Method and system of extending battery life of a wireless microphone unit

Information

  • Patent Grant
  • 9516398
  • Patent Number
    9,516,398
  • Date Filed
    Wednesday, March 23, 2016
    8 years ago
  • Date Issued
    Tuesday, December 6, 2016
    8 years ago
Abstract
A method of extending battery life of a wireless microphone unit includes muting the wireless microphone unit responsive to a mute signal from a base station unit, transmitting, by the wireless microphone unit, compressed muted audio data, wherein the compressed muted audio data is compressed via a first compression scheme, determining, by the wireless microphone unit, whether an unmute signal has been received from the base station unit, and responsive to a determination that the unmute signal has been received, unmuting the wireless microphone unit. The method further includes discontinuing transmission of the compressed muted audio data and transmitting compressed audio data via a second compression scheme, wherein the first transmitting step causes the wireless microphone unit to consume less power per unit of transmission time than the second transmitting step.
Description
BACKGROUND

Technical Field


This patent application relates generally to microphones, and in particular, to systems and methods for extending battery life of a wireless microphone unit by incorporating data compression and muting of the microphone.


History of Related Art


Wireless microphones are used in many fields of endeavor today. One typical application of wireless microphones is in law enforcement. A typical wireless microphone unit includes a microphone and a transmitter that is used to transmit signals representing sounds detected by the microphone. In a typical arrangement, a vehicle of a law-enforcement officer includes a base station that is operable to communicate wirelessly with the wireless microphone unit.


Because the wireless microphone unit is wireless, it is necessary for the wireless microphone unit to also include a battery. While battery technology has improved greatly in recent years, demands of transmission by the wireless microphone unit in combination with unpredictable shift lengths of law-enforcement officers can, in some circumstances, cause life of the battery incorporated into the wireless microphone unit to be exceeded.


SUMMARY OF THE INVENTION

A method of extending battery life of a wireless microphone unit. The method includes muting the wireless microphone unit responsive to a mute signal from a base station unit, transmitting, by the wireless microphone unit, compressed muted audio data, wherein the compressed muted audio data is compressed via a first compression scheme, determining, by the wireless microphone unit, whether an unmute signal has been received from the base station unit, and responsive to a determination that the unmute signal has been received, unmuting the wireless microphone unit. The method further includes discontinuing transmission of the compressed muted audio data and transmitting compressed audio data via a second compression scheme, wherein first transmitting step causes the wireless microphone unit to consume less power per unit of transmission time than the second transmitting step.


A method of extending battery life of a wireless microphone unit. The method includes muting the wireless microphone unit responsive to a mute signal from a base station unit and transmitting, by the wireless microphone unit, run-length-encoded muted audio data. The method further includes determining, by the wireless microphone unit, whether an unmute signal has been received from the base station unit and responsive to a determination that the unmute signal has been received, unmuting the wireless microphone unit.


An article of manufacture for extending battery life of a wireless microphone unit, the article of manufacture includes at least one computer readable medium and processor instructions contained on at least one computer readable medium, the processor instructions configured to be readable from the at least one computer readable medium by at least one processor and thereby cause the at least one processor to operate as to perform the steps of muting the wireless microphone unit responsive to a mute signal from a base station unit, transmitting, by the wireless microphone unit, compressed muted audio data, wherein the compressed muted audio data is compressed via a first compression scheme, determining, by the wireless microphone unit, whether an unmute signal has been received from the base station unit, responsive to a determination that the unmute signal has been received, unmuting the wireless microphone unit, discontinuing transmission of the compressed muted audio data and transmitting compressed audio data via a second compression scheme, wherein first transmitting step causes the wireless microphone unit to consume less power per unit of transmission time than the second transmitting step.


An article of manufacture for extending battery life of a wireless microphone unit, the article of manufacture includes at least one computer readable medium and processor instructions contained on at least one computer readable medium, the processor instructions configured to be readable from the at least one computer readable medium by at least one processor and thereby cause the at least one processor to operate as to perform the steps of muting the wireless microphone unit responsive to a mute signal from a base station unit, transmitting, by the wireless microphone unit, run-length-encoded muted audio data, determining, by the wireless microphone unit, whether an unmute signal has been received from the base station unit and responsive to a determination that the unmute signal has been received, unmuting the wireless microphone unit.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the method and system of the present invention may be obtained by reference to the following Detailed Description when taken in conjunction with the accompanying Drawings wherein:



FIG. 1A is a block diagram illustrating communication between a wireless microphone unit and a base station unit;



FIG. 1B is a flow diagram illustrating an exemplary process of mute/unmute control of a wireless microphone unit;



FIG. 2 is a flow diagram illustrating an exemplary process for operation of a wireless microphone unit; and



FIG. 3 is a detailed block diagram of an exemplary wireless microphone unit.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS OF THE INVENTION

Various embodiments of the present invention will now be described more fully with reference to the accompanying drawings. The invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, the embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.



FIG. 1A is a block diagram illustrating communication between a wireless microphone unit 12 and a base station unit 16. In a typical embodiment, the wireless microphone unit 12 includes a sound pickup device 14. In a typical embodiment, the sound pickup device 14 may be, for example, a microphone. The sound pickup device 14 is coupled to a transmit/receive (TX/RX) unit 13 and an antenna 15 is coupled to the TX/RX unit 13. In law-enforcement applications, according to a typical embodiment, the wireless microphone unit 12 may be attached to the person of a law-enforcement officer. The wireless microphone unit 12 is operable to allow activities of the officer and interactions of the officer with other individuals to be detected by the wireless microphone unit 12 and transmitted to another location for review and/or recording. In a typical arrangement, a vehicle of the law-enforcement officer includes the base station unit 16, which is operable to communicate wirelessly with the wireless microphone unit 12. In some systems, the base station unit 16 may be, for example, a digital video recorder (DVR), a hard drive, a VHS system, or some other recording device that may be used, among other things, to record data received by the base station unit 16 from the wireless microphone unit 12.


Some wireless microphone units are configured to change between a standby mode in which the wireless microphone unit does not transmit and an active mode in which the wireless microphone unit transmits. This solution represents an effort to take advantage of the general principle that a typical wireless microphone unit uses less power and, therefore, discharges its battery more slowly, when the wireless microphone unit is not transmitting relative to when the wireless microphone unit is transmitting.


However, in some circumstances, it is preferable that the wireless microphone unit not enter into a standby mode in which transmissions by the wireless microphone unit do not occur. In various embodiments, battery life of the wireless microphone unit 12 may be extended by incorporating data compression and muting of the sound pickup device 14 of the wireless microphone unit 12. In a typical embodiment, the sound pickup device 14 is muted via, for example, analog mute circuitry or digital mute circuitry. One type of data compression that may be used in various embodiments of the invention is run-length encoding (RLE). RLE is a form of data compression in which a run of data (i.e., a sequence in which the same data value occurs in many consecutive data elements) is stored as a single data value and count, rather than as the original run of data. RLE is typically more useful on data that contain many such runs, such as, for example, relatively simply graphic images such as icons, line drawings, and animations. RLE is typically not recommended for use with data that do not have many runs, as RLE could in such cases potentially double the size of the data being encoded.


In a typical embodiment, the wireless microphone unit 12 is responsive to a signal to mute the sound pickup device 14 of the wireless microphone unit 12. In response to such a signal, the wireless microphone unit 12 mutes the sound pickup device 14. As a result, no sound or signals representative thereof are detected by the TX/RX unit 13 or another component of the wireless microphone unit 12, resulting in one or more strings, for example, of zeros, which strings of zeros represent silence (i.e., no sound). In a typical embodiment, when the sound pickup device 14 has been muted, data transmitted by the wireless microphone unit 12 defaults to zero. RLE of the resultant very long string of zeros causes compression of the zeros into a relatively short string of data (e.g., two bytes) so that transmission of the detected silence is shorter in time and more energy efficient than if uncompressed data representing silence were not so compressed.


In a typical law-enforcement application, it is desirable to control muting of the wireless microphone unit 12 remotely from the base station unit 16 located, for example, in the law-enforcement vehicle. One way in which such remote muting can be implemented is responsive to recording of video, for example, onto a DVR, VHS, hard drive, or other storage media such as, for example, a solid state memory. In such an arrangement, events deemed not important enough to record video of are also considered not important enough to record audio of; therefore, in such embodiments, the wireless microphone unit 12 is muted responsive to a signal from the DVR or other video-recording device that is part of the base station in the law-enforcement vehicle and, during these times, power usage by the wireless microphone unit 12 is minimized, which causes battery life to be extended. However, muting of the sound pickup device 14 may be triggered by other events as desired.



FIG. 1B is a flow diagram illustrating an exemplary process of mute/unmute control of the wireless microphone unit 12 by the base station unit 16, which, as discussed above, may include a DVR device. A process 100 begins at step 102. From step 102, execution proceeds to step 104. At step 104, a determination is made whether the DVR device of the base station unit 16 is recording video. Those having skill in the art will appreciate that principles of the invention may be applied whether a DVR-based recording device or other type of recording device is used and also may be applied regardless of whether the presence of video recording is the triggering event as described hereinbelow relative to the process 100.


Referring again to FIG. 1B, from step 104, if it is determined that the DVR device is recording, execution proceeds to step 106. At step 106, the base station unit 16 sends an unmute signal to the wireless microphone unit 12. From step 106, execution proceeds to step 108. If, however, at step 104, it is determined that the DVR device is not recording, execution returns to step 104.


At step 108, a determination is made whether the DVR device has stopped recording. If, at step 108, it is determined that the DVR device has not stopped recording, execution returns to step 108. However, if at step 108 it is determined that the DVR device has stopped recording, execution proceeds to step 110. At step 110, an unmute signal is sent to the wireless microphone unit 12. From step 110, execution proceeds to step 104. It is thus apparent that the base station unit 16 sends an unmute signal responsive to the DVR device recording video and sends a mute signal responsive to the DVR device recording no longer occurring.



FIG. 2 is a flow diagram illustrating an exemplary process for operation of the wireless microphone unit 12 responsive, for example, to mute and unmute signals such as those illustrated in FIG. 1A. A wireless-microphone-unit operation process 200 begins at step 202. From step 202, execution proceeds to step 204. At step 204, the wireless microphone unit 12 begins transmitting. From step 204, execution proceeds to step 206. At step 206, the wireless microphone unit 12 mutes the sound pickup device 14. From step 206, execution proceeds to step 208, at which step muted audio detected by the wireless microphone unit 12 (i.e., silence) is compressed using a first data-compression scheme. In a typical embodiment, the first data-compression scheme involves run-length encoding the muted audio by the wireless microphone unit 12. As noted above, run-length encoding of data representing silence results in extremely short transmissions and improved energy efficiency of the wireless microphone unit 12. In addition, run-length encoding of data representing silence typically results in less power consumption per unit of transmission time, resulting in extended battery life of the wireless microphone unit 12.


From step 208, execution proceeds to step 210. At step 210, a determination is made as to whether an unmute signal has been received. If, at step 210, no unmute signal has been received, execution returns to step 210. If, however, an unmute signal has been received at step 210, execution proceeds to step 212. At step 212, the sound pickup device 14 of the wireless microphone unit 12 is unmuted.


At step 213, data is compressed using a second data-compression scheme. In some embodiments, the second data-compression scheme may be utilized during at least part of the time that the sound pickup device 14 of the wireless microphone unit 12 is unmuted. The second data-compression scheme may include, for example, one or more of AAC, MP3, and DSS. Compression of data utilizing the second data-compression scheme typically causes the wireless microphone unit 12 to consume more power per unit of transmission time than when the first data-compression scheme disclosed above is used. In other embodiments, no data compression is used during the time that the wireless microphone unit 12 is unmuted.


From step 213, execution proceeds to step 214. At step 214, a determination is made whether a mute signal has been received. If a mute signal has not been received, execution returns to step 214. However, if a mute signal has been received, execution returns to step 206.


Those having skill in the art will appreciate that FIGS. 1A-2 describe just one of a number of potential implementation modes for the combination of run-length encoding and muting of the sound pickup device 14 of the wireless microphone unit 12 and that a number of different implementation modes may be utilized without departing from principles of the invention. In various embodiments of the invention, the wireless microphone unit 12 never enters into a standby mode in which the wireless microphone unit 12 is powered up and operational but not transmitting audio (i.e., sounds or silence). In another operational mode from the one illustrated in FIGS. 1A-2, for example, the wireless microphone unit 12 may monitor the base station unit 16 to determine whether a video recording or some other event is occurring and mute or unmute responsive thereto.



FIG. 3 is a detailed block diagram of the wireless microphone unit 12. The wireless microphone unit 12 includes the sound pickup device 14. In a typical embodiment, the sound pickup device 14 may be, for example, a microphone. The sound pickup device 14 is coupled to the transmit/receive (TX/RX) unit 13 via circuitry 302. The wireless microphone unit 12 is operable to convert sound to digital data and deliver the digital data to the TX/RX unit 13. The circuitry 302 includes a pre-amplifier 304, analog mute circuitry 306, an analog-to-digital converter 308, an AND gate 310, digital mute circuitry 312 comprising a NOR gate, a first compression block 314, and a second compression block 316.


The pre-amplifier 304 is operable to amplify an analog sound signal from the sound pickup device 14 to obtain an amplified analog sound signal S1 that is input to the analog-to-digital converter 308. The analog-to-digital converter 308 is operable to convert the analog sound signal S1 to a digital signal S2. The digital signal S2 is input to either or both of the first encoding block 314 and the second encoding block 316. It will be apparent that the encoding performed by the blocks 314 and 316 may be accomplished by hardware or software. In various embodiments, battery life of the wireless microphone unit 12 may be extended by incorporating data compression and muting of the sound pickup device 14 of the wireless microphone unit 12.


In a typical embodiment, the sound pickup device 14 is muted via, for example, the analog mute circuitry 306 and/or the digital mute circuitry 312. Audio detected by the wireless microphone unit 12 that has been muted (i.e., silence) is, for example, compressed using a first data-compression scheme by the first encoding block 314 and/or the second encoding block 316. In a typical embodiment, the first data-compression scheme involves run-length encoding the muted audio. As noted above, run-length encoding of data representing silence results in extremely short transmissions and improved energy efficiency of the wireless microphone unit 12. In addition, run-length encoding of data representing silence typically results in less power consumption which results in extended battery life of the wireless microphone unit 12. Those having skill in the art will appreciate that FIG. 3 illustrates an exemplary implementation of circuitry 302 coupling the sound pickup device 14 to the transmit/receive (TX/RX). It will be understood that the circuitry 302 is not limited to the embodiment disclosed, but is capable of numerous additions, rearrangements, modifications and substitutions without departing from the spirit of the invention as set forth herein.


Although various embodiments of the method and system of the present invention have been illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it will be understood that the invention is not limited to the embodiments disclosed, but is capable of numerous rearrangements, modifications and substitutions without departing from the spirit of the invention as set forth herein.

Claims
  • 1. A method of extending battery life of a microphone unit, the method comprising: muting the microphone unit responsive to a mute signal from a base station unit;transmitting, by the microphone unit, compressed muted audio data;determining, by the microphone unit, whether an unmute signal has been received from the base station unit;responsive to a determination that the unmute signal has been received, unmuting the microphone unit; andwherein the base station unit comprises a recording device configured to record the compressed muted audio data.
  • 2. The method according to claim 1, wherein, responsive to the muting step, the muted audio data defaults to zero.
  • 3. The method according to claim 1, wherein the compressed muted audio data comprises at least one string of zeros compressed into a short string of data.
  • 4. The method according to claim 3, wherein the at least one string of zeros represents silence.
  • 5. The method according to claim 1, wherein, responsive to the muting step, audio data representing silence is received by a transmit/receive unit of the microphone unit.
  • 6. The method according to claim 1, wherein, responsive to the unmuting step, the microphone unit performs the following steps: discontinuing transmission of the compressed muted audio data; andtransmitting compressed audio data utilizing at least one of Digital Speech Standard (DSS), Advanced Audio Coding (AAC), and MP3.
  • 7. The method according to claim 1, wherein, responsive to the unmuting step, the microphone unit performs the following steps: discontinuing transmission of the compressed muted audio data; andtransmitting uncompressed audio data.
  • 8. The method according to claim 1, wherein the muting step comprises disconnecting a sound pickup device of the microphone unit from a transmit/receive unit of the microphone unit.
  • 9. The method according to claim 1, wherein the muting step comprises muting the microphone unit utilizing analog mute circuitry.
  • 10. The method according to claim 1, wherein the muting step comprises muting the microphone unit utilizing digital mute circuitry.
  • 11. The method according to any of claim 1, wherein the steps are performed in the order listed.
  • 12. The method according to any of claim 1, wherein the microphone unit comprises a wireless microphone unit.
  • 13. The method according to any of claim 1, wherein the compressed muted audio data comprises run-length-encoded muted audio data.
  • 14. An article of manufacture for extending battery life of a microphone unit, the article of manufacture comprising: at least one non-transitory computer readable medium;processor instructions contained on the at least one non-transitory computer readable medium, the processor instructions configured to be readable from the at least one non-transitory computer readable medium by at least one processor and thereby cause the at least one processor to operate as to perform the following steps: muting the microphone unit responsive to a mute signal from a base station unit;transmitting, by the microphone unit, compressed muted audio data;determining, by the microphone unit, whether an unmute signal has been received from the base station unit;responsive to a determination that the unmute signal has been received, unmuting the microphone unit; andwherein the base station unit comprises a recording device configured to record the compressed muted audio data.
  • 15. The article of manufacture according to any of claim 14, wherein the microphone unit comprises a wireless microphone unit.
  • 16. The article of manufacture according to claim 14, wherein the compressed muted audio data comprises run-length-encoded muted audio data.
  • 17. A system for extending battery life of a microphone unit, the system comprising: a microphone unit;a base station unit configured to wirelessly communicate with the microphone unit;wherein the microphone unit is configured to: enter a mute mode responsive to receiving a mute signal from a base station unit;transmit compressed muted audio data;determine whether an unmute signal has been received from the base station unit;responsive to a determination that the unmute signal has been received, unmute the microphone unit; andwherein the base station unit comprises a recording device configured to record the compressed muted audio data.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/224,100, filed on Mar. 25, 2014. U.S. patent application Ser. No. 14/224,100 is a continuation of U.S. patent application Ser. No. 12/509,939, filed on Jul. 27, 2009. U.S. patent application Ser. No. 12/509,939 claims priority from U.S. Provisional Patent Application No. 61/083,919, filed on Jul. 26, 2008. U.S. patent application Ser. No. 14/224,100, U.S. patent application Ser. No. 12/509,939, and U.S. Provisional Patent Application No. 61/083,919 are incorporated herein by reference.

US Referenced Citations (97)
Number Name Date Kind
3752047 Gordon et al. Aug 1973 A
4258421 Juhasz et al. Mar 1981 A
4420238 Felix Dec 1983 A
4658425 Julstrom Apr 1987 A
4688244 Hannon et al. Aug 1987 A
4754255 Sanders et al. Jun 1988 A
4786900 Karasawa et al. Nov 1988 A
4789904 Peterson Dec 1988 A
4831438 Bellman, Jr. et al. May 1989 A
4843463 Michetti Jun 1989 A
4949186 Peterson Aug 1990 A
4992943 McCracken Feb 1991 A
4993068 Piosenka et al. Feb 1991 A
5027104 Reid Jun 1991 A
5111289 Lucas et al. May 1992 A
5136655 Bronson Aug 1992 A
5185667 Zimmermann Feb 1993 A
5220565 Wilson et al. Jun 1993 A
5430431 Nelson Jul 1995 A
5459702 Greenspan Oct 1995 A
5485611 Astle Jan 1996 A
5491464 Carter et al. Feb 1996 A
5491511 Odle Feb 1996 A
5570127 Schmidt Oct 1996 A
5677979 Squicciarini et al. Oct 1997 A
5682133 Johnson et al. Oct 1997 A
5689442 Swanson et al. Nov 1997 A
5708780 Levergood et al. Jan 1998 A
5734337 Kupersmit Mar 1998 A
5742336 Lee Apr 1998 A
5787367 Berra Jul 1998 A
5798995 Fukushima Aug 1998 A
5815093 Kikinis Sep 1998 A
5835042 Ichimura et al. Nov 1998 A
5857159 Dickrell et al. Jan 1999 A
5890079 Levine Mar 1999 A
5917405 Joao Jun 1999 A
5926210 Hackett et al. Jul 1999 A
6008841 Charlson Dec 1999 A
6028528 Lorenzetti et al. Feb 2000 A
6037977 Peterson Mar 2000 A
6076026 Jambhekar et al. Jun 2000 A
6092008 Bateman Jul 2000 A
6141611 Mackey et al. Oct 2000 A
6151065 Steed et al. Nov 2000 A
6211907 Scaman et al. Apr 2001 B1
6259475 Ramachandran et al. Jul 2001 B1
6278976 Kochian Aug 2001 B1
6330025 Arazi et al. Dec 2001 B1
6421080 Lambert Jul 2002 B1
6430488 Goldman et al. Aug 2002 B1
6490513 Fish et al. Dec 2002 B1
6542076 Joao Apr 2003 B1
6545601 Monroe Apr 2003 B1
6546363 Hagenbuch Apr 2003 B1
6556905 Mittelsteadt et al. Apr 2003 B1
6559769 Anthony et al. May 2003 B2
6631522 Erdelyi Oct 2003 B1
6636256 Passman et al. Oct 2003 B1
6684137 Takagi et al. Jan 2004 B2
6831556 Boykin Dec 2004 B1
6944287 Mori Sep 2005 B2
6950013 Scaman et al. Sep 2005 B2
6950122 Mirabile Sep 2005 B1
7096035 Gouessant et al. Aug 2006 B2
7119832 Blanco et al. Oct 2006 B2
7190882 Gammenthaler Mar 2007 B2
7363742 Nerheim Apr 2008 B2
7570476 Nerheim Aug 2009 B2
8594485 Brundula Nov 2013 B2
8712362 Cilia Apr 2014 B2
8781292 Ross et al. Jul 2014 B1
8837901 Shekarri et al. Sep 2014 B2
9058499 Smith Jun 2015 B1
9253452 Ross et al. Feb 2016 B2
9325950 Haler Apr 2016 B2
9331997 Smith May 2016 B2
9377161 Hanchett et al. Jun 2016 B2
20020151324 Tatsumi Oct 2002 A1
20020183905 Maeda et al. Dec 2002 A1
20030045333 Kimata et al. Mar 2003 A1
20030052798 Hanson Mar 2003 A1
20030086000 Siemens et al. May 2003 A1
20030210806 YoichiShintani et al. Nov 2003 A1
20030212567 Shintani et al. Nov 2003 A1
20050258942 Manasseh et al. Nov 2005 A1
20070030351 Blanco et al. Feb 2007 A1
20070031054 Shain Feb 2007 A1
20070037606 Ganley et al. Feb 2007 A1
20090046803 Meyer Feb 2009 A1
20090088267 Shimazaki et al. Apr 2009 A1
20100074449 Tabata Mar 2010 A1
20100120366 DeBiasio et al. May 2010 A1
20120230509 Hagglund et al. Sep 2012 A1
20150036842 Robinson Feb 2015 A1
20150063776 Ross et al. Mar 2015 A1
20150208156 Virolainen Jul 2015 A1
Foreign Referenced Citations (12)
Number Date Country
707297 Apr 1996 EP
2698596 Feb 1995 FR
2287152 Sep 1995 GB
2317418 Mar 1998 GB
0613054 Aug 2006 KR
WO-9320655 Oct 1993 WO
WO-9419212 Sep 1994 WO
WO-9528783 Oct 1995 WO
WO-9622202 Jul 1996 WO
WO-9738526 Oct 1997 WO
WO-9918410 Apr 1999 WO
WO-0197524 Dec 2001 WO
Non-Patent Literature Citations (23)
Entry
Rowe, Lawrence A., et al.; “Indexes for User Access to Large Video Databases”; Storage and Retrieval for Image and Video Databases II, IS&T/SPIE Symp. on Elec. Imaging Sci. & Tech.; San Jose, CA; Feb. 1994; 12 pages.
Polybius; “The Histories,” vol. III: Books 5-8; Harvard University Press; 1923; pp. 385 & 387.
Crisman, P.A. (editor); “The Compatible Time-Sharing System: A Programmer's Guide,” second edition; The M.I.T. Press, Cambridge Massachusetts; 1965; 587 pages.
Kotadia, Munir; “Gates Predicts Death of the Password”; http://www.cnet.com/news/gates-predicts-death-of-the-password/?ftag=CADe856116&bhid=; Feb. 25, 2004; 3 pages.
Morris, Robert, et al.; “Password Security: A Case History”; Communications of the ACM, vol. 22, No. 11; Nov. 1979; pp. 594-597.
Cranor, Lorrie Faith, et al.; “Security and Usability: Designing Secure Systems that People Can Use”; O'Reilly Media; Aug. 2005; pp. 3 & 104.
Chirillo, John; “Hack Attacks Encyclopedia: A Complete History of Hacks, Cracks, Phreaks, and Spies Over Time”; John Wiley & Sons, Inc.; 2001; 485-486.
Stonebraker, Michael, et al.; “Object-Relational DBMSs: Tracking the Next Great Wave”; Second Ed.; Morgan Kaufmann Publishers, Inc.; 1999; pp. 3, 173, 232-237, 260.
Stonebraker, Michael, et al.; “Object-Relational DBMSs: The Next Great Wave”; Morgan Kaufmann Publishers, Inc.; 1996; pp. 105, 107, 166-168.
Barwick, Sandra; “Two Wheels Good, Four Wheels Bad”; The Independent; http://www.independent.co.uk/voices/two-wheels-good-four-wheels-bad-1392034.html; Feb. 4, 1994; 11 pages.
McFee, John E., et al.; “Multisensor Vehicle-Mounted Teleoperated Mine Detector with Data Fusion”; SPIE Proceedings, vol. 3392; Apr. 13, 1998; 2 pages.
Malcolm, Andrew H.; “Drunken Drivers Now Facing Themselves on Video Camera”; The New York Times; http://www.nytimes.com/1990/04/21/us/drunken-drivers-now-facing-themselves-on-video-camera.html; Apr. 21, 1990; 3 pages.
Kaplan, A.E., et al.; “An Internet Accessible Telepresence”; Multimedia Systems, vol. 5, Issue 2; Mar. 1997; Abstract only; 2 pages.
Sabatini, Richard V.; “State Police Cars in Pa. Get Cameras Patrol Stops Will be Videotaped. The Units will Benefit Citizens and Police, Authorities Say”; http://articles.philly.com/1996-03-30/news/25637501—1—patrol-car-state-police-commissioner-paul-j-evanko; Mar. 30, 1996; 2 pages.
Stockton, Gregory R., et al.; “Why Record? (Infrared Video)”; Infraspection Institute's IR/INFO '98 Symposium, Orlando, Florida; Jan. 25-28, 1998; 5 pages.
Racepak LLC; “Racepak DataLink Software” http://www.racepak.com/software.php.; Feb. 3, 2008; 4 pages.
Pavlopoulos, S., et al.; “A Novel Emergency Telemedicine System Based on Wireless Communication Technology—AMBULANCE”; IEEE Trans Inf Technol Biomed, vol. 2, No. 4; Dec. 1998; Abstract only; 2 pages.
Horne, Mike; “Future Video Accident Recorder”; http://www.iasa.com.au/folders/Publications/pdf—library/horne.pdf; May 1999; 9 pages.
Townsend & Taphouse; “Microsentinel I”; http://www.blacksheepnetworks.com/security/resources/encyclopedia/products/prod19.htm; Jul. 5, 2003; 1 page.
Security Data Networks, Inc.; “Best of Show Winner at CES Consumer Electronics Show is MicroSentinel(R) Wireless Internet Based Security System that Allows Users to Monitor their Home, Family, or Business using any Internet or E-Mail Connection”; PR Newswire; http://www.prnewswire.com/news-releases/best-of-show-winner-at-ces-consumer-electronics-show-is-microsentinelr-wireless-internet-based-security-system-that-allows-users-to-monitor-their-home-family-or-business-using-any-internet-or-e-mail-connection-73345197.html; Jan. 7, 1999; 3 pages.
Draper, Electra; “Mission Possible for Loronix”; Denver Post; http://extras.denverpost.com/business/top100b.htm; Aug. 13, 2000; 2 pages.
“Choosing the Right Password”; The Information Systems Security Monitor (ISSM); vol. 2, No. 2; Apr. 1992; 2 pages.
Aref, Walid G., et al.; “A Video Database Management System for Advancing Video Database Research”; In Proc. of the Int Workshop on Management Information Systems; Nov. 2002; 10 pages.
Related Publications (1)
Number Date Country
20160205455 A1 Jul 2016 US
Provisional Applications (1)
Number Date Country
61083919 Jul 2008 US
Continuations (2)
Number Date Country
Parent 14224100 Mar 2014 US
Child 15078122 US
Parent 12509939 Jul 2009 US
Child 14224100 US