Disclosed embodiments relate to individual glucose control, and more specifically, to such control as enabled by use of fully-automated artificial pancreas (AP) control aimed at minimizing and/or preventing the occurrence of postprandial hyperglycemic events.
In connection with discussion herein, superscript notations herein are to those references as delineated in the similarly entitled section herein. Additionally, the following listing of abbreviations shall apply, including: (T1D) Type 1 Diabetes, (AP) Artificial Pancreas, (SC) Subcutaneous, (IP) Intraperitoneal, (LIS) Insulin Lispro, (BC-LIS) BioChaperone Insulin Lispro, (DIA) Duration of Insulin Action, (PK) Pharmacokinetic, (PD) Pharmacodynamic, (GIR) Glucose Infusion Rate, (FDA) Food and Drug Administration, (UVA) University of Virginia, (MPC) Model Predictive Control, (LTI) Linear Time Invariant, (SOGMM) Subcutaneous Oral Glucose Minimal Model, (JOB) Insulin On Board, (USS) Unified Safety System, (CR) Insulin-to-Carbohydrate Ratio, (TDI) Total Daily Insulin, (LBGI) Low Blood Glucose Index, (HBGI) High Blood Glucose Index (gCHO) Grams of Carbohydrates.
Postprandial glycemia makes a substantial contribution to overall glycemic control in diabetes treatment. Unfortunately, meeting postprandial glycemic target values has been challenging due to slow absorption and action of subcutaneously injected insulins. Insulin secretion from a healthy β-cell is a highly dynamic process, where glucose is the main stimulator of insulin release, leading to the characteristic biphasic pattern consisting of a brief first phase of insulin secretion (˜10 minutes), followed by a sustained second phase. The earliest secreted insulin is a necessary element to offset the rapid rise in postprandial blood glucose. Unlike the rapid physiologic action of insulin after its release from a healthy β-cell, the maximum glucose lowering action from a subcutaneously injected insulin could be observed as late as 90 minutes to two hours after its injection.1,2 The underlying reasons for delay in insulin action are multifactorial, with chemical properties of insulin and factors concerning subcutaneous (SC) tissue being the principal contributors.3 Moreover, subcutaneously delivered insulin may pose additional glycemic risks due to its prolonged action (up to 6 h), potentially increasing the risk of late postprandial hypoglycemia. A single-hormonal artificial pancreas (AP) system optimizes insulin delivery in real time, every five minutes, based on changes in sensor glucose levels. While most current systems function best with a pre-meal insulin bolus (hybrid AP), a fully automated system would not benefit from this sharp and early increase in circulating insulin. Consequently, a fully automated AP insulin controller reacts to meals only after sensor glucose levels begin to rise. Besides, there is no insulin depot delivered in to the SC area as the insulin delivery is spread over hours in mini boluses. Therefore, the delay in insulin absorption and action is further exacerbated during fully automated AP, representing one of the main barriers to its implementation.4,5 Thus, the most common strategy is to define a single- or dual-hormone system with a hybrid controller, where feedforward insulin boluses are manually delivered at mealtimes, and the control law takes over the basal rate.6-11 The drawback associated with this design is that manual priming requires user assessment of the total amount of carbohydrates for every meal, which is a burdensome and potentially inaccurate task for patients.12,13
Other insulin delivery routes than SC delivery have been explored to generate more physiological plasma insulin profiles. For example, inhaled human insulin has shown tangible benefits with respect to SC insulin injections.14 However, this scheme also depends on prandial manual doses. Another alternative is to deliver insulin into the intraperitoneal (IP) space to minimize delays.15 For instance, fully automated AP delivery combined with IP insulin delivery has provided superior glucose control to that with SC insulin delivery in a short demonstration study.16 Nevertheless, this approach's clinical application is still limited by its inherent costs and risk profile.17
Although fully-automated AP control has been successfully deployed in clinical studies,18-24 there is an undeniable compromise between the controller's aggressiveness and insulin stacking due to the extended duration of insulin action (DIA). An ideal insulin analogue should mimic the pharmacokinetic (PK) and pharmacodynamic (PD) profiles of endogenous insulin to optimize exogenous insulin treatment. Rapid acting insulin analogs with faster PKPD profiles have been introduced recently towards this goal,25-27 but a significant unmet need for more rapid insulin absorption that provides superior postprandial glucose control remains, particularly as new AP technology enters clinical care.1,28
In these regards, it would be advantageous to provide a manner of avoiding glucose dysregulation via a fully-automated AP control that can regulate glucose levels similarly as in the case of optimal hybrid AP implementations.
It is to be understood that both the following summary and the detailed description are exemplary and explanatory and are intended to provide further explanation of the present embodiments as claimed. Neither the summary nor the description that follows is intended to define or limit the scope of the present embodiments to the particular features mentioned in the summary or in the description. Rather, the scope of the present embodiments is defined by the appended claims.
Embodiments may include a method, system, computer-readable storage medium regarding artificial pancreas (AP) control for attaining normoglycemia following an unannounced meal of a subject, including (a) for a selected insulin, determining at least a corresponding absorption level, (b) based on a corresponding duration of insulin action (DIA) in dependence on the at least a corresponding absorption level, adjusting the control to change, from a datum, at least a first control parameter penalizing insulin deviation from basal rate and at least a second control parameter representing a difference between two consecutive insulin infusions, and (c) in response to a detected increase in glucose, infusing the selected insulin in accordance with the adjusted control.
In response to the selected insulin comprising a corresponding absorption level that is higher as against a corresponding absorption level for a non-selected insulin, the at least a first control parameter decreases and the at least a second control parameter increases.
Embodiments can increase the infusing based on the at least a first control parameter and the at least a second control parameter.
The infusing the selected insulin can be performed to align insulin and meal rates of appearance.
The accompanying drawings, which are incorporated herein and form a part of the specification, illustrate exemplary embodiments and, together with the description, further serve to enable a person skilled in the pertinent art to make and use these embodiments and others that will be apparent to those skilled in the art. Embodiments herein will be more particularly described in conjunction with the following drawings wherein:
The present disclosure will now be described in terms of various exemplary embodiments. This specification discloses one or more embodiments that incorporate features of the present embodiments. The embodiment(s) described, and references in the specification to “one embodiment”, “an embodiment”, “an example embodiment”, etc., indicate that the embodiment(s) described may include a particular feature, structure, or characteristic. Such phrases are not necessarily referring to the same embodiment. The skilled artisan will appreciate that a particular feature, structure, or characteristic described in connection with one embodiment is not necessarily limited to that embodiment but typically has relevance and applicability to one or more other embodiments.
In the several figures, like reference numerals may be used for like elements having like functions even in different drawings. The embodiments described, and their detailed construction and elements, are merely provided to assist in a comprehensive understanding of the present embodiments. Thus, it is apparent that the present embodiments may be carried out in a variety of ways, and does not require any of the specific features described herein. Also, well-known functions or constructions are not described in detail since they would obscure the present embodiments with unnecessary detail.
The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the present embodiments, since the scope of the present embodiments are best defined by the appended claims.
It should also be noted that in some alternative implementations, the blocks in a flowchart, the communications in a sequence-diagram, the states in a state-diagram, etc., may occur out of the orders illustrated in the figures. That is, the illustrated orders of the blocks/communications/states are not intended to be limiting. Rather, the illustrated blocks/communications/states may be reordered into any suitable order, and some of the blocks/communications/states could occur simultaneously.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”
The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” may refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.
As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) may refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedure, Section 2111.03.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of example embodiments. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. Additionally, all embodiments described herein should be considered exemplary unless otherwise stated.
It should be appreciated that any of the components or modules referred to with regards to any of the embodiments discussed herein, may be integrally or separately formed with one another. Further, redundant functions or structures of the components or modules may be implemented. Moreover, the various components may be communicated locally and/or remotely with any user/clinician/patient or machine/system/computer/processor. Moreover, the various components may be in communication via wireless and/or hardwire or other desirable and available communication means, systems and hardware. Moreover, various components and modules may be substituted with other modules or components that provide similar functions.
It should be appreciated that the device and related components discussed herein may take on all shapes along the entire continual geometric spectrum of manipulation of x, y and z planes to provide and meet the anatomical, environmental, and structural demands and operational requirements. Moreover, locations and alignments of the various components may vary as desired or required.
It should be appreciated that various sizes, dimensions, contours, rigidity, shapes, flexibility and materials of any of the components or portions of components in the various embodiments discussed throughout may be varied and utilized as desired or required.
It should be appreciated that while some dimensions are provided on the aforementioned figures, the device may constitute various sizes, dimensions, contours, rigidity, shapes, flexibility and materials as it pertains to the components or portions of components of the device, and therefore may be varied and utilized as desired or required.
Although example embodiments of the present disclosure are explained in some instances in detail herein, it is to be understood that other embodiments are contemplated. Accordingly, it is not intended that the present disclosure be limited in its scope to the details of construction and arrangement of components set forth in the following description or illustrated in the drawings. The present disclosure is capable of other embodiments and of being practiced or carried out in various ways.
Ranges may be expressed herein as from “about” or “approximately” one particular value and/or to “about” or “approximately” another particular value. When such a range is expressed, other exemplary embodiments include from the one particular value and/or to the other particular value.
In describing example embodiments, terminology will be resorted to for the sake of clarity. It is intended that each term contemplates its broadest meaning as understood by those skilled in the art and includes all technical equivalents that operate in a similar manner to accomplish a similar purpose. It is also to be understood that the mention of one or more steps of a method does not preclude the presence of additional method steps or intervening method steps between those steps expressly identified. Steps of a method may be performed in a different order than those described herein without departing from the scope of the present disclosure. Similarly, it is also to be understood that the mention of one or more components in a device or system does not preclude the presence of additional components or intervening components between those components expressly identified.
Some references, which may include various patents, patent applications, and publications, are cited in a reference list and discussed in the disclosure provided herein. The citation and/or discussion of such references is provided merely to clarify the description of the present disclosure and is not an admission that any such reference is “prior art” to any aspects of the present disclosure described herein. In terms of notation, “[n]” corresponds to the nth reference in the list. All references cited and discussed in this specification are incorporated herein by reference in their entireties and to the same extent as if each reference was individually incorporated by reference.
The term “about,” as used herein, means approximately, in the region of, roughly, or around. When the term “about” is used in conjunction with a numerical range, it modifies that range by extending the boundaries above and below the numerical values set forth. In general, the term “about” is used herein to modify a numerical value above and below the stated value by a variance of 10%. In one aspect, the term “about” means plus or minus 10% of the numerical value of the number with which it is being used. Therefore, about 50% means in the range of 45%-55%. Numerical ranges recited herein by endpoints include all numbers and fractions subsumed within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.90, 4, 4.24, and 5). Similarly, numerical ranges recited herein by endpoints include subranges subsumed within that range (e.g. 1 to 5 includes 1-1.5, 1.5-2, 2-2.75, 2.75-3, 3-3.90, 3.90-4, 4-4.24, 4.24-5, 2-5, 3-5, 1-4, and 2-4). It is also to be understood that all numbers and fractions thereof are presumed to be modified by the term “about.”
Herein, we inspect a degree to which the analogue insulin lispro (LIS) glucodynamic action can be accelerated to safely increase a fully-automated AP controller's aggressiveness in a SC AP with a model predictive control (MPC) law. To this end, we leverage the UVA/Padova simulator29 to test the performance of the proposed controller in scenarios that include both announced and unannounced meals and different synthetic insulins.
As such, discussed below are (a) a model of insulin pharmacokinetics, (b) in silico generation of faster insulin analogues, and (c) model predictive control (MPC) for regulating blood glucose level.
Model of Insulin Pharmacokinetics
We consider the two-compartment PK model of SC fast-acting insulin that was presented in30 and later updated in:31
İ
sc1(t)=−(kα1+kd)Isc1(t)+u(t−τ) (1)
İ
sc2(t)=−kα2Isc2(t)+kdIsc1(t) (2)
R
i(t)=kα1Isc1(t)+kα2Isc2(t) (3),
where Isc1 and Isc2 [pmol/min] are, respectively, the amounts of monomeric and non-monomeric insulin in the subcutaneous space, kα1 and kα2 [l/min] are the corresponding rate constants of absorption into plasma, kd [l/min] is the diffusion rate from non-monomeric to monomeric state, u [pmol/kg/min] is the exogenous insulin infusion rate, r [min] is a subject-specific input delay, and Ri [pmol/kg/min] is the rate of insulin absorption into plasma. In Ref.31, the PK model is identified using insulin data collected from 116 adult subjects with type 1 diabetes (T1D) who underwent a SC injection of LIS. Individual sets of PK parameters were extracted from parameter distributions obtained from model identification that were then randomly assigned to each in silico subject of the simulator. Analysis of population sets indicate that all PK parameters follow a lognormal probability distribution and are uncorrelated from each other and from the other parameters of the UVA/Padova model.
In Silico Generation of Faster Insulin Analogues
The model described by equations (1)-(3) is a second-order time-delay linear time-invariant (LTI) system with the following transfer function:
As shown, Gi
In order to define faster insulin analogues, we accelerate the insulin absorption from the subcutaneous tissue by manipulating only the poles of {tilde over (G)}i
The bandwidth of a system is commonly defined as the lowest frequency satisfying −3 dB from its gain at zero frequency. Accordingly, if the average bandwidth of the PK model for LIS is ωl, then the average bandwidth for the α-insulin analogue will be ωf=αωl. In this way, as a increases in magnitude, the faster the insulin analogue becomes.
In order to determine the PKPD properties of the α-insulins, a euglycemic clamp was performed in simulation. In this in silico procedure, a 0.2 U/kg single dose of α-insulin was administered to each of the 100 in silico adults of the UVA/Padova simulator and the simulated intravenous glucose infusion rates (GIR) were automatically adjusted by means of a proportional controller that maintained the glucose levels close to the basal values.
In Ref.32, this euglycemic glucose clamp is carried out on 38 adult patients with T1D to compare the PKPD properties of LIS and ultra-rapid BioChaperone LIS33 (BC-LIS). Results demonstrate that times to maximum insulin levels and GIR occur 20 and 30 minutes earlier, respectively, with BC-LIS. Bearing this in mind, and for merely illustrative purposes, we can associate BC-LIS with α≅1.6 in our approach. That is, it is contemplated herein that one or more types of insulin can be relatively compared to arrive at a measure for α.
Model Predictive Control for Regulating Blood Glucose Level
To assess the impact of faster insulins on the performance of an AP, we consider an originally hybrid MPC law as a baseline. This control strategy has been published by the authors elsewhere,34 and a summary of its formulation is provided below.
The proposed MPC is based on the so-called Subcutaneous Oral Glucose Minimal Model (SOGMM).36 To embed this model into the MPC formulation, it is first linearized at the steady state given by the subject-specific insulin basal rate ub [mU/min] and a blood glucose setpoint of 120 mg/dl, and later discretized with a sampling period Ts=5 min. In this way, a triplet (A, B, C) that describes the insulin-glucose dynamics is obtained.
Let u,y∈ denote the insulin and glucose deviations from steady state, and x∈n, the model state vector. Denoting the prediction and control horizons by Np and Nc, respectively, we formulate the following MPC problem that is solved at each step k:
Predictions of the insulin-glucose dynamics are made using the obtained state-space realization (A, B, C) (Eqns. 13,14) with the initial state xk estimated by means a Kalman filter (Eqn. 12). Eqns. (15) and (16) enforce that the insulin infusion lies in the interval [umin, umax], and the difference between two consecutive insulin infusions is not higher than Δumax, respectively. Eqns. (17) and (18) enforce a soft constraint on the glucose lower bound ymin (hypoglycemic threshold). Three positive scalars are included in the cost function: (i) κ that penalizes control actions that lead to low glucose levels, (ii) A that weights Au, and (iii) Q that penalizes glucose deviations from the asymmetric, time-varying, exponential reference signal r.37
Sequence ũk*={uk*, . . . , uk+N
Relative to this baseline MPC, the approach herein contemplates two detuning stages as outlined below, and including (a) detuning of MPC controller aggressiveness (Q), and (b) detuning of λ and Δumax.
Detuning of MPC Controller Aggressiveness
In a hybrid AP approach, it is assumed that meal disturbances are mostly mitigated by feedforward insulin boluses that are delivered at mealtimes. In this case, the user needs to calculate the prandial dose based on, among other factors, the meal size in grams of carbohydrates (gCHO) and his/her insulin-to-carbohydrate ratio (CR) in gCHO/U. In order to avoid a controller overreaction to postprandial glucose excursions, the scalar weight Q that penalizes glucose deviations from target (see the Appendix for a description of Q in the MPC formulation) is detuned, according to the present embodiments, as follows:
where Q0 is the value of Q at steady state, TDI [U/day] denotes the subject-specific total daily insulin requirement, IOB [U] is the insulin-on-board relative to the expected IOB from basal delivery, and β1 and β2 are tuning parameters. In this way, when a meal bolus is delivered, the IOB estimate will have a peak, resulting in desensitizing the controller to glucose deviations from reference. In this regard, the higher β1 and β2 are in magnitude, the less responsive the controller can be at mealtimes.
Detuning of λ and Δumax
Long delays in insulin peak and duration substantially limit the achievable sensitivity of an AP to glucose deviations. This is the case since an aggressive control law can lead to late hypoglycemia due to insulin stacking. Here, we propose to re-tune the controller's aggressiveness based on the dynamics of the insulin analogue: the faster the insulin analogue is, the more aggressive the controller can be. To this end, the average DIA was calculated for several α-insulins, and fitted using a nonlinear least-squares approach by the following exponential function derived from the structure of Eqn. (5):
DIA(α)=γ1eγ
with γ1=13.83, γ2=−2.05, γ3=2.89, and γ4=−0.26 (see
Numerical values of the tuning parameters ψi with i={1, . . . , 4} along with all the other parameters for the MPC are reported in Table 1 below. In this way, when the controller commands LIS (DIA=4 h), first control parameter λ, which penalizes insulin deviations from basal rate, and second control parameter Δumax, which represents the difference between two consecutive insulin infusions (each of the parameters being set forth above), are set to their default values (λ0, Δumax
Results
Herein, a framework for testing of the method is presented to evidence the impact of accelerating insulin absorption and action on post-meal hyperglycemia mitigation using a fully-automated AP controller. To this end, 12 hour simulations that include different α-insulins and one (un)announced meal challenge are performed considering the proposed MPC as the control law. In order to test robustness with respect to inter-subject variability, simulations are run for all 100 adult subjects of the UVA/Padova simulator. Outcomes are computed over the 8 hours following the meal so as to capture both early hyperglycemia and late hypoglycemia. Time responses are depicted in
Glycemic Control Using a Hybrid Approach
To define a baseline of hybrid glucose control, a first set of simulations is carried out with LIS and meal announcement, i.e., delivering feedforward meal-boluses at mealtimes. Given the meal-size M=50 gCHO and the subject's CR, the bolus size is calculated as M/CR. Average time responses are depicted in
Glycemic Control with Unannounced Meals
In this control, the prandial bolus is eliminated and the controller's aggressiveness is gradually increased. To this end, we tune the MPC using Eqns. (8)-(9), but keep using LIS in the simulations. That is, α is only used to define the controller's aggressiveness, but not to accelerate the insulin analogue. Average time responses are illustrated in
The final step is to repeat these simulations but switching from LIS to the corresponding accelerated α-insulin. Results are illustrated in
As is demonstrated, if the acceleration of the insulin analogue is not accompanied by an increase in the controller's aggressiveness, then the benefits of faster insulins in glucose control are less noticeable. For instance, if a is only used to accelerate the insulin analogue, but not to increase the controller's aggressiveness, a less marked increase in time in range is observed (70.1, [66.9, 73.4] for α=1 vs 79.5 [76.5, 82.4] for α=3, P<0.05), although with no increase in time below 70 mg/dl (0.0, [0.0, 0.0] for α=1 vs 0.0, [0.0, 0.0] for α=3).
Hybrid AP systems rely on feedforward insulin boluses to manage postprandial glucose excursions and on the glucose controller to maintain normoglycemia by modulating the basal insulin delivery. Users play a key role in this scheme since carbohydrate counting is cornerstone for meal insulin bolus calculation. Although this method reduces the stress on the controller, it is burdensome for patients and prone to human errors that may affect the achievable glucose control performance. One alternative is to eliminate the meal announcement from the control structure and tune the controller to be more reactive to glucose deviations. The longer the time to peak, the more sensitive the controller needs to be to alleviate postprandial hyperglycemia. As shown in
indicates data missing or illegible when filed
Thus, as can be understood from the above, embodiments herein can implement a fully-automated AP control for real subjects (i.e., patients) to minimize and/or prevent instances of hyperglycemia and hypoglycemia following an unannounced meal. In these regards, such control can utilize one or more insulin types whereby at least an absorption level thereof can influence the aggressiveness with which is insulin is administered to a subject. In this way, the AP control of embodiments herein can achieve glycemic performance similar to that of optimal hybrid AP control in use of prandial insulin boluses.
The devices, systems, apparatuses, modules, compositions, computer program products, non-transitory computer readable medium, models, algorithms, and methods of various embodiments disclosed herein may utilize aspects (devices, systems, apparatuses, modules, compositions, computer program products, non-transitory computer readable medium, models, algorithms, and methods) disclosed in the following references, applications, publications and patents and which are hereby incorporated by reference herein in their entirety, and which are not admitted to be prior art with respect to the present embodiments by inclusion in this section:
This application claims the benefit of U.S. Provisional Application No. 63/153,016, filed Feb. 24, 2021, the entire contents of which is incorporated by reference herein.
This invention was made with government support under Grant No. 1DP3DK106826-01 awarded by the National Institutes of Health, and under CTSA Grant No. UL1 RR024139 awarded by the National Center for Advancing Translational Science. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
63153016 | Feb 2021 | US |