageously accomplished with an electrical meter sensitive to the electrical properties of the basic electronic element. That is, a resistance meter or capacitance meter, depending on the basic electronic element.
The method (500) hereinabove described and depicted in
To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:
In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.
Number | Name | Date | Kind |
---|---|---|---|
3859649 | Slack | Jan 1975 | A |
5333959 | Yamaguchi | Aug 1994 | A |
5598639 | Webb | Feb 1997 | A |
6832725 | Gardiner et al. | Dec 2004 | B2 |
7128266 | Zhu et al. | Oct 2006 | B2 |
7159783 | Walczyk et al. | Jan 2007 | B2 |
7413127 | Ehrhart et al. | Aug 2008 | B2 |
7726575 | Wang et al. | Jun 2010 | B2 |
8294969 | Plesko | Oct 2012 | B2 |
8317105 | Kotlarsky et al. | Nov 2012 | B2 |
8322622 | Liu | Dec 2012 | B2 |
8366005 | Kotlarsky et al. | Feb 2013 | B2 |
8371507 | Haggerty et al. | Feb 2013 | B2 |
8376233 | Van Horn et al. | Feb 2013 | B2 |
8381979 | Franz | Feb 2013 | B2 |
8390909 | Plesko | Mar 2013 | B2 |
8408464 | Zhu et al. | Apr 2013 | B2 |
8408468 | Horn et al. | Apr 2013 | B2 |
8408469 | Good | Apr 2013 | B2 |
8424768 | Rueblinger et al. | Apr 2013 | B2 |
8448863 | Xian et al. | May 2013 | B2 |
8457013 | Essinger et al. | Jun 2013 | B2 |
8459557 | Havens et al. | Jun 2013 | B2 |
8469272 | Kearney | Jun 2013 | B2 |
8474712 | Kearney et al. | Jul 2013 | B2 |
8479992 | Kotlarsky et al. | Jul 2013 | B2 |
8490877 | Kearney | Jul 2013 | B2 |
8517271 | Kotlarsky et al. | Aug 2013 | B2 |
8523076 | Good | Sep 2013 | B2 |
8528818 | Ehrhart et al. | Sep 2013 | B2 |
8544737 | Gomez et al. | Oct 2013 | B2 |
8548420 | Grunow et al. | Oct 2013 | B2 |
8550335 | Samek et al. | Oct 2013 | B2 |
8550354 | Gannon et al. | Oct 2013 | B2 |
8550357 | Kearney | Oct 2013 | B2 |
8556174 | Kosecki et al. | Oct 2013 | B2 |
8556176 | Van Horn et al. | Oct 2013 | B2 |
8556177 | Hussey et al. | Oct 2013 | B2 |
8559767 | Barber et al. | Oct 2013 | B2 |
8561895 | Gomez et al. | Oct 2013 | B2 |
8561903 | Sauerwein | Oct 2013 | B2 |
8561905 | Edmonds et al. | Oct 2013 | B2 |
8565107 | Pease et al. | Oct 2013 | B2 |
8571307 | Li et al. | Oct 2013 | B2 |
8579200 | Samek et al. | Nov 2013 | B2 |
8583924 | Caballero et al. | Nov 2013 | B2 |
8584945 | Wang et al. | Nov 2013 | B2 |
8587595 | Wang | Nov 2013 | B2 |
8587697 | Hussey et al. | Nov 2013 | B2 |
8588869 | Sauerwein et al. | Nov 2013 | B2 |
8590789 | Nahill et al. | Nov 2013 | B2 |
8596539 | Havens et al. | Dec 2013 | B2 |
8596542 | Havens et al. | Dec 2013 | B2 |
8596543 | Havens et al. | Dec 2013 | B2 |
8599271 | Havens et al. | Dec 2013 | B2 |
8599957 | Peake et al. | Dec 2013 | B2 |
8600158 | Li et al. | Dec 2013 | B2 |
8600167 | Showering | Dec 2013 | B2 |
8602309 | Longacre et al. | Dec 2013 | B2 |
8608053 | Meier et al. | Dec 2013 | B2 |
8608071 | Liu et al. | Dec 2013 | B2 |
8611309 | Wang et al. | Dec 2013 | B2 |
8615487 | Gomez et al. | Dec 2013 | B2 |
8621123 | Caballero | Dec 2013 | B2 |
8622303 | Meier et al. | Jan 2014 | B2 |
8628013 | Ding | Jan 2014 | B2 |
8628015 | Wang et al. | Jan 2014 | B2 |
8628016 | Winegar | Jan 2014 | B2 |
8629926 | Wang | Jan 2014 | B2 |
8630491 | Longacre et al. | Jan 2014 | B2 |
8635309 | Berthiaume et al. | Jan 2014 | B2 |
8636200 | Kearney | Jan 2014 | B2 |
8636212 | Nahill et al. | Jan 2014 | B2 |
8636215 | Ding et al. | Jan 2014 | B2 |
8636224 | Wang | Jan 2014 | B2 |
8638806 | Wang et al. | Jan 2014 | B2 |
8640958 | Lu et al. | Feb 2014 | B2 |
8640960 | Wang et al. | Feb 2014 | B2 |
8643717 | Li et al. | Feb 2014 | B2 |
8646692 | Meier et al. | Feb 2014 | B2 |
8646694 | Wang et al. | Feb 2014 | B2 |
8657200 | Ren et al. | Feb 2014 | B2 |
8659397 | Vargo et al. | Feb 2014 | B2 |
8668149 | Good | Mar 2014 | B2 |
8678285 | Kearney | Mar 2014 | B2 |
8678286 | Smith et al. | Mar 2014 | B2 |
8682077 | Longacre | Mar 2014 | B1 |
D702237 | Oberpriller et al. | Apr 2014 | S |
8687282 | Feng et al. | Apr 2014 | B2 |
8692927 | Pease et al. | Apr 2014 | B2 |
8695880 | Bremer et al. | Apr 2014 | B2 |
8698949 | Grunow et al. | Apr 2014 | B2 |
8702000 | Barber et al. | Apr 2014 | B2 |
8717494 | Gannon | May 2014 | B2 |
8720783 | Biss et al. | May 2014 | B2 |
8723804 | Fletcher et al. | May 2014 | B2 |
8723904 | Marty et al. | May 2014 | B2 |
8727223 | Wang | May 2014 | B2 |
8740082 | Wilz | Jun 2014 | B2 |
8740085 | Furlong et al. | Jun 2014 | B2 |
8746563 | Hennick et al. | Jun 2014 | B2 |
8750445 | Peake et al. | Jun 2014 | B2 |
8752766 | Xian et al. | Jun 2014 | B2 |
8756059 | Braho et al. | Jun 2014 | B2 |
8757495 | Qu et al. | Jun 2014 | B2 |
8760563 | Koziol et al. | Jun 2014 | B2 |
8763909 | Reed et al. | Jul 2014 | B2 |
8777108 | Coyle | Jul 2014 | B2 |
8777109 | Oberpriller et al. | Jul 2014 | B2 |
8779898 | Havens et al. | Jul 2014 | B2 |
8781520 | Payne et al. | Jul 2014 | B2 |
8783573 | Havens et al. | Jul 2014 | B2 |
8789757 | Barten | Jul 2014 | B2 |
8789758 | Hawley et al. | Jul 2014 | B2 |
8789759 | Xian et al. | Jul 2014 | B2 |
8794520 | Wang et al. | Aug 2014 | B2 |
8794522 | Ehrhart | Aug 2014 | B2 |
8794525 | Amundsen et al. | Aug 2014 | B2 |
8794526 | Wang et al. | Aug 2014 | B2 |
8798367 | Ellis | Aug 2014 | B2 |
8807431 | Wang et al. | Aug 2014 | B2 |
8807432 | Van Horn et al. | Aug 2014 | B2 |
8820630 | Qu et al. | Sep 2014 | B2 |
8822848 | Meagher | Sep 2014 | B2 |
8824692 | Sheerin et al. | Sep 2014 | B2 |
8824696 | Braho | Sep 2014 | B2 |
8842849 | Wahl et al. | Sep 2014 | B2 |
8844822 | Kotlarsky et al. | Sep 2014 | B2 |
8844823 | Fritz et al. | Sep 2014 | B2 |
8849019 | Li et al. | Sep 2014 | B2 |
D716285 | Chaney et al. | Oct 2014 | S |
8851383 | Yeakley et al. | Oct 2014 | B2 |
8854633 | Laffargue | Oct 2014 | B2 |
8866963 | Grunow et al. | Oct 2014 | B2 |
8868421 | Braho et al. | Oct 2014 | B2 |
8868519 | Maloy et al. | Oct 2014 | B2 |
8868802 | Barten | Oct 2014 | B2 |
8868803 | Caballero | Oct 2014 | B2 |
8870074 | Gannon | Oct 2014 | B1 |
8879639 | Sauerwein | Nov 2014 | B2 |
8880426 | Smith | Nov 2014 | B2 |
8881983 | Havens et al. | Nov 2014 | B2 |
8881987 | Wang | Nov 2014 | B2 |
8903172 | Smith | Dec 2014 | B2 |
8908995 | Benos et al. | Dec 2014 | B2 |
8910870 | Li et al. | Dec 2014 | B2 |
8910875 | Ren et al. | Dec 2014 | B2 |
8914290 | Hendrickson et al. | Dec 2014 | B2 |
8914788 | Pettinelli et al. | Dec 2014 | B2 |
8915439 | Feng et al. | Dec 2014 | B2 |
8915444 | Havens et al. | Dec 2014 | B2 |
8916789 | Woodburn | Dec 2014 | B2 |
8918250 | Hollifield | Dec 2014 | B2 |
8918564 | Caballero | Dec 2014 | B2 |
8925818 | Kosecki et al. | Jan 2015 | B2 |
8939374 | Jovanovski et al. | Jan 2015 | B2 |
8942480 | Ellis | Jan 2015 | B2 |
8944313 | Williams et al. | Feb 2015 | B2 |
8944327 | Meier et al. | Feb 2015 | B2 |
8944332 | Harding et al. | Feb 2015 | B2 |
8950678 | Germaine et al. | Feb 2015 | B2 |
D723560 | Zhou et al. | Mar 2015 | S |
8967468 | Gomez et al. | Mar 2015 | B2 |
8971346 | Sevier | Mar 2015 | B2 |
8976030 | Cunningham et al. | Mar 2015 | B2 |
8976368 | Akel et al. | Mar 2015 | B2 |
8978981 | Guan | Mar 2015 | B2 |
8978983 | Bremer et al. | Mar 2015 | B2 |
8978984 | Hennick et al. | Mar 2015 | B2 |
8985456 | Zhu et al. | Mar 2015 | B2 |
8985457 | Soule et al. | Mar 2015 | B2 |
8985459 | Kearney et al. | Mar 2015 | B2 |
8985461 | Gelay et al. | Mar 2015 | B2 |
8988578 | Showering | Mar 2015 | B2 |
8988590 | Gillet et al. | Mar 2015 | B2 |
8991704 | Hopper et al. | Mar 2015 | B2 |
8996194 | Davis et al. | Mar 2015 | B2 |
8996384 | Funyak et al. | Mar 2015 | B2 |
8998091 | Edmonds et al. | Apr 2015 | B2 |
9002641 | Showering | Apr 2015 | B2 |
9007368 | Laffargue et al. | Apr 2015 | B2 |
9010641 | Qu et al. | Apr 2015 | B2 |
9015513 | Murawski et al. | Apr 2015 | B2 |
9016576 | Brady et al. | Apr 2015 | B2 |
D730357 | Fitch et al. | May 2015 | S |
9022288 | Nahill et al. | May 2015 | B2 |
9030964 | Essinger et al. | May 2015 | B2 |
9033240 | Smith et al. | May 2015 | B2 |
9033242 | Gillet et al. | May 2015 | B2 |
9036054 | Koziol et al. | May 2015 | B2 |
9037344 | Chamberlin | May 2015 | B2 |
9038911 | Xian et al. | May 2015 | B2 |
9038915 | Smith | May 2015 | B2 |
D730901 | Oberpriller et al. | Jun 2015 | S |
D730902 | Fitch et al. | Jun 2015 | S |
D733112 | Chaney et al. | Jun 2015 | S |
9047098 | Barten | Jun 2015 | B2 |
9047359 | Caballero et al. | Jun 2015 | B2 |
9047420 | Caballero | Jun 2015 | B2 |
9047525 | Barber | Jun 2015 | B2 |
9047531 | Showering et al. | Jun 2015 | B2 |
9049640 | Wang et al. | Jun 2015 | B2 |
9053055 | Caballero | Jun 2015 | B2 |
9053378 | Hou et al. | Jun 2015 | B1 |
9053380 | Xian et al. | Jun 2015 | B2 |
9057641 | Amundsen et al. | Jun 2015 | B2 |
9058526 | Powilleit | Jun 2015 | B2 |
9064165 | Havens et al. | Jun 2015 | B2 |
9064167 | Xian et al. | Jun 2015 | B2 |
9064168 | Todeschini et al. | Jun 2015 | B2 |
9064254 | Todeschini et al. | Jun 2015 | B2 |
9066032 | Wang | Jun 2015 | B2 |
9070032 | Corcoran | Jun 2015 | B2 |
D734339 | Zhou et al. | Jul 2015 | S |
D734751 | Oberpriller et al. | Jul 2015 | S |
9082023 | Feng et al. | Jul 2015 | B2 |
9224022 | Ackley et al. | Dec 2015 | B2 |
9224027 | Van Horn et al. | Dec 2015 | B2 |
D747321 | London et al. | Jan 2016 | S |
9230140 | Ackley | Jan 2016 | B1 |
9250712 | Todeschini | Feb 2016 | B1 |
9258033 | Showering | Feb 2016 | B2 |
9262633 | Todeschini et al. | Feb 2016 | B1 |
9310609 | Rueblinger et al. | Apr 2016 | B2 |
D757009 | Oberpriller et al. | May 2016 | S |
9342724 | McCloskey | May 2016 | B2 |
9375945 | Bowles | Jun 2016 | B1 |
D760719 | Zhou et al. | Jul 2016 | S |
9390596 | Todeschini | Jul 2016 | B1 |
D762604 | Fitch et al. | Aug 2016 | S |
D762647 | Fitch et al. | Aug 2016 | S |
9412242 | Van Horn et al. | Aug 2016 | B2 |
D766244 | Zhou et al. | Sep 2016 | S |
9443123 | Hejl | Sep 2016 | B2 |
9443222 | Singel et al. | Sep 2016 | B2 |
9478113 | Xie et al. | Oct 2016 | B2 |
20070063048 | Havens et al. | Mar 2007 | A1 |
20090134221 | Zhu et al. | May 2009 | A1 |
20100177076 | Essinger et al. | Jul 2010 | A1 |
20100177080 | Essinger et al. | Jul 2010 | A1 |
20100177707 | Essinger et al. | Jul 2010 | A1 |
20100177749 | Essinger et al. | Jul 2010 | A1 |
20110169999 | Grunow et al. | Jul 2011 | A1 |
20110202554 | Powilleit et al. | Aug 2011 | A1 |
20120111946 | Golant | May 2012 | A1 |
20120168512 | Kotlarsky et al. | Jul 2012 | A1 |
20120193423 | Samek | Aug 2012 | A1 |
20120203647 | Smith | Aug 2012 | A1 |
20120223141 | Good et al. | Sep 2012 | A1 |
20130043312 | Van Horn | Feb 2013 | A1 |
20130075168 | Amundsen et al. | Mar 2013 | A1 |
20130175341 | Kearney et al. | Jul 2013 | A1 |
20130175343 | Good | Jul 2013 | A1 |
20130257744 | Daghigh et al. | Oct 2013 | A1 |
20130257759 | Daghigh | Oct 2013 | A1 |
20130270346 | Xian et al. | Oct 2013 | A1 |
20130287258 | Kearney | Oct 2013 | A1 |
20130292475 | Kotlarsky et al. | Nov 2013 | A1 |
20130292477 | Hennick et al. | Nov 2013 | A1 |
20130293539 | Hunt et al. | Nov 2013 | A1 |
20130293540 | Laffargue et al. | Nov 2013 | A1 |
20130306728 | Thuries et al. | Nov 2013 | A1 |
20130306731 | Pedraro | Nov 2013 | A1 |
20130307964 | Bremer et al. | Nov 2013 | A1 |
20130308625 | Park et al. | Nov 2013 | A1 |
20130313324 | Koziol et al. | Nov 2013 | A1 |
20130313325 | Wilz et al. | Nov 2013 | A1 |
20130342717 | Havens et al. | Dec 2013 | A1 |
20140001267 | Giordano et al. | Jan 2014 | A1 |
20140002828 | Laffargue et al. | Jan 2014 | A1 |
20140008439 | Wang | Jan 2014 | A1 |
20140025584 | Liu et al. | Jan 2014 | A1 |
20140034734 | Sauerwein | Feb 2014 | A1 |
20140036848 | Pease et al. | Feb 2014 | A1 |
20140039693 | Havens et al. | Feb 2014 | A1 |
20140042814 | Kather et al. | Feb 2014 | A1 |
20140049120 | Kohtz et al. | Feb 2014 | A1 |
20140049635 | Laffargue et al. | Feb 2014 | A1 |
20140061306 | Wu et al. | Mar 2014 | A1 |
20140063289 | Hussey et al. | Mar 2014 | A1 |
20140066136 | Sauerwein et al. | Mar 2014 | A1 |
20140067692 | Ye et al. | Mar 2014 | A1 |
20140070005 | Nahill et al. | Mar 2014 | A1 |
20140071840 | Venancio | Mar 2014 | A1 |
20140074746 | Wang | Mar 2014 | A1 |
20140076974 | Havens et al. | Mar 2014 | A1 |
20140078341 | Havens et al. | Mar 2014 | A1 |
20140078342 | Li et al. | Mar 2014 | A1 |
20140078345 | Showering | Mar 2014 | A1 |
20140098792 | Wang et al. | Apr 2014 | A1 |
20140100774 | Showering | Apr 2014 | A1 |
20140100813 | Showering | Apr 2014 | A1 |
20140103115 | Meier et al. | Apr 2014 | A1 |
20140104413 | McCloskey et al. | Apr 2014 | A1 |
20140104414 | McCloskey et al. | Apr 2014 | A1 |
20140104416 | Giordano et al. | Apr 2014 | A1 |
20140104451 | Todeschini et al. | Apr 2014 | A1 |
20140106594 | Skvoretz | Apr 2014 | A1 |
20140106725 | Sauerwein | Apr 2014 | A1 |
20140108010 | Maltseff et al. | Apr 2014 | A1 |
20140108402 | Gomez et al. | Apr 2014 | A1 |
20140108682 | Caballero | Apr 2014 | A1 |
20140110485 | Toa et al. | Apr 2014 | A1 |
20140114530 | Fitch et al. | Apr 2014 | A1 |
20140124577 | Wang et al. | May 2014 | A1 |
20140124579 | Ding | May 2014 | A1 |
20140125842 | Winegar | May 2014 | A1 |
20140125853 | Wang | May 2014 | A1 |
20140125999 | Longacre et al. | May 2014 | A1 |
20140129378 | Richardson | May 2014 | A1 |
20140131438 | Kearney | May 2014 | A1 |
20140131441 | Nahill et al. | May 2014 | A1 |
20140131443 | Smith | May 2014 | A1 |
20140131444 | Wang | May 2014 | A1 |
20140131445 | Ding et al. | May 2014 | A1 |
20140131448 | Xian et al. | May 2014 | A1 |
20140133379 | Wang et al. | May 2014 | A1 |
20140136208 | Maltseff et al. | May 2014 | A1 |
20140140585 | Wang | May 2014 | A1 |
20140151453 | Meier et al. | Jun 2014 | A1 |
20140152882 | Samek et al. | Jun 2014 | A1 |
20140158770 | Sevier et al. | Jun 2014 | A1 |
20140159869 | Zumsteg et al. | Jun 2014 | A1 |
20140166755 | Liu et al. | Jun 2014 | A1 |
20140166757 | Smith | Jun 2014 | A1 |
20140166759 | Liu et al. | Jun 2014 | A1 |
20140168787 | Wang et al. | Jun 2014 | A1 |
20140175165 | Havens et al. | Jun 2014 | A1 |
20140175172 | Jovanovski et al. | Jun 2014 | A1 |
20140191644 | Chaney | Jul 2014 | A1 |
20140191913 | Ge et al. | Jul 2014 | A1 |
20140197238 | Liu et al. | Jul 2014 | A1 |
20140197239 | Havens et al. | Jul 2014 | A1 |
20140197304 | Feng et al. | Jul 2014 | A1 |
20140203087 | Smith et al. | Jul 2014 | A1 |
20140204268 | Grunow et al. | Jul 2014 | A1 |
20140214631 | Hansen | Jul 2014 | A1 |
20140217166 | Berthiaume et al. | Aug 2014 | A1 |
20140217180 | Liu | Aug 2014 | A1 |
20140231500 | Ehrhart et al. | Aug 2014 | A1 |
20140232930 | Anderson | Aug 2014 | A1 |
20140247315 | Marty et al. | Sep 2014 | A1 |
20140263493 | Amurgis et al. | Sep 2014 | A1 |
20140263645 | Smith et al. | Sep 2014 | A1 |
20140270196 | Braho et al. | Sep 2014 | A1 |
20140270229 | Braho | Sep 2014 | A1 |
20140278387 | DiGregorio | Sep 2014 | A1 |
20140282210 | Bianconi | Sep 2014 | A1 |
20140284384 | Lu et al. | Sep 2014 | A1 |
20140288933 | Braho et al. | Sep 2014 | A1 |
20140297058 | Barker et al. | Oct 2014 | A1 |
20140299665 | Barber et al. | Oct 2014 | A1 |
20140312121 | Lu et al. | Oct 2014 | A1 |
20140319220 | Coyle | Oct 2014 | A1 |
20140319221 | Oberpriller et al. | Oct 2014 | A1 |
20140326787 | Barten | Nov 2014 | A1 |
20140332590 | Wang et al. | Nov 2014 | A1 |
20140344943 | Todeschini et al. | Nov 2014 | A1 |
20140346233 | Liu et al. | Nov 2014 | A1 |
20140351317 | Smith et al. | Nov 2014 | A1 |
20140353373 | Van Horn et al. | Dec 2014 | A1 |
20140361073 | Qu et al. | Dec 2014 | A1 |
20140361082 | Xian et al. | Dec 2014 | A1 |
20140362184 | Jovanovski et al. | Dec 2014 | A1 |
20140363015 | Braho | Dec 2014 | A1 |
20140369511 | Sheerin et al. | Dec 2014 | A1 |
20140374483 | Lu | Dec 2014 | A1 |
20140374485 | Xian et al. | Dec 2014 | A1 |
20150001301 | Ouyang | Jan 2015 | A1 |
20150001304 | Todeschini | Jan 2015 | A1 |
20150003673 | Fletcher | Jan 2015 | A1 |
20150009338 | Laffargue et al. | Jan 2015 | A1 |
20150009610 | London et al. | Jan 2015 | A1 |
20150014416 | Kotlarsky et al. | Jan 2015 | A1 |
20150021397 | Rueblinger et al. | Jan 2015 | A1 |
20150028102 | Ren et al. | Jan 2015 | A1 |
20150028103 | Jiang | Jan 2015 | A1 |
20150028104 | Ma et al. | Jan 2015 | A1 |
20150029002 | Yeakley et al. | Jan 2015 | A1 |
20150032709 | Maloy et al. | Jan 2015 | A1 |
20150039309 | Braho et al. | Feb 2015 | A1 |
20150040378 | Saber et al. | Feb 2015 | A1 |
20150048168 | Fritz et al. | Feb 2015 | A1 |
20150049347 | Laffargue et al. | Feb 2015 | A1 |
20150051992 | Smith | Feb 2015 | A1 |
20150053766 | Havens et al. | Feb 2015 | A1 |
20150053768 | Wang et al. | Feb 2015 | A1 |
20150053769 | Thuries et al. | Feb 2015 | A1 |
20150062366 | Liu et al. | Mar 2015 | A1 |
20150063215 | Wang | Mar 2015 | A1 |
20150063676 | Lloyd et al. | Mar 2015 | A1 |
20150069130 | Gannon | Mar 2015 | A1 |
20150071819 | Todeschini | Mar 2015 | A1 |
20150083800 | Li et al. | Mar 2015 | A1 |
20150086114 | Todeschini | Mar 2015 | A1 |
20150088522 | Hendrickson et al. | Mar 2015 | A1 |
20150096872 | Woodburn | Apr 2015 | A1 |
20150099557 | Pettinelli et al. | Apr 2015 | A1 |
20150100196 | Hollifield | Apr 2015 | A1 |
20150102109 | Huck | Apr 2015 | A1 |
20150115035 | Meier et al. | Apr 2015 | A1 |
20150127791 | Kosecki et al. | May 2015 | A1 |
20150128116 | Chen et al. | May 2015 | A1 |
20150129659 | Feng et al. | May 2015 | A1 |
20150133047 | Smith et al. | May 2015 | A1 |
20150134470 | Hejl et al. | May 2015 | A1 |
20150136851 | Harding et al. | May 2015 | A1 |
20150136854 | Lu et al. | May 2015 | A1 |
20150142492 | Kumar | May 2015 | A1 |
20150144692 | Hejl | May 2015 | A1 |
20150144698 | Teng et al. | May 2015 | A1 |
20150144701 | Xian et al. | May 2015 | A1 |
20150149946 | Benos et al. | May 2015 | A1 |
20150161429 | Xian | Jun 2015 | A1 |
20150169925 | Chang et al. | Jun 2015 | A1 |
20150169929 | Williams et al. | Jun 2015 | A1 |
20150186703 | Chen et al. | Jul 2015 | A1 |
20150193644 | Kearney et al. | Jul 2015 | A1 |
20150193645 | Colavito et al. | Jul 2015 | A1 |
20150199957 | Funyak et al. | Jul 2015 | A1 |
20150204671 | Showering | Jul 2015 | A1 |
20150210199 | Payne | Jul 2015 | A1 |
20150220753 | Zhu et al. | Aug 2015 | A1 |
20150254485 | Feng et al. | Sep 2015 | A1 |
20150327012 | Bian et al. | Nov 2015 | A1 |
20160014251 | Hejl | Jan 2016 | A1 |
20160040982 | Li et al. | Feb 2016 | A1 |
20160042241 | Todeschini | Feb 2016 | A1 |
20160057230 | Todeschini et al. | Feb 2016 | A1 |
20160109219 | Ackley et al. | Apr 2016 | A1 |
20160109220 | Laffargue | Apr 2016 | A1 |
20160109224 | Thuries et al. | Apr 2016 | A1 |
20160112631 | Ackley et al. | Apr 2016 | A1 |
20160112643 | Laffargue et al. | Apr 2016 | A1 |
20160124516 | Schoon et al. | May 2016 | A1 |
20160125217 | Todeschini | May 2016 | A1 |
20160125342 | Miller et al. | May 2016 | A1 |
20160133253 | Braho et al. | May 2016 | A1 |
20160171720 | Todeschini | Jun 2016 | A1 |
20160178479 | Goldsmith | Jun 2016 | A1 |
20160180678 | Ackley et al. | Jun 2016 | A1 |
20160189087 | Morton et al. | Jun 2016 | A1 |
20160125873 | Braho et al. | Jul 2016 | A1 |
20160227912 | Oberpriller et al. | Aug 2016 | A1 |
20160232891 | Pecorari | Aug 2016 | A1 |
20160292477 | Bidwell | Oct 2016 | A1 |
20160294779 | Yeakley et al. | Oct 2016 | A1 |
20160306769 | Kohtz et al. | Oct 2016 | A1 |
20160314276 | Sewell et al. | Oct 2016 | A1 |
20160314294 | Kubler et al. | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
63027339 | Feb 1988 | JP |
2013163789 | Nov 2013 | WO |
2013173985 | Nov 2013 | WO |
2014019130 | Feb 2014 | WO |
2014110495 | Jul 2014 | WO |
Entry |
---|
U.S. Appl. No. 13/367,978, filed Feb. 7, 2012, (Feng et al.); now abandoned. |
U.S. Appl. No. 14/277,337 for Multipurpose Optical Reader, filed May 14, 2014 (Jovanovski et al.); 59 pages; now abandoned. |
U.S. Appl. No. 14/446,391 for Multifunction Point of Sale Apparatus With Optical Signature Capture filed Jul. 30, 2014 (Good et al.); 37 pages; now abandoned. |
U.S. Appl. No. 29/516,892 for Table Computer filed Feb. 6, 2015 (Bidwell et al.); 13 pages. |
U.S. Appl. No. 29/523,098 for Handle for a Tablet Computer filed Apr. 7, 2015 (Bidwell et al.); 17 pages. |
U.S. Appl. No. 29/528,890 for Mobile Computer Housing filed Jun. 2, 2015 (Fitch et al.); 61 pages. |
U.S. Appl. No. 29/526,918 for Charging Base filed May 14, 2015 (Fitch et al.); 10 pages. |
U.S. Appl. No. 14/715,916 for Evaluating Image Values filed May 19, 2015 (Ackley); 60 pages. |
U.S. Appl. No. 29/525,068 for Tablet Computer With Removable Scanning Device filed Apr. 27, 2015 (Schulte et al.); 19 pages. |
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 44 pages. |
U.S. Appl. No. 29/530,600 for Cyclone filed Jun. 18, 2015 (Vargo et al); 16 pages. |
U.S. Appl. No. 14/707,123 for Application Independent DEX/UCS Interface filed May 8, 2015 (Pape); 47 pages. |
U.S. Appl. No. 14/283,282 for Terminal Having Illumination and Focus Control filed May 21, 2014 (Liu et al.); 31 pages; now abandoned. |
U.S. Appl. No. 14/705,407 for Method and System to Protect Software-Based Network-Connected Devices From Advanced Persistent Threat filed May 6, 2015 (Hussey et al.); 42 pages. |
U.S. Appl. No. 14/704,050 for Intermediate Linear Positioning filed May 5, 2015 (Charpentier et al.); 60 pages. |
U.S. Appl. No. 14/705,012 for Hands-Free Human Machine Interface Responsive to a Driver of a Vehicle filed May 6, 2015 (Fitch et al.); 44 pages. |
U.S. Appl. No. 14/715,672 for Augumented Reality Enabled Hazard Display filed May 19, 2015 (Venkatesha et al.); 35 pages. |
U.S. Appl. No. 14/735,717 for Indicia-Reading Systems Having an Interface With a User's Nervous System filed Jun. 10, 2015 (Todeschini); 39 pages. |
U.S. Appl. No. 14/702,110 for System and Method for Regulating Barcode Data Injection Into a Running Application on a Smart Device filed May 1, 2015 (Todeschini et al.); 38 pages. |
U.S. Appl. No. 14/747,197 for Optical Pattern Projector filed Jun. 23, 2015 (Thuries et al.); 33 pages. |
U.S. Appl. No. 14/702,979 for Tracking Battery Conditions filed May 4, 2015 (Young et al.); 70 pages. |
U.S. Appl. No. 29/529,441 for Indicia Reading Device filed Jun. 8, 2015 (Zhou et al.); 14 pages. |
U.S. Appl. No. 14/747,490 for Dual-Projector Three-Dimensional Scanner filed Jun. 23, 2015 (Jovanovski et al.); 40 pages. |
U.S. Appl. No. 14/740,320 for Tactile Switch for a Mobile Electronic Device filed Jun. 16, 2015 (Bamdringa); 38 pages. |
U.S. Appl. No. 14/740,373 for Calibrating a Volume Dimensioner filed Jun. 16, 2015 (Ackley et al.); 63 pages. |