The present invention relates to a wireless communication system, and more particularly, to a method of automatically managing a neighbor relation table (NRT) in a wireless communication system having a self-organizing network (SON) function and a system thereof.
Universal Mobile Telecommunication Service (UMTS) systems are a third generation asynchronous mobile telecommunication system using Wide band Code Division Multiple Access (WCDMA) based on Global System for Mobile Communications (GSM) and General Packet Radio Services (GPRS). Third Generation Partnership Project (3GPP) in charge of UMTS standard is discussing Long Term Evolution (LTE) as a next generation wireless communication system of the UMTS systems. The LTE is a technology of implementing high-speed packet based communication with transmission speed of approximately maximum 300 Mbps, and aims to be used commonly in year 2010. There have been many attempts to do this. For example, there is an attempt to reduce the number of nodes located on a communication line by simplifying a structure of a network or an attempt to approach the wireless protocols to a wireless channel as far as possible. In the meantime, a SON for base station management aims at constructing a network more stably and efficiently. In particular, with visualization in introduction of Femto cells and next generation 4G in a wireless communication system field, there is growing interest in an SON with an automation function such as self-configuration or self-optimization. Nodes such as the Femto cells are not installed at an optimal position designated by a service provider but are installed by a user. Accordingly, cell planning for the nodes can not be performed. The nodes themselves detect the environment and collect information to perform optimization.
Accordingly, in this case, the SON may be defined as a network that enables nodes to access/set a network by themselves, and to suitably perform cell optimization and operation according to a peripheral wireless environment when installing the nodes indoors and outdoors. However, since parts capable of applying a self-organizing function are very diverse in a field of a wireless communication system, the SON can be differently defined according to characteristics, types, and objects of a network to be self-organized. In addition to a configuration of the network, self-organizing concept is applicable to a individual management algorithm and optimization. In spite of the foregoing requirements, there has not been proposed a specific method of managing neighbor base stations and system thereof.
The present invention has been made in view of the above problems, and provides a method of automatically managing an NRT in a wireless communication system having an SON function using adding and removing algorithm of the NRT according to the cases which can be occurred in base station management in a network manager, and a system thereof.
In accordance with an aspect of the present invention, a method of managing a neighbor relation table by a base station in a wireless communication system having a self-organizing network function includes: receiving a neighbor base station report from a terminal; comparing the neighbor base station report with a stored neighbor relation table; calculating a statistic value of a new base station, in case it is determined that the new base station exists in the step of comparing the neighbor base station report; and adding the new base station to the stored neighbor relation table when the statistic value is equal to or greater than a first reference value. The method further includes, after adding the new base station, calculating a statistic value of a base station included in the stored neighbor relation table except for the new base station; and removing base stations equal to or greater than a second value from the stored neighbor relation table when the statistic value is equal to or greater than the second value.
In the method of automatically managing an NRT in a wireless communication system having an SON function, a base station, and a system thereof, since a network may be configured more stably or efficiently in an SON, total service quality may be improved.
The objects, features and advantages of the present invention will be more apparent from the following detailed description in conjunction with the accompanying drawings, in which:
Exemplary embodiments of the present invention are described with reference to the accompanying drawings in detail. The same reference numbers are used throughout the drawings to refer to the same or like parts. Detailed descriptions of well-known functions and structures incorporated herein may be omitted to avoid obscuring the subject matter of the present invention.
Terms of an embodiment of the present invention are based on a 3GPP LTE system standard.
Referring to
Referring to
Referring to
Hereinafter, a configuration of the base station 350 will be described. The NRT controller 351 adds or removes a base station to or from the NRT stored in the NRT storage unit 352 using the NRT change presence information received from the network manager 300. The NR optimization unit 353 optimizes transmitting/receiving signals with a neighbor base station based on information regarding adding or removing of the base station to or from the NRT from the NRT controller 351, and transmits the optimization information to the network manager 300.
Referring to
Functions of the NR adding/removing module 454 will be explained in detail below. The NR adding/removing module 454 receives self-cell coverage information and cell coverage information of neighbor base stations from a terminal through an RRC message 470. Meanwhile, the NR adding/removing module 454 may receive the foregoing information from an operation and management (OAM) server. Upon reception of the information, the NR adding/removing module 454 determines to add or remove neighbor base stations to or from the NRT using the RRC message and the OAM information. In particular, the NR adding/removing module 454 calculates the reported number of quality information in the neighbor base stations, the failure number of hand-over to a neighbor base station, and a radio link failure (RLF) through the RRC message and the OAM information, and uses them as upgrade information of the NRT. The following is an explanation of a case considering the reported number of quality information in the neighbor base stations. When an event regarding the neighbor base stations occurs, the terminal reports quality information of all base stations among the neighbor base stations having signal quality greater than a reference value to the NR adding/removing module 454. Accordingly, the NR adding/removing module 454 determines to add or remove neighbor base stations based on the quality information of all base stations to transmit a base station removing command to the NRT controller 451. The NRT controller 451 reports changed NRT information to the network manager.
Next, a case of considering the failure number of hand-over to a neighbor base station is described herein. A base station collects failure information of hand-over to a neighbor base station over a constant period of time. Further, the base station calculates a statistic value of a hand-over failure rate regarding the neighbor base station through the collected information. When the statistic value is less than or equal to a threshold value, the base station transmits a base station removing command for removing a neighbor base station from the NRT to the NRT controller 451. The NRT controller 451 reports changed NRT information to the network manager. Finally, a case of considering the rate of a radio link failure is explained. The base station collects failure information of a radio link set to a neighbor base station from the terminal or the OAM server regardless of hand-over event occurrence. Moreover, the base station calculates a statistic value of a radio link set failure regarding the neighbor base station through the collected information. When the statistic value is less than or equal to the threshold value, the base station transmits a base station removing command for removing a neighbor base station from the NRT to the NRT controller 451. The NRT controller 451 reports changed NRT information to the network manager.
Referring to
Then, when it is determined that the new base stations are added to all base stations of the set N at step 504, the base station executes a command of adding the base station addition list {ADD} to the NRT (508), and updates the NRT (509) and reports it to a network manager. The base station allocates base stations except for base stations included in the set N among base stations of the NRT to a removal determination target base station set R (510).
When the D is included in the NRT in step 501, the base station allocates base stations except for base stations included in the set D among base stations of the NRT to the removal determination target base station set R (511). Further, a statistic value Si of all base stations included in the set R is calculated (512). Next, it is determined whether or not the new base stations are removed from all base stations of the set N (513). The statistic value Si of a base station i included in the set R is compared with a reference value Ts1 (514). When it is determined that the statistic value Si of a base station i is less than the reference value Ts1 at step 514, the base station adds the base station i to a base station removal list {REM} (515), and allocates another base station among the base stations included in the R to the base station I (516).
Then, when it is determined that the new base stations are removed from all base stations of the set N at step 513, the base station executes a command removing the base station removal list {REM} from the NRT (517), and updates the NRT (518) and reports it to a network manager.
Although exemplary embodiments of the present invention have been described in detail hereinabove, it should be clearly understood that many variations and modifications of the basic inventive concepts herein taught which may appear to those skilled in the present art will still fall within the spirit and scope of the present invention, as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2009-0011890 | Feb 2009 | KR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/KR2010/000881 | 2/11/2010 | WO | 00 | 10/24/2011 |