The present invention relates to telecommunications. More particularly, it relates to providing landline equivalent location-based services over an integrated communication system.
The effectiveness of emergency services resides in the ability of the service to deliver the telephone number and location information of the caller seeking assistance to the appropriate emergency services personnel, such as police, fire, and medical assistance. Emergency services have evolved to accommodate and adapt to the gradual emergence of mobile communication services over traditional wired landline telephone services. For example, the 911 service in the United States has been modified to what is now referred to as enhanced 911 (E911) in order to allow licensed wireless network operators the capability to provide location information of a licensed wireless caller to the appropriate emergency services personnel.
Traditional wired telephone landlines have associated physical address locations making the identification of emergency calls from such locations a relatively trivial matter. When the emergency call is placed from a landline, the call is routed to an assigned local Public Safety Access Point (PSAP) that is closest to the caller. Prior to dispatching the call to the PSAP, the telephone number of the caller is used to query an Automatic Location Identification (ALI) database. The telephone number or an associated index is passed to the PSAP which then uses the information to retrieve the location or address associated with the telephone number from the ALI database. This information then permits emergency dispatchers to coordinate and send the appropriate emergency personnel to assist the caller.
Such emergency services had to be refined to become compatible with the emergence of mobile communication technology. Mobile communication devices, such as cellular telephones, wireless-enabled personal digital assistants, and the like no longer confined callers to a physical address when placing calls. In fact, the mobile devices allowed the callers to cross PSAP regions, cities, states, and even countries. Therefore, in creating the new integrated emergency systems, various regulations were set forth. For instance, the E911 emergency system of the United States came forth as a result of the Federal Communication Commission's (FCC) issued E911 regulations.
E911 sought to alleviate the problem of locating mobile telephone users during an emergency call in two phases. In the first phase, E911 sought to establish selective routing of an emergency call from any device, whether landline, wireless, or voice over IP (VoIP), to a PSAP nearest to the caller. Additionally, the first phase sought to provide location information associated with the caller irrespective of the device used in placing the emergency services call. The first phase required that the location of the nearest licensed wireless base transceiver station (BTS) be provided for a licensed wireless emergency caller. The second phase required service providers to identify the location of licensed wireless callers to within a specified distance of the actual location from where the emergency call originated.
In response, licensed wireless networks now support various standardized methods for determining the location of the caller. These methods typically include location estimates based on latitude and longitude coordinates of the caller determined through Assisted GPS (AGPS), Angle of Arrival (AOA), Enhanced Observed Time Difference (E-OTD), Cell Identity plus Timing Advance (Cell ID+TA), and Time Difference of Arrival (TDOA) techniques. These techniques involve interaction between the subscriber's wireless device and systems in the network and generally are dependent on measurements of the licensed radio access network (RAN) signals from the wireless device. A particular service provider may implement one or more of these techniques in its network in order to determine the latitude and longitude coordinates of the caller.
However, new wireless communication technologies continue to emerge that require integration with the aforementioned emergency response systems and location based services. One such technology is an integrated communication network for allowing user equipment of a first communication network to seamlessly communicate through a second different communication network. An example of an integrated communication system is the universal mobile access (UMA, also known as “unlicensed mobile access” and “generic access”) architecture which in one implementation permits a licensed wireless communication device to communicate over an unlicensed wireless network. In this manner, the location based techniques discussed above for the licensed wireless networks cannot be used when the communication device is communicating over the UMA network as opposed to the licensed RAN. This leads to the problem of how to determine the location of the user equipment when it is operating in UMA mode.
Furthermore, while the E911 solution for a licensed wireless communication device provides location information accurate to within a specified distance (e.g., latitude and longitude coordinates), a need nevertheless exists for more specific location information. Specifically, providing emergency responders with a civic address similar to those provided through wired landline services as opposed to the latitude and longitude coordinates of licensed wireless networks would allow quicker response times in emergency situations.
Some embodiments provide a method and apparatus for seamlessly providing the location of user equipment of a first communication network while accessing a second different communication network. The first and second communication networks may include licensed wireless networks, unlicensed wireless networks, or internet protocol (IP) networks, to name a few. Furthermore, some embodiments provide a civic address as the location information for identifying the location of the caller.
In the following description, numerous details are set forth for the purpose of explanation. However, one of ordinary skill in the art will realize that the invention may be practiced without the use of these specific details. In other instances, well-known structures and devices are shown in block diagram form in order not to obscure the description of the invention with unnecessary detail. Moreover, throughout the following description, acronyms commonly used in the telecommunications industry for wireless services are utilized along with acronyms specific to the present invention. A table of acronyms specific to this application is included in Appendix I. A listing of cited references is included in Appendix II.
I. Overview
Some embodiments provide a method and apparatus for seamlessly providing the location of user equipment of a first communication network while accessing a second different communication network. The first and second communication networks may include licensed wireless networks, unlicensed wireless networks, or internet protocol (IP) networks, to name a few. Furthermore, some embodiments provide a civic address as the location information for identifying the location of the caller.
In some embodiments, the user equipment (UE) includes various communication devices that operate in either an unlicensed wireless network or licensed wireless network. However, when the user equipment is within range of an integrated communication system (ICS), the user equipment may establish a communication session over a different communication network. For example, the ICS of some embodiments seamlessly integrates and establishes communication sessions of a licensed wireless device through an unlicensed communication network. In some embodiments, the user equipment includes a cellular telephone, smart phone, personal digital assistant, dual-mode handset, WiFi handset, or computer equipped with a subscriber identity mobile (SIM) card for communicating over the licensed or unlicensed wireless networks. Moreover, in some embodiments the computer equipped with the SIM card communicates through a wired communication network.
Alternatively, in some embodiments the user equipment includes a fixed wireless device providing a set of terminal adapter functions for connecting Integrated Services Digital Network (ISDN), Session Initiation Protocol (SIP), or Plain Old Telephone Service (POTS) terminals to the ICS. Application of the present invention to this type of device enables the wireless service provider to offer the so-called landline replacement service to users, even for user locations not sufficiently covered by the licensed wireless network. Moreover, some embodiments of the terminal adapters are fixed wired devices for connecting ISDN, SIP, or POTS terminals to a different communication network (e.g., IP network) though alternate embodiments of the terminal adapters provide wireless equivalent functionality for connecting through unlicensed or licensed wireless networks.
In some embodiments, the unlicensed wireless network is a short-range unlicensed wireless network facilitated by a radio link employing a wavelength (or wavelength range) in a free spectrum (e.g., spectrum around 2.4 GHz, 5 GHz, 11-66 GHz). An unlicensed wireless service hosting an unlicensed wireless channel may have an associated communication protocol. As an example, the unlicensed wireless service may be a wireless local area network (LAN) (WiFi) service (e.g., the IEEE 802.11a, b, n, or g wireless standard).
In some embodiments, the licensed wireless network is a GSM or GPRS type wireless network serviced by wireless providers. However, one of ordinary skill in the art will recognize that the invention can be embodied through any user equipment or other communication network compatible with the ICS without departing from the spirit of the invention.
In some embodiments, the seamless interface for establishing a communication session of a first communication network across a second different network is through an access point (AP). In some embodiments, the AP creates an unlicensed wireless network through which communication sessions established over the unlicensed wireless network are routed through an IP broadband network.
Alternatively, in some embodiments, the AP is referred to as a femtocell access point (FAP). The FAP creates a short-range licensed wireless network that operates independent from any licensed wireless network of a service provider. The FAP then routes communication sessions established over the short range licensed wireless network through an IP broadband network. For example, a licensed wireless device (e.g. GSM or UMTS cellular telephone), when in range of the FAP, may bypass the wide area licensed wireless network of the licensed service provider and instead establish the communication session transparently through the short-range licensed wireless network of the FAP. The FAP then transparently routes the communication session over the IP network instead of the licensed wireless network of the service provider. In this manner, the licensed wireless device can communicate over two different communication networks without requiring any changes to the user equipment.
Such added functionality provides the user with potentially improved quality of service in the service regions of the unlicensed or short-range licensed wireless network (i.e., within the service range of a corresponding AP/FAP). Thus, when a subscriber is within range of the AP/FAP, the subscriber enjoys low cost, high speed, and high quality voice and data services. In addition, the subscriber enjoys extended service range since the handset can receive services deep within a building at locations that otherwise may not be reliably serviced by a wide area licensed wireless network service provider. At the same time, the subscriber can roam outside the range of the AP/FAP without dropping communications. Instead, roaming outside the range of the AP/FAP results in a seamless handoff (also referred to as a handover) where communication services are automatically provided by the wide area licensed wireless network of the service provider, as described in the U.S. Pat. No. 6,922,559.
II. Architecture
The licensed wireless communication session is facilitated by infrastructure provided by a licensed wireless network 118 that includes telecommunications network 104. In the illustrated embodiment, licensed wireless network 118 depicts components common to a GSM (Global System for Mobile Communication) based cellular network that includes multiple base transceiver stations (BTS) 120 (of which only one is shown for simplicity) that facilitate wireless communication services for various user equipment 102 via respective licensed radio links 122 (e.g., radio links employing radio frequencies within a licensed bandwidth). Typically, the multiple BTSs 120 are configured in a cellular configuration (one per each cell) that covers a wide service area. The various BTSs 120 for a given area or region are managed by a base station controller (BSC) 124, with each BTS 120 communicatively-coupled to its BSC 124 via a private trunk 126. In general, a large licensed wireless network, such as that provided by a regional or nationwide mobile services provider, will include multiple BSCs 124.
Each BSC 124 communicates with telecommunications network 104 through a standard base station controller interface 126A. For example, a BSC 124 may communicate with MSC 110 via the GSM A-interface for circuit switched voice services and with SGSN 114 via the GSM Gb interface for packet data services (GPRS). Conventional licensed voice and data networks 104 include protocols to permit seamless handoffs from one recognized BSC 124 to another BSC (not shown).
In some embodiments of the ICS architecture, an unlicensed communication session 108 is facilitated via an access point 128 comprising a service area 130. As indicated by the arrow representing unlicensed communication session 108, the user equipment 102 may be connected to the telecommunications network 104 via a second data path that includes an unlicensed wireless channel 136, access point 128, an access network 138, and a universal network controller (UNC) 140 (also referred to as a unlicensed network controller in some embodiments). The UNC 140 communicates with telecommunications network 104 using a base station controller interface 126B that is similar to base station controller interface 126A, and includes a GSM A-interface for circuit switched voice services and a GSM Gb interface for packet data services (GPRS). In this manner, the UNC 140 appears to the GSM/GPRS core network as a GSM BSS network element and is managed and operated as such. In some embodiments, the BSS network element includes the BTS 120 and BSC 124.
In accordance with some embodiments, the AP 128 will be located in a fixed structure, such as a home 132 or an office building 134. In some embodiments, the service area 130 of the AP 128 includes an indoor portion of a building, although it will be understood that the service area of the AP 128 may include an outdoor portion of a building or campus. The AP 128 creates an accessible unlicensed wireless network to which the user equipment 102 connects. The unlicensed wireless channel 136 is facilitated by a radio link employing a wavelength (or wavelength range) in an unlicensed, free spectrum (e.g., spectrum around 2.4 GHz, 5 GHz, 11-66 GHz). An unlicensed wireless service hosting unlicensed wireless channel 136 may have an associated communication protocol. As an example, the unlicensed wireless service may be a wireless local area network (LAN) (WiFi) service (e.g., the IEEE 802.11a, b, n, or g wireless standard). The licensed wireless channel 122 may comprise any licensed wireless service having a defined BSS interface protocol 126 for a voice/data network 104. Some embodiments of the licensed wireless include a GSM/GPRS radio access network, UMTS Terrestrial Radio Access Network (UTRAN), and GSM EDGE Radio Access Network (GERAN) to name a few, although it will be understood that embodiments of the present invention include other licensed wireless services.
In this architecture, the principle elements of transaction control (e.g., call processing) are provided by the core network elements, namely the MSC 110, visitor location register (VLR), and the SGSN 114. Authorized licensed wireless devices are allowed access to the GSM/GPRS core network either directly through the GSM radio access network, if they are outside of the service area of an AP 128, or via the ICS network, if they are within the service area of an AP.
Alternatively, some embodiments of the ICS architecture integrate the wide area licensed wireless network 118 with a short-range licensed wireless communication session 208 that is facilitated via a femtocell access point (FAP) 228 as shown in
Similar to the AP 128, the FAP 228 will be located in a fixed structure, such as a home 132 or an office building 134. In some embodiments, the service area 130 of the FAP 228 includes an indoor portion of a building, although it will be understood that the service area 130 of the FAP 228 may include an outdoor portion of a building or campus. As illustrated in
Once authenticated, the AAA 340 notifies the INC 330 through a separate communication exchange. The INC 330 then proceeds to manage the subscriber's access to all voice and data mobile services 360 using one of the various interfaces described above with regards to the UTRAN, GSM, and GERAN networks. However, one of ordinary skill in art will realize that the UNC 310 can be implemented using various other communication interfaces. In some embodiments, the UNC 310 includes only some of the components described with regards to
Some embodiments of the above mentioned devices, such as the user equipment 102, AP 128, FAP 228, or UNCs 140 and 240, include microprocessors and memory (not shown) that store computer program instructions for executing wireless protocols for managing communication sessions in a machine-readable or computer-readable medium as further described below in the section labeled “Computer System”. Examples of machine-readable media or computer-readable media include, but are not limited to magnetic media such as hard disks, memory modules, magnetic tape, optical media such as CD-ROMS and holographic devices, magneto-optical media such as optical disks, and hardware devices that are specially configured to store and execute program code, such as application specific integrated circuits (“ASICs”), programmable logic devices (“PLDs”), ROM, and RAM devices. Examples of computer programs or computer code include machine code, such as produced buy a compiler, and files containing higher-level code that are executed by a computer or a microprocessor using an interpreter.
Moreover, some embodiments of the user equipment 102, AP 128, or UNCs 140 provide an interface conversion function to convert the signaling of the unlicensed service into a conventional base station subnetwork (BSS) interface (e.g., an A-interface or a Gb-interface). Alternatively, some embodiments of the user equipment 102, AP 128, FAP 228, and UNCs 140 and 240 provide an interface conversion function to convert the signaling of the unlicensed service or licensed service into other network interfaces compatible with the UNC 140 and 240 and the ICS architecture, such as an IP/Ethernet interface.
As a result of the protocol conversion, a communication session is established that is transparent to the voice network/data network 104 (i.e., the voice/data network 104 uses its standard interface and protocols for the communication session as it would with a conventional communication session handled by a conventional licensed base transceiver station). Accordingly, protocols for a seamless handoff of services that are transparent to the voice/data network 104 are facilitated. This permits, for example, a single phone number to be used for both the licensed wireless service and the unlicensed wireless service. Additionally, the present invention permits a variety of services that were traditionally offered only through licensed wireless services to be offered through an unlicensed wireless service, broadband connection, or other integrated system of the ICS. The user thus gets the benefit of potentially higher quality service when their user equipment is located within the area serviced by a high bandwidth unlicensed wireless service or broadband connection while also having access to conventional phone services.
This typically includes the following basic services: Telephony; Emergency call (e.g., 911 calling in North America); Short message, mobile-terminated point-to-point (MT/PP); Short message, mobile-originated point-to-point (MO/PP); GPRS bearer services; Handover (licensed-to-unlicensed, unlicensed-to-licensed, voice, data, SMS, SS). However, it should be apparent to one of ordinary skill in the art that various implementations of the ICS architecture include other known services or alternatives to the described services, such as the “112” European Union equivalent for “911” emergency services used within the United States and Canada.
III. ICS Identification for Emergency and Other Services
In some embodiments, customer premise equipment (CPE) includes the user equipment and AP through which the user equipment accesses the UNC for ICS service. In some embodiments, the ICS CPE addressing includes the international mobile subscriber identity (IMSI) associated with the SIM in the user equipment as a parameter. In some embodiments, the IMSI is provided by the ICS user equipment to the UNC when it requests ICS service. Unlike the GSM BSC, the UNC manages, in some embodiments, a context for each user equipment that is operating in ICS mode. Therefore, the UNC maintains a record for each served user equipment. For example, IMSI may be used by the UNC to find the appropriate user equipment record when the UNC receives a BSSMAP paging message.
In some embodiments, the ICS CPE addressing includes an access point identifier (AP-ID) as the parameter. The AP-ID includes the media access control (MAC) address of the AP or the IMSI associated with the FAP, through which the user equipment accesses the ICS service. This identifier may be provided to the UNC when the user equipment requests ICS service. Moreover, the AP-ID may also be used by the service provider to restrict ICS service access only to authorized APs. Alternatively, in some embodiments the ICS CPE addressing includes a public IP address that is indirectly associated with the AP/FAP that passes communications from the UE to the UNC of the ICS network. Specifically, the IP address is associated with the network access connection or device used to pass information to the UNC. In some embodiments, the network access connection includes a digital subscriber line (DSL) or cable modem connection (which could be assigned to the access device, e.g., DSL modem).
A. ICS Cell Identification
In some embodiments, user equipment is required to register with the network each time the serving location area (or routing area) changes. One or more location areas identifiers (LAIs) are associated with each visited location register (VLR) in a carrier's network. Likewise, one or more routing area identifiers (RAIs) are controlled by a single SGSN.
In some embodiments, a GSM cell is identified within the location or routing area by adding a cell identity (CI) to the location or routing area identification. The cell global identification (CGI) is the concatenation of the location area identification and the cell identity. In some embodiments, the cell identity is unique within a location area. In some embodiments, a partitioning method includes implementing a one-to-one or a many-to-one correspondence between GSM cell identity and ICS cell identity. Given the identification of a preferred GSM cell in a particular area, it is possible to determine the corresponding ICS cell identity based, for example, on UNC provisioning. An example of a one-to-one relationship is mapping a GSM cell to an ICS cell. An example of a many-to-one relationship is mapping a GSM location area (and associated GSM cells) to an ICS cell.
In some embodiments, when the user equipment connects to the UNC for ICS service, it sends the CGI value of the current GSM camping cell to the UNC. The UNC maps the GSM camping cell's CGI value to a corresponding ICS cell's CGI value based on mapping logic provisioned in the UNC. This may be a one-to-one mapping (e.g., if there is one ICS cell per GSM cell) or a many-to-one mapping (e.g., if there is one ICS cell per GSM location area). If no GSM coverage is available in the ICS service area, the UNC assigns the user equipment to a default “no GSM coverage” ICS cell. A single UNC may serve one MSC. This does not preclude UNC embodiments that combine multiple UNC “instances,” as defined above, in a single device. Each UNC may also be assigned a unique “ICS-Handover-CGI” value used for GSM-to-ICS handover purposes. For example, this is the value provisioned in the GSM RAN BSCs ARFCN-to-CGI tables and in the MSCs (e.g., to “point to” the UNC).
Moreover, one of ordinary skill in the art will recognize that the above mention mapping technique also applies to other various networks. For instance, the technique can be adapted for the case of UMTS coverage, whereby the UNC maps from a UTRAN cell identity to a corresponding ICS cell identity.
B. ICS Registration
In some embodiments, an ICS registration process does not employ signaling to the public land mobile network (PLMN) or licensed wireless network infrastructure, but is instead contained within the ICS network (i.e., between the user equipment and UNC). The ICS registration process serves at least two purposes. It informs the UNC that the user equipment is connected through a particular AP and is available at a particular IP address. The UNC keeps track of this information, for example, for providing location information during an emergency services request. The registration process also provides the user equipment with the operating parameters associated with the ICS service on the AP. This may be analogous to the use of the GSM broadcast control channel (BCCH) to transmit system parameters to user equipment in GSM cells. GSM system information message content that is applicable in ICS mode may be delivered to the user equipment during the ICS registration process.
IV. Location Information Services for Emergencies and Other Purposes
While the identification information described above provides adequate identification information for certain services provided by landline wired and wireless communication service providers (e.g., caller id), the ICS-based services provided in some embodiments, such as an emergency service request, require that location information additionally be sent in conjunction with the identification information of the caller. As described in detail below, solutions for providing location information during emergency services as implemented by wired landline and licensed wireless communications service providers may be adopted to provide ICS-based equivalent emergency services. In this manner, ICS-based emergency services conform to established national regulations or provide functionality similar to that of wired landline emergency based services. Moreover, one of ordinary skill in the art will recognize that the ICS-based location information services of some embodiments discussed below are further implemented for other non-emergency related services.
Some embodiments of the ICS system implement location services by providing either the caller's estimated location (e.g. latitude and longitude) or a civic address (e.g., physical street address) associated with a base station serving the user equipment. A detailed description of such embodiments is provided for in U.S. Pat. No. 7,369,859. In order to provide a more robust set of location services, some embodiments implement location services equivalent to those provided by traditional wired landline communication service providers. In some such embodiments, instead of providing approximate latitude and longitude coordinates for identifying the location of the caller, traditional landline wired communications are able to provide more detailed civic address information associated with the endpoint or telephone number from which the services request originated.
The more detailed location information allows for greater effectiveness of emergency responders in accurately and timely locating the caller. For example, in an apartment complex scenario with multiple living units, the latitude and longitude location estimation information locates the caller within a 100 meter range anywhere within the apartment complex. In this manner, emergency responders lose valuable time searching every unit within the 100 meter radius to determine and identify the exact location of the caller.
However, exact location information can be provided for through an ICS implementation equivalent to that of the wired landline emergency services. Since wired landline user equipment are associated with an exact civic address, traditional wired telephone service providers are able to maintain databases for associating telephone numbers to civic addresses. In this manner, when a caller places a wired landline emergency services request call, the emergency responders receive the phone number and the exact civic address of the caller as opposed to a location estimate. Referring back to the previous apartment complex scenario, the landline equivalent solution would provide the emergency responders with the exact apartment unit from which the emergency services request originated. In this manner, emergency responders need not search within the 100 meter location estimate radius, but are instead directly guided to the location of the caller.
Some embodiments provide the landline equivalent implementation by providing a civic address associated with an AP or FAP of the ICS network to the emergency responders. A typical AP resides in a residence or office and therefore has an associated civic address similar to that of wired landline user equipment. Alternatively, some embodiments provide the landline equivalent implementation by providing a public IP address indirectly associated with the AP from which communications from the UE are passed into the ICS network (e.g., IP address associated with a DSL modem connected to the AP).
In some embodiments, the ICS service provider maintains a subscriber database that stores the civic address information or other location information associated with the location of the AP and a reference to the location information. In some embodiments, the reference to the stored database location information includes the MAC address of the AP, the IP address indirectly associated with the AP (e.g., DSL modem connected to the AP), the IMSI, or some or all such keys.
In some embodiments, the location information is entered into the subscriber database through pre-provisioning by the ICS service provider. For instance, when a new subscriber purchases access to the ICS service, the ICS service provider obtains and stores the location information and MAC address associated with the AP of the subscriber, or the location information and IMSI associated with the FAP of the subscriber.
Alternatively, in some embodiments, the civic address information is entered by the subscriber through the UE. For example, when the ICS user equipment performs the ICS registration procedure, one of the parameters that the UNC provides to the user equipment in the response is the a “location available” indicator. However, if there is no entry for the subscriber within the subscriber database, then the indicator is set to “no location is available.” The user equipment provides a convenient way for the user to enter street address information associated with the current location of the AP. Invocation of this function enables the user to enter street address information associated with the current location. Once entered, the user equipment sends this information to the UNC to be stored in the subscriber database.
Moreover, the UE of some embodiments communicates through a broadband IP network. In some such embodiments, the user's broadband access device (e.g., DSL modem with integrated residential gateway) is assigned an IP address that is associated with a particular civic address. This IP address is passed to the UNC. For example, a digital subscriber line (DSL) provider identifies an IP address assigned to a user by identifying the civic address at which the DSL line terminates. Moreover, in some embodiments, the user equipment contains GPS technology for identifying a latitude and longitude associated with the location of the UE. That information is then converted by components of the network into a street address which the UNC then uses to identify the location of the user equipment or alternatively, leverages locator infrastructure common to GSM networks.
In some embodiments, the UNC receives the civic address and stores the information in a corresponding record of an ICS subscriber database which also includes a key identifier. The key of some embodiments includes the MAC address of the AP, the IMSI of the FAP, the IMSI of the user equipment (UE), or the public IP address of the broadband access device. When location information is added to a record, the UNC sends a message to the user equipment with the location available indicator set to the value “location is available.”
Once the secure IP tunnel is established at step B, the UNC 530 of some embodiments includes (at step C) the IP address assigned to the subscriber's broadband access line in a message to an authorization, authentication, and accounting (AAA) server 540. The security gateway (SeGW) of the UNC 530 identifies this IP address in the IP packets from the UE 510. After the IP address information is sent to the AAA server 540 at step C, the AAA server 540 stores (at step D) this information in conjunction with the UE 510 IMSI and the AP 520 MAC address that is subsequently sent in the steps described below.
The UE 510 sends (at step E) a Register Request message that includes the IMSI of the UE 510 and identification information (AP-ID) associated with the AP 520 to the UNC 530. In response, the UNC 530 forwards (at step F) the IMSI of the UE 510 and the AP-ID via an Access-Request message to the AAA server 540. In some embodiments, the AP-ID includes the MAC address of the AP 520 or the IP address identified at step B.
Using the UE and AP-ID, the AAA server 540 queries (at step G) and retrieves (at step H) subscriber and location information from an ICS subscriber database 550. The information is used to authorize the subscriber's UE and the associated AP from which the subscriber accesses the ICS network. If access is allowed, the AAA server, in some embodiments, updates (at step I) the ICS subscriber database 550 with the subscriber ID (e.g., IMSI) and current location (e.g., civic address or geographic location). In this manner, the current location of the UE 510 is determined. For instance, a UE is authorized to access the ICS network via several APs, therefore when the subscriber registers with the ICS network, the database 550 is queried to determine whether the subscriber is accessing the network through one of the allowed APs. Once the subscriber is authorized, the database is updated to indicate the current location of the subscriber as the specific AP and the civic address associated with the AP with which the subscriber is accessing the ICS network.
Subsequent to the steps A-F (and optionally step I) of
In some embodiments, the key includes the UE 510 IMSI and/or AP 520 MAC address. Alternatively, the key of some embodiments includes the IP address indirectly associated with the AP 520. Specifically, the IP address of some embodiments references the IP address assigned to the subscriber's broadband access line through which the AP communicates to the UNC 530 as described above.
The FAP 525 establishes (at step A) the IPSec tunnel for communications with the UNC 530. The UNC 530 then sends (at step B) an IP address associated with the subscriber's broadband access line which is then routed (at step C) from the UNC 530 to the AAA server 540 for storage. When established, the FAP 525 proceeds with a Register-Request message to the UNC 530 providing the AP-ID of the FAP 525 which in some embodiments includes an IMSI associated with the FAP 525 (e.g., the IMSI stored in a smartcard inserted into the FAP). The messaging at steps D-H of
Alternatively, in some embodiments, a AAA server initiates a location service request to applicable location service infrastructure. In some embodiments, the AAA server 540 submits a Location Inter-operability Forum Mobile Location Protocol (LIF MLP) query including the IMSI for the UE 510. The LIF TS 101 Specification defines a secure access method via an Application Program Interface (API) that enables Internet applications to query location information from wireless networks, irrespective of its underlying air interface and positioning methods. The API is based on existing and well-known Internet technologies, such as HTTP, SSL/TLS and XML. A gateway mobile locating center (GMLC) functions as a gateway server for location services and hosts an instance of the LIF API. Accordingly, the AAA server 540 and the GMLC perform an authentication message exchange to verify the UNC 530 is authorized to use location services accessed via the GMLC.
Once the authorization is verified, the GMLC obtains location information corresponding to the request using standard licensed network techniques. These include, but are not limited to, Assisted GPS (AGPS), Angle of Arrival (AOA), Enhanced Observed Time Difference (E-OD), Cell Identity plus Timing Advance (Cell ID+TA), and Time Difference of Arrival (TDOA). Such location information techniques can then be converted to a civic address before storage within the ICS subscriber database.
The GMLC uses the key (e.g., IMSI and AP-ID) to query (at 640) the ICS subscriber database to retrieve location information including a civic address associated with a location of the AP through which the emergency call was placed into the ICS network. The GMLC then stores a copy of the location information (e.g., civic address) within an ALI database and sends (at 650) a second key for accessing the ALI database entry to the PSAP. Using the second key, the PSAP retrieves (at 660) the location information and in this manner is able to obtain a civic address associated with a service requester of the ICS network.
Steps 640-660 will now be explained in further detail with reference to
A message and operation sequence of some embodiments for passing the civic address location information associated with an AP through the ICS network to the nearest PSAP is shown in
The UNC 820 responds (at step D) to the MSC 830 with a BSSMAP Perform Location Response. However, rather than populate the response message with the typical location estimate coordinates of the caller, the UNC 820 instead encodes a key in the location estimate field and further places an ICS identifier in the positioning data field of the message to indicate that the call is being routed through the ICS network and not a GSM or other communication network. In some embodiments, the key includes the AP-ID such as a MAC address associated with the AP, though the key of some embodiments also includes other types of identification information as described above. The key is used to access the ICS subscriber database 850.
Referring back to
The GMLC 840 processes (at step I) the received packet. Logic within the GMLC 840 identifies that the emergency call is being placed through the ICS network. At this point, the GMLC 840 queries (at step I) the ICS subscriber database 850 using the key it was provided within the Subscriber Location Report to retrieve the geographic coordinates and/or civic address of the caller. At step J, the GMLC 840 uses standard database access messaging (e.g., SQL or LDAP) to receive from the ICS subscriber database 850 the location information required to send to the PSAP 870. However, in some embodiments, when a public IP address is passed to the GMLC 840, the GMLC 840 queries (at step I) an alternate database that maintains the mapping of assigned public IP addresses to broadband subscriber civic addresses instead of the ICS subscriber database 850.
Various additional signaling occurs through steps K-L in order to establish the emergency services call with the PSAP 870. Once the call is established, the PSAP 870 requests (at step M) the location of the user equipment. In response, the GMLC 840 provides (at step N) the geographic coordinates and/or civic address information that it received from ICS subscriber database 850 along with the MSISDN (i.e., the phone number) of the UE 810 at step J.
An alternative embodiment to the messaging and operation sequence of
Some embodiments of the user equipment, access points, and universal network controllers contain an option to specify through which communication network the user equipment should place the emergency services call. For instance, user equipment of a first network when operating within range of an ICS network could place the emergency services call through the ICS network as opposed to the first communication network or vice versa depending on the specified setting. Such an option would be inactive, when the user equipment is only within the first communication network (e.g., GSM). Under these circumstances, the user equipment will always place the call through the only available network.
Moreover, some embodiments provide failsafe and alternative measures when the emergency services call cannot be properly routed over the ICS network. For instance, when the ICS network does not contain location information for the AP.
When an emergency services caller is within range of the ICS network, the ICS network or user equipment of the caller is configured to initially attempt (at 1210) to place the emergency services call through the ICS network. The AP hosting the ICS service for the subscriber's UE will be identified (at 1220). Then, a determination is made (at 1230) as to whether the UNC (or UNC operator) has any valid location information for the AP. If such a record exists (at 1240), the location information will be forwarded (at 1245) to the emergency service as the location for the subscriber. If no record is found at 1240, then a hand-over is made (at 1250) from the ICS session to a licensed wireless network session.
As part of the hand-over, the emergency series call is placed (at 1260) in the session queue, such that when the licensed wireless network session is established, an emergency services call is transparently placed (i.e., the subscriber doesn't have to redial the number) to the licensed wireless network. The licensed wireless network then obtains (at 1270) the location of the subscriber in its usual manner, and the subscriber location information is forwarded (at 1280) to the emergency service.
V. Computer System
The bus 1305 collectively represents all system, peripheral, and chipset buses that support communication among internal devices of the computer system 1300. For instance, the bus 1305 communicatively connects the processor 1310 with the read-only memory 1320, the system memory 1315, and the permanent storage device 1325.
From these various memory units, the processor 1310 retrieves instructions to execute and data to process in order to execute the processes of the invention. The read-only-memory (ROM) 1320 stores static data and instructions that are needed by the processor 1310 and other modules of the computer system. The permanent storage device 1325, on the other hand, is a read-and-write memory device. This device is a non-volatile memory unit that stores instruction and data even when the computer system 1300 is off. Some embodiments of the invention use a mass-storage device (such as a magnetic or optical disk and its corresponding disk drive) as the permanent storage device 1325. Some embodiments use one or more removable storage devices (flash memory card or memory stick) as the permanent storage device.
Like the permanent storage device 1325, the system memory 1315 is a read-and-write memory device. However, unlike storage device 1325, the system memory is a volatile read-and-write memory, such as a random access memory. The system memory stores some of the instructions and data that the processor needs at runtime.
Instructions and/or data needed to perform processes of some embodiments are stored in the system memory 1315, the permanent storage device 1325, the read-only memory 1320, or any combination of the three. For example, the various memory units contain instructions for processing multimedia items in accordance with some embodiments. From these various memory units, the processor 1310 retrieves instructions to execute and data to process in order to execute the processes of some embodiments.
The bus 1305 also connects to the input and output devices 1330 and 1335. The input devices enable the user to communicate information and select commands to the computer system. The input devices 1330 include alphanumeric keyboards and cursor-controllers. The output devices 1335 display images generated by the computer system. The output devices include printers and display devices, such as cathode ray tubes (CRT) or liquid crystal displays (LCD).
Finally, as shown in
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that specific details are not required in order to practice the invention. Thus, the foregoing descriptions of specific embodiments of the invention are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed; obviously, many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, they thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. For example, in some embodiments the location based services described above have been adapted for the “911” emergency service of the United States. However, it should be apparent to one of ordinary skill in the art that the location based services can similarly be adapted to the European equivalent, “112” emergency service. Furthermore, the invention may be used in areas other than emergency services (e.g., whenever there is a need to identify a location of a caller).
Moreover, while the invention has been described with reference to numerous specific details, one of ordinary skill in the art will recognize that the invention can be embodied in other specific forms without departing from the spirit of the invention. For instance, specific details of one or more examples can be combined to provision user equipment. The MSISDN, IMSI, MAC ID, and the location name of the access point can be substituted with similar information to provision user equipment. The disclosed techniques can be used for integrated system that includes licensed wireless communication systems other than GSM, GPRS, GERAN, or UTRAN or communication systems other than a UMAN.
Additionally, some embodiments of the ICS referred to user equipment of a licensed communication network. However, it should be apparent one of ordinary skill in the art that various other implementations of the ICS, such as the femtocell architecture described with regards to
In some examples and diagrams, two components may be described or shown as connected to each other. The connection may be a direct wire connection or the two components may be communicatively coupled to each other through other components or through wireless or broadband links. Thus, one of ordinary skill in the art would understand that the invention is not to be limited by the foregoing illustrative details, but rather is to be defined by the appended claims.
This application claims benefit to U.S. Provisional Patent Application 60/744,440 filed Apr. 7, 2006. This United States Provisional Patent Application is incorporated herein by reference. Moreover, this application is a Continuation in Part of U.S. patent application Ser. No. 11/096,800, entitled “Method and System for Determining the Location of an Unlicensed Mobile Access Subscriber,” filed Mar. 31, 2005, now issued as U.S. Pat. No. 7,369,859, which is a Continuation in Part of U.S. patent application Ser. No. 11/013,883, entitled “Apparatus and Method for Extending the Coverage Area of A Licensed Wireless Communication System Using an Unlicensed Wireless Communication System,” filed Dec. 15, 2004, now issued as U.S. Pat. No. 7,640,008, which is a Continuation in Part of U.S. patent application Ser. No. 10/688,470, entitled “Apparatus and Method for Extending the Coverage Area of a Licensed Wireless Communication System Using an Unlicensed Wireless Communication System,” filed Oct. 17, 2003, now issued as U.S. Pat. No. 7,127,250, which claims the benefit of U.S. Provisional Application Ser. No. 60/419,785, entitled “Method for Extending the Coverage Area of a Licensed Wireless Communication System Using an Unlicensed Wireless Communications System,” filed Oct. 18, 2002.
Number | Name | Date | Kind |
---|---|---|---|
5014197 | Wolf | May 1991 | A |
5101501 | Gilhousen et al. | Mar 1992 | A |
5109528 | Uddenfeldt | Apr 1992 | A |
5226045 | Chuang | Jul 1993 | A |
5235632 | Raith | Aug 1993 | A |
5260944 | Tomabechi | Nov 1993 | A |
5260988 | Schellinger et al. | Nov 1993 | A |
5267261 | Blakeney, II et al. | Nov 1993 | A |
5367558 | Gillis et al. | Nov 1994 | A |
5390233 | Jensen et al. | Feb 1995 | A |
5392331 | Patsiokas et al. | Feb 1995 | A |
5406615 | Miller et al. | Apr 1995 | A |
5428601 | Owen | Jun 1995 | A |
5442680 | Schellinger et al. | Aug 1995 | A |
5448619 | Evans et al. | Sep 1995 | A |
5507035 | Bantz et al. | Apr 1996 | A |
5533027 | Akerberg et al. | Jul 1996 | A |
5594782 | Zicker et al. | Jan 1997 | A |
5610969 | McHenry | Mar 1997 | A |
5634193 | Ghisler | May 1997 | A |
5640414 | Blakeney, II et al. | Jun 1997 | A |
5659598 | Byrne | Aug 1997 | A |
5659878 | Uchida | Aug 1997 | A |
5664005 | Emery et al. | Sep 1997 | A |
5673307 | Holland et al. | Sep 1997 | A |
5675629 | Raffel et al. | Oct 1997 | A |
5724658 | Hasan | Mar 1998 | A |
5732076 | Ketseoglou et al. | Mar 1998 | A |
5745852 | Khan et al. | Apr 1998 | A |
5758281 | Emery et al. | May 1998 | A |
5796727 | Harrison et al. | Aug 1998 | A |
5796729 | Greaney et al. | Aug 1998 | A |
5815525 | Smith | Sep 1998 | A |
5818820 | Anderson et al. | Oct 1998 | A |
5822681 | Chang et al. | Oct 1998 | A |
5822767 | MacWilliams et al. | Oct 1998 | A |
5825759 | Liu | Oct 1998 | A |
5852767 | Sugita | Dec 1998 | A |
5862345 | Okanoue et al. | Jan 1999 | A |
5870677 | Takahashi et al. | Feb 1999 | A |
5887020 | Smith et al. | Mar 1999 | A |
5887260 | Nakata | Mar 1999 | A |
5890055 | Chu et al. | Mar 1999 | A |
5890064 | Widergen et al. | Mar 1999 | A |
5903834 | Wallstedt et al. | May 1999 | A |
5915224 | Jonsson | Jun 1999 | A |
5926760 | Khan et al. | Jul 1999 | A |
5936949 | Pasternak et al. | Aug 1999 | A |
5940512 | Tomoike | Aug 1999 | A |
5946622 | Bojeryd | Aug 1999 | A |
5949773 | Bhalla et al. | Sep 1999 | A |
5960341 | LeBlanc et al. | Sep 1999 | A |
5995828 | Nishida | Nov 1999 | A |
6016318 | Tomoike | Jan 2000 | A |
6035193 | Buhrmann et al. | Mar 2000 | A |
6052592 | Schellinger et al. | Apr 2000 | A |
6101176 | Honkasalo et al. | Aug 2000 | A |
6112080 | Anderson et al. | Aug 2000 | A |
6112088 | Haartsen | Aug 2000 | A |
6119000 | Stephenson et al. | Sep 2000 | A |
6130886 | Ketseoglou et al. | Oct 2000 | A |
6134227 | Magana | Oct 2000 | A |
6138019 | Trompower et al. | Oct 2000 | A |
6167279 | Chang et al. | Dec 2000 | A |
6198941 | Aho et al. | Mar 2001 | B1 |
6226515 | Burkhard | May 2001 | B1 |
6236852 | Veerasamy et al. | May 2001 | B1 |
6243581 | Jawanda | Jun 2001 | B1 |
6256511 | Brown | Jul 2001 | B1 |
6263211 | Brunner | Jul 2001 | B1 |
6269086 | Magana et al. | Jul 2001 | B1 |
6320873 | Nevo et al. | Nov 2001 | B1 |
6327470 | Ostling | Dec 2001 | B1 |
6359872 | Mahany et al. | Mar 2002 | B1 |
6374102 | Brachman et al. | Apr 2002 | B1 |
6381457 | Carlsson et al. | Apr 2002 | B1 |
6389059 | Smith et al. | May 2002 | B1 |
6393007 | Haartsen | May 2002 | B1 |
6415158 | King et al. | Jul 2002 | B1 |
6430395 | Arazi et al. | Aug 2002 | B2 |
6434389 | Meskanen et al. | Aug 2002 | B1 |
6445921 | Bell | Sep 2002 | B1 |
6463307 | Larsson et al. | Oct 2002 | B1 |
6493629 | Van Bosch | Dec 2002 | B1 |
6539237 | Sayers et al. | Mar 2003 | B1 |
6542516 | Vialen et al. | Apr 2003 | B1 |
6553219 | Vilander et al. | Apr 2003 | B1 |
6556822 | Matsumoto | Apr 2003 | B1 |
6556825 | Mansfield | Apr 2003 | B1 |
6556830 | Lenzo | Apr 2003 | B1 |
6574266 | Haartsen | Jun 2003 | B1 |
6587444 | Lenzo et al. | Jul 2003 | B1 |
6633761 | Singhal | Oct 2003 | B1 |
6643512 | Ramaswamy | Nov 2003 | B1 |
6647426 | Mohammed | Nov 2003 | B2 |
6658250 | Ganesan et al. | Dec 2003 | B1 |
6665276 | Culbertson et al. | Dec 2003 | B1 |
6671506 | Lee | Dec 2003 | B1 |
6675009 | Cook | Jan 2004 | B1 |
6680923 | Leon | Jan 2004 | B1 |
6708033 | Linkola et al. | Mar 2004 | B1 |
6711400 | Aura | Mar 2004 | B1 |
6766160 | Lemilainen | Jul 2004 | B1 |
6785535 | Lucidarme et al. | Aug 2004 | B2 |
6788656 | Smolentzov et al. | Sep 2004 | B1 |
6801519 | Mangel | Oct 2004 | B1 |
6801772 | Townend et al. | Oct 2004 | B1 |
6801777 | Rusch | Oct 2004 | B2 |
6807417 | Sallinen | Oct 2004 | B2 |
6824048 | Itabashi et al. | Nov 2004 | B1 |
6826154 | Subbiah et al. | Nov 2004 | B2 |
6829227 | Pitt | Dec 2004 | B1 |
6842462 | Ramjee et al. | Jan 2005 | B1 |
6842621 | Labun et al. | Jan 2005 | B2 |
6845095 | Krishnarajah et al. | Jan 2005 | B2 |
6850503 | Dorenbosch | Feb 2005 | B2 |
6853851 | Rautiola et al. | Feb 2005 | B1 |
6895255 | Bridgelall | May 2005 | B1 |
6909705 | Lee et al. | Jun 2005 | B1 |
6922559 | Mohammed | Jul 2005 | B2 |
6925074 | Vikberg et al. | Aug 2005 | B1 |
6937862 | Back et al. | Aug 2005 | B2 |
6970719 | McConnell et al. | Nov 2005 | B1 |
6993359 | Nelakanti et al. | Jan 2006 | B1 |
6996087 | Ejzak | Feb 2006 | B2 |
7009952 | Razavilar et al. | Mar 2006 | B1 |
7028186 | Stenman et al. | Apr 2006 | B1 |
7039025 | Menon et al. | May 2006 | B1 |
7039027 | Bridgelall | May 2006 | B2 |
7054627 | Hillman | May 2006 | B1 |
7065353 | Bolinth et al. | Jun 2006 | B1 |
7069022 | Rajaniemi et al. | Jun 2006 | B2 |
7099339 | Wang et al. | Aug 2006 | B1 |
7107055 | Gallagher et al. | Sep 2006 | B2 |
7127250 | Gallagher et al. | Oct 2006 | B2 |
7171199 | Rahman | Jan 2007 | B1 |
7171205 | Gallagher et al. | Jan 2007 | B2 |
7197309 | Gallagher et al. | Mar 2007 | B2 |
7200112 | Sundar et al. | Apr 2007 | B2 |
7200383 | Eronen | Apr 2007 | B2 |
7200399 | Gallagher et al. | Apr 2007 | B2 |
7209744 | Gallagher et al. | Apr 2007 | B2 |
7212819 | Gallagher et al. | May 2007 | B2 |
7215961 | Gallagher et al. | May 2007 | B2 |
7245916 | Gallagher et al. | Jul 2007 | B2 |
7251227 | de Jong et al. | Jul 2007 | B2 |
7272397 | Gallagher et al. | Sep 2007 | B2 |
7283821 | Gallagher et al. | Oct 2007 | B2 |
7283822 | Gallagher et al. | Oct 2007 | B2 |
7308263 | Gallagher et al. | Dec 2007 | B2 |
7324818 | Gallagher et al. | Jan 2008 | B2 |
7349698 | Gallagher et al. | Mar 2008 | B2 |
7369854 | Gallagher et al. | May 2008 | B2 |
7369859 | Gallagher | May 2008 | B2 |
7454207 | Gallagher et al. | Nov 2008 | B2 |
7471655 | Gallagher et al. | Dec 2008 | B2 |
7515575 | Shi et al. | Apr 2009 | B1 |
7640008 | Gallagher et al. | Dec 2009 | B2 |
20010029186 | Canyon et al. | Oct 2001 | A1 |
20010031645 | Jarrett | Oct 2001 | A1 |
20010046214 | Kang | Nov 2001 | A1 |
20010046860 | Lee | Nov 2001 | A1 |
20010049790 | Faccin et al. | Dec 2001 | A1 |
20020032030 | Berglund et al. | Mar 2002 | A1 |
20020045459 | Morikawa | Apr 2002 | A1 |
20020051431 | Choi et al. | May 2002 | A1 |
20020059516 | Turtiainen et al. | May 2002 | A1 |
20020065099 | Bjorndahl | May 2002 | A1 |
20020066036 | Makineni | May 2002 | A1 |
20020075844 | Hagen | Jun 2002 | A1 |
20020080797 | Kim | Jun 2002 | A1 |
20020082015 | Wu | Jun 2002 | A1 |
20020085516 | Bridgelall | Jul 2002 | A1 |
20020101848 | Lee et al. | Aug 2002 | A1 |
20020102974 | Raith | Aug 2002 | A1 |
20020118674 | Faccin et al. | Aug 2002 | A1 |
20020123325 | Cooper | Sep 2002 | A1 |
20020131387 | Pitcher et al. | Sep 2002 | A1 |
20020132630 | Arazi et al. | Sep 2002 | A1 |
20020142761 | Wallstedt et al. | Oct 2002 | A1 |
20020147008 | Kallio | Oct 2002 | A1 |
20020147016 | Arazi et al. | Oct 2002 | A1 |
20020150091 | Lopponen et al. | Oct 2002 | A1 |
20020155829 | Proctor, Jr. et al. | Oct 2002 | A1 |
20020160811 | Jannette et al. | Oct 2002 | A1 |
20020161905 | Haverinen et al. | Oct 2002 | A1 |
20020164984 | Thakker | Nov 2002 | A1 |
20020166068 | Kilgore | Nov 2002 | A1 |
20020174335 | Zhang et al. | Nov 2002 | A1 |
20020187780 | Souissi | Dec 2002 | A1 |
20020191556 | Krishnarajah et al. | Dec 2002 | A1 |
20020191575 | Kalavade et al. | Dec 2002 | A1 |
20020191595 | Mar et al. | Dec 2002 | A1 |
20020197984 | Monin et al. | Dec 2002 | A1 |
20030007475 | Tsuda et al. | Jan 2003 | A1 |
20030026269 | Paryani | Feb 2003 | A1 |
20030031151 | Sharma et al. | Feb 2003 | A1 |
20030043773 | Chang | Mar 2003 | A1 |
20030058816 | Shearer, III | Mar 2003 | A1 |
20030087653 | Leung | May 2003 | A1 |
20030101356 | Miettinen et al. | May 2003 | A1 |
20030112789 | Heinonen | Jun 2003 | A1 |
20030119480 | Mohammed | Jun 2003 | A1 |
20030119490 | Mohammed | Jun 2003 | A1 |
20030119527 | Labun | Jun 2003 | A1 |
20030119548 | Mohammed | Jun 2003 | A1 |
20030130008 | Rajaniemi et al. | Jul 2003 | A1 |
20030139180 | McIntosh et al. | Jul 2003 | A1 |
20030142673 | Patil | Jul 2003 | A1 |
20030172264 | Dillon | Sep 2003 | A1 |
20030176186 | Mohammed | Sep 2003 | A1 |
20030193952 | O'Neill | Oct 2003 | A1 |
20030210199 | Sward et al. | Nov 2003 | A1 |
20030217132 | Batten et al. | Nov 2003 | A1 |
20030219022 | Dillon et al. | Nov 2003 | A1 |
20030219024 | Purnadai et al. | Nov 2003 | A1 |
20030224820 | Einola et al. | Dec 2003 | A1 |
20030235186 | Park | Dec 2003 | A1 |
20040008649 | Wybenga | Jan 2004 | A1 |
20040009749 | Arazi et al. | Jan 2004 | A1 |
20040013099 | O'Neill | Jan 2004 | A1 |
20040025018 | Haas et al. | Feb 2004 | A1 |
20040037312 | Spear | Feb 2004 | A1 |
20040053623 | Hoff et al. | Mar 2004 | A1 |
20040063451 | Bonta et al. | Apr 2004 | A1 |
20040068571 | Ahmavaara | Apr 2004 | A1 |
20040072593 | Robbins et al. | Apr 2004 | A1 |
20040077335 | Lee et al. | Apr 2004 | A1 |
20040077355 | Krenik et al. | Apr 2004 | A1 |
20040077356 | Krenik et al. | Apr 2004 | A1 |
20040077374 | Terry | Apr 2004 | A1 |
20040087307 | Ibe et al. | May 2004 | A1 |
20040116120 | Mohammed et al. | Jun 2004 | A1 |
20040147223 | Cho | Jul 2004 | A1 |
20040162105 | Reddy et al. | Aug 2004 | A1 |
20040171378 | Rautila | Sep 2004 | A1 |
20040192211 | Gallagher et al. | Sep 2004 | A1 |
20040202132 | Heinonen | Oct 2004 | A1 |
20040203346 | Myhre et al. | Oct 2004 | A1 |
20040203737 | Myhre et al. | Oct 2004 | A1 |
20040203800 | Myhre et al. | Oct 2004 | A1 |
20040203815 | Shoemake et al. | Oct 2004 | A1 |
20040219948 | Jones et al. | Nov 2004 | A1 |
20040240525 | Karabinis et al. | Dec 2004 | A1 |
20040259541 | Hicks, III et al. | Dec 2004 | A1 |
20040264410 | Sagi et al. | Dec 2004 | A1 |
20050026650 | Russell | Feb 2005 | A1 |
20050041787 | Casey et al. | Feb 2005 | A1 |
20050053070 | Jouppi | Mar 2005 | A1 |
20050064896 | Rautiola et al. | Mar 2005 | A1 |
20050070283 | Hashimoto et al. | Mar 2005 | A1 |
20050101245 | Ahmavaara | May 2005 | A1 |
20050101329 | Gallagher | May 2005 | A1 |
20050111409 | Spear et al. | May 2005 | A1 |
20050130654 | Di Claudio et al. | Jun 2005 | A1 |
20050130659 | Grech et al. | Jun 2005 | A1 |
20050144647 | Zussman et al. | Jun 2005 | A1 |
20050181805 | Gallagher | Aug 2005 | A1 |
20050186948 | Gallagher et al. | Aug 2005 | A1 |
20050198199 | Dowling | Sep 2005 | A1 |
20050198306 | Palojarvi et al. | Sep 2005 | A1 |
20050207395 | Mohammed | Sep 2005 | A1 |
20050239441 | Eronen | Oct 2005 | A1 |
20050250522 | Gilbert | Nov 2005 | A1 |
20050255879 | Shi et al. | Nov 2005 | A1 |
20050265279 | Markovic et al. | Dec 2005 | A1 |
20050266853 | Gallagher et al. | Dec 2005 | A1 |
20050271008 | Gallagher et al. | Dec 2005 | A1 |
20050272424 | Gallagher et al. | Dec 2005 | A1 |
20050272425 | Amerga et al. | Dec 2005 | A1 |
20050272449 | Gallagher et al. | Dec 2005 | A1 |
20060009201 | Gallagher et al. | Jan 2006 | A1 |
20060009202 | Gallagher et al. | Jan 2006 | A1 |
20060019656 | Gallagher et al. | Jan 2006 | A1 |
20060019657 | Gallagher et al. | Jan 2006 | A1 |
20060019658 | Gallagher et al. | Jan 2006 | A1 |
20060019667 | Hicks, III | Jan 2006 | A1 |
20060025143 | Gallagher et al. | Feb 2006 | A1 |
20060025144 | Gallagher et al. | Feb 2006 | A1 |
20060025145 | Gallagher et al. | Feb 2006 | A1 |
20060025146 | Gallagher et al. | Feb 2006 | A1 |
20060025147 | Gallagher et al. | Feb 2006 | A1 |
20060036733 | Fujimoto et al. | Feb 2006 | A1 |
20060079258 | Gallagher et al. | Apr 2006 | A1 |
20060079259 | Gallagher et al. | Apr 2006 | A1 |
20060079273 | Gallagher et al. | Apr 2006 | A1 |
20060079274 | Gallagher et al. | Apr 2006 | A1 |
20060094431 | Saifullah et al. | May 2006 | A1 |
20060098598 | Gallagher et al. | May 2006 | A1 |
20060099935 | Gallagher et al. | May 2006 | A1 |
20060111113 | Waris | May 2006 | A1 |
20060114871 | Buckley et al. | Jun 2006 | A1 |
20060116125 | Buckley et al. | Jun 2006 | A1 |
20060146803 | Bae et al. | Jul 2006 | A1 |
20060183482 | Ueda | Aug 2006 | A1 |
20060223532 | Liu et al. | Oct 2006 | A1 |
20060239277 | Gallagher et al. | Oct 2006 | A1 |
20060268845 | He et al. | Nov 2006 | A1 |
20060286981 | Suumaki et al. | Dec 2006 | A1 |
20060291455 | Katz et al. | Dec 2006 | A1 |
20070004405 | Buckley et al. | Jan 2007 | A1 |
20070022469 | Cooper et al. | Jan 2007 | A1 |
20070041360 | Gallagher et al. | Feb 2007 | A1 |
20070053370 | Aghvami et al. | Mar 2007 | A1 |
20070054668 | Scheinert et al. | Mar 2007 | A1 |
20070094374 | Karia et al. | Apr 2007 | A1 |
20070183421 | Terrell et al. | Aug 2007 | A1 |
20070230453 | Giaretta et al. | Oct 2007 | A1 |
20070266244 | Walker et al. | Nov 2007 | A1 |
20070268855 | Grayson et al. | Nov 2007 | A1 |
20070286092 | Famolari et al. | Dec 2007 | A1 |
20070287459 | Diachina et al. | Dec 2007 | A1 |
20070293222 | Vikberg et al. | Dec 2007 | A1 |
20080039086 | Gallagher et al. | Feb 2008 | A1 |
20080039087 | Gallagher et al. | Feb 2008 | A1 |
20080043669 | Gallagher et al. | Feb 2008 | A1 |
20080051060 | Lee et al. | Feb 2008 | A1 |
20080076386 | Khetawat et al. | Mar 2008 | A1 |
20080076392 | Khetawat et al. | Mar 2008 | A1 |
20080076393 | Khetawat et al. | Mar 2008 | A1 |
20080076411 | Khetawat et al. | Mar 2008 | A1 |
20080076412 | Khetawat et al. | Mar 2008 | A1 |
20080076419 | Khetawat et al. | Mar 2008 | A1 |
20080076420 | Khetawat et al. | Mar 2008 | A1 |
20080076425 | Khetawat et al. | Mar 2008 | A1 |
20080108319 | Gallagher et al. | May 2008 | A1 |
20080117841 | Chen | May 2008 | A1 |
20080123596 | Gallagher et al. | May 2008 | A1 |
20080125120 | Gallagher et al. | May 2008 | A1 |
20080130564 | Gallagher et al. | Jun 2008 | A1 |
20080130568 | Gallagher et al. | Jun 2008 | A1 |
20080132224 | Gallagher et al. | Jun 2008 | A1 |
20080132239 | Khetawat et al. | Jun 2008 | A1 |
20080137612 | Gallagher et al. | Jun 2008 | A1 |
20080165725 | Huomo et al. | Jul 2008 | A1 |
20080181204 | Gallagher et al. | Jul 2008 | A1 |
20080207170 | Khetawat et al. | Aug 2008 | A1 |
20080220813 | Brown et al. | Sep 2008 | A1 |
20080261596 | Khetawat et al. | Oct 2008 | A1 |
20080299976 | Gallagher et al. | Dec 2008 | A1 |
20080299977 | Gallagher et al. | Dec 2008 | A1 |
20080305792 | Khetawat et al. | Dec 2008 | A1 |
20080305793 | Gallagher et al. | Dec 2008 | A1 |
20080318571 | Vikberg et al. | Dec 2008 | A1 |
20090149195 | Zhu | Jun 2009 | A1 |
20100041387 | Khetawat et al. | Feb 2010 | A1 |
20100041402 | Gallagher et al. | Feb 2010 | A1 |
20100041403 | Khetawat et al. | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
1909726 | Feb 2007 | CN |
0936777 | Aug 1999 | EP |
1207708 | May 2002 | EP |
1207708 | Oct 2004 | EP |
2115946 | Nov 2009 | EP |
2282735 | Apr 1995 | GB |
2428937 | Feb 2007 | GB |
2428942 | Feb 2007 | GB |
2430120 | Mar 2007 | GB |
2430121 | Mar 2007 | GB |
2430839 | Apr 2007 | GB |
2432082 | May 2007 | GB |
WO 9204796 | Mar 1992 | WO |
WO 9724004 | Jul 1997 | WO |
WO 9948312 | Sep 1999 | WO |
WO 9948315 | Sep 1999 | WO |
WO 0028762 | May 2000 | WO |
WO 0051387 | Aug 2000 | WO |
WO 0245456 | Jun 2002 | WO |
WO 03039009 | May 2003 | WO |
WO 03039009 | May 2003 | WO |
WO 03092312 | Nov 2003 | WO |
WO 2004002051 | Dec 2003 | WO |
WO 2004036770 | Apr 2004 | WO |
WO 2004034219 | Apr 2004 | WO |
WO 2004039111 | Jun 2004 | WO |
WO 2005006597 | Jan 2005 | WO |
WO 2005060292 | Jun 2005 | WO |
WO 2005107169 | Nov 2005 | WO |
WO 2005107169 | Nov 2005 | WO |
WO 2005107297 | Nov 2005 | WO |
WO 2005114918 | Dec 2005 | WO |
WO 2005114920 | Dec 2005 | WO |
WO 2005114918 | Mar 2006 | WO |
WO 2006053102 | May 2006 | WO |
WO 2007015066 | Feb 2007 | WO |
WO 2007015067 | Feb 2007 | WO |
WO 2007015068 | Feb 2007 | WO |
WO 2007015071 | Feb 2007 | WO |
WO 2007015075 | Feb 2007 | WO |
WO 2008009016 | Jan 2008 | WO |
WO 2008036961 | Mar 2008 | WO |
WO 2008055251 | May 2008 | WO |
WO 2008106360 | Sep 2008 | WO |
WO 2009021152 | Feb 2009 | WO |
WO 2010019970 | Feb 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20070238448 A1 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
60744440 | Apr 2006 | US | |
60419785 | Oct 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11096800 | Mar 2005 | US |
Child | 11697710 | US | |
Parent | 11013883 | Dec 2004 | US |
Child | 11096800 | US | |
Parent | 10688470 | Oct 2003 | US |
Child | 11013883 | US |