Level sensing of submerged solids in salt water can be a difficult task. Non-contact level sensing (e.g., capacitive, ultrasonic) is subject to error and false readings based not only on corrosion of electronic devices in the salty environment, but also salt deposits on the walls and exposed sensing elements. Any system and/or method that provides a reliable mechanism to detect or sense the level of submerged solids in salt water would provide a competitive advantage in the marketplace.
For a detailed description of example embodiments, reference will now be made to the accompanying drawings in which:
Various terms are used to refer to particular system components. Different companies may refer to a component by different names—this document does not intend to distinguish between components that differ in name but not function. In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . .” Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection or through an indirect connection via other devices and connections.
The following discussion is directed to various embodiments of the invention. Although one or more of these embodiments may be preferred, the embodiments disclosed should not be interpreted, or otherwise used, as limiting the scope of the disclosure, including the claims. In addition, one skilled in the art will understand that the following description has broad application, and the discussion of any embodiment is meant only to be exemplary of that embodiment, and not intended to intimate that the scope of the disclosure, including the claims, is limited to that embodiment.
Various embodiments are directed to methods and systems of sensing level of submerged solids or solid substances in a reservoir. More particularly, various embodiments are directed to sensing level of submerged solids by sensing relative movement of components of a level sensing apparatus whose lower end is itself submerged and in contact with an upper surface of the submerged solids. The various embodiments were developed in the context of sensing the level of salt pellets submerged in water within a reservoir being part of a water softening system. When the salt water from the reservoir is used to regenerate the water softener, the reservoir is replenished with fresh water. The fresh water dissolves the portions of the salt pellets to again create salt water, and thus the volume of undissolved salt is reduced. The description that follows regarding sensing of level of submerged solids is based on the developmental context; however, the developmental context shall not be read as a limitation on the applicability of the various devices and methods.
The level sensing system includes a level sensing apparatus comprising two tubes—an outer tube 120 and an inner tube 122. In particular, the outer tube 120 comprises an upper or first end 124 and a lower or second end 126 opposite the first end 124. The example outer tube 120 has a first diameter D1 and a second diameter D2, where the first diameter D1 is smaller than the second diameter D2. A shoulder region 128 is defined at the intersection of the first diameter D1 and second diameter D2. In example embodiments, the first diameter D1 is smaller than an inside diameter of the aperture 118 through the lid 116, while the second diameter D2 is larger than the inside diameter of the aperture 118. The outer tube 120 defines a length L1 measured between the shoulder region 128 and the second end 126. The outer tube 120 further comprises an interior volume 130 (not directly visible in
Still referring to
In cases where the reservoir 100 and submerged solids 112 are associated with a water softener, each time the water softener regenerates the water 114 is pumped from reservoir 100 (the water softener and pump not shown so as not to unduly complicate the drawings). Thereafter, fresh water is pumped into the reservoir 100, and the fresh water dissolves a portion of the submerged solids 112 in the reservoir 100, the dissolving taking place until the water 114 reaches saturation. Dissolving of the submerged solids 112 causes the upper surface 140 of the submerged solids 112 to recede.
At some point in the process, the upper surface 140 of the submerged solids 112 recedes to a predetermined low level. At the predetermined low level, the shoulder region 128 abuts the top 202 of the lid 116 as shown in
In example systems, the switch device 200 is a magnetic reed switch, and the actuation device 138 is a magnet. In this way the reed switch and magnet can be selected to provide a calibrated amount of relative travel before the reed switch actuates. For example, the reed switch and magnet may be selected to enable any value between 1 and 6 inches, inclusive, of relative travel between the outer tube 120 and the inner tube 122 before the reed switch actuates. Thus, relative movement between the outer tube 120 and the inner tube 122 less than the threshold may not activate the reed switch, which lowers the chances of the false low-level alarms prior to the shoulder region 128 abutting the top 202 of the lid 116. Other sensing systems with hysteresis in the actuation are possible. For example, the switch device 200 may be an optical system and the actuation device 138 a device that changes state of a light path (e.g., blocks light path). When the state of the light path for the optical device changes based on relative movement exceeding a predetermined threshold (e.g., three inches), the switch device 200 may provide an electrical or optical signal to another device to sound a low-level alarm. In yet still other cases, the switch device 200 may be an electromechanical switch (e.g., a mircoswitch device) with an actuation arm that contacts the upper end 134 of the inner tube 122. Thus, in such situations the actuation device 138 is the upper end 134 of the inner tube 122. As the outer tube 120 and inner tube 122 experience relative movement caused by the receding level of the submerged solids 112, the upper end 134 of the inner tube 122 separates from the electromechanical switch, causing a signal to propagate to the notification system 132.
The notification system 132 may take any suitable form. In some cases the notification system 132 is a standalone system to provide visual and/or audible alarms to indicate that the level of submerged solids has fallen below the predetermined low level. In other cases, the notification system 132 may be the overall plant control system within which the level sensing system is located, and to which the switch device 200 electronically provides (e.g., electrical and/or optical) signals indicative of the submerged solids having fallen below the predetermined low level.
The above discussion is meant to be illustrative of the principles and various embodiments of the present invention. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. For example, the length L1 of the outer tube 120 is shown to be shorter than the length L2 of the inner tube 122; however, in some cases length L1 of the outer tube 120 is selected such that the second end 126 of the outer tube 120 and lower end 136 of the inner tube 122 both rest on the upper surface 140 of the submerged solids 112. Moreover, while the outer tube 120 is described to have a circular cross section (and thus the aperture 118 is a circular aperture), the outer tube 120 may have any suitable shape (e.g., square, octagonal, elliptical) and thus any suitable outside dimension, and in such cases the aperture 118 has a corresponding shape and corresponding inside dimension. Likewise, while the inner tube 122 is described to have a circular cross section (and thus the inside diameter of the outer tube 120 is circular), the inner tube 122 may have any suitable shape (e.g., square, octagonal, elliptical) and thus any suitable outside dimension, and in such cases the inside surface of the outer tube 120 has a corresponding shape and corresponding inside dimension. Moreover, the outside cross-sectional shapes of the outer tube and inner tube need not match. It is intended that the following claims be interpreted to embrace all such variations and modifications.
This application claims the benefit of provisional application Ser. No. 62/550,424 filed Aug. 25, 2017 and titled “Method and System of Salt Level Sensing.” The provisional application is incorporated by reference herein as if reproduced in full below.
Number | Name | Date | Kind |
---|---|---|---|
4019659 | Deneen | Apr 1977 | A |
4139750 | Rau | Feb 1979 | A |
4917794 | Fettes et al. | Apr 1990 | A |
5147531 | Dougal | Sep 1992 | A |
5239285 | Rak | Aug 1993 | A |
5297428 | Carr | Mar 1994 | A |
5363087 | Johannsen | Nov 1994 | A |
6309551 | Suchecki, Jr. | Oct 2001 | B1 |
6380499 | Edwards | Apr 2002 | B1 |
6696966 | Bearak | Feb 2004 | B2 |
7030768 | Wanie | Apr 2006 | B2 |
7722772 | Furukawa | May 2010 | B2 |
7949747 | Van Oosterwijck | May 2011 | B1 |
8180489 | Quinn | May 2012 | B2 |
9533902 | Yamaoka | Jan 2017 | B2 |
9791308 | Pesz | Oct 2017 | B2 |
20020170354 | Monsrud et al. | Nov 2002 | A1 |
20150218026 | Yamaoka | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
102009024998 | Dec 2010 | DE |
Number | Date | Country | |
---|---|---|---|
20190063979 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
62550424 | Aug 2017 | US |