The present invention relates to cellular mobile radio systems, and more especially it relates to Code Division Multiple Access, CDMA, cellular mobile radio systems, particularly to transmission power control in such systems.
Transmission power control, TPC, transmitting single or multiple TPC bits from a radio base station, RBS, to a mobile station, MS, or vice versa informing the receiving party to increase or decrease the transmission power level, optionally by a specified amount, is previously known.
Transmission power control compensates for signal fading and interference dynamics at a receiver. Closed loop power control according to prior art is described in relation to
In
3rd Generation Partnership Project (3GPP): Technical Specification Group Radio Access Network, Physical Layer Procedures, 3G TS 25.214 v3.3.0, France, June 2000, specifies in annex B.1 that timing of an uplink dedicated physical channel, DPCH, is delayed by 1024 chips from the corresponding downlink DPCH to maximize cell radius within which one-slot control delay can be achieved. In the sequel this maximum radius is referred to as the one-slot distance to the base station. Basically, according to the 3GPP technical specification a TPC command comprises one bit, indicating a power increase or decrease. However, the invention does not exclude basic TPC commands comprising more than one bit. Further according to the 3GPP technical specification, during soft handover there is one such basic TPC bit or TPC command for each of the links involved, to be combined into a TPC command. Consequently, the concept “TPC command” comprises both such basic and combined TPC commands. The 3GPP Technical Specification also describes out of synchronization handling. Briefly, poor quality link sets are indicated to be out of sync. Regarding uplink power control, the MS shall shut its transmitter off during downlink out-of-sync conditions. If the receive timing for any link, during soft handover, drifts to lie outside a valid range, information shall be provided, so that the network can adjust downlink timing. Regarding downlink power control, during out-of-sync periods the TPC command transmitted shall be set as “1”, i.e. it shall indicate a power increase.
European Patent Application EP0955735 discloses a method, and base and mobile stations for locating transmission power control data and pilot data in relation to each other within a slot taking into account, processing delays and propagation delays and slot offsetting between uplink and downlink.
None of the cited documents above discloses a closed loop transmission power control, TPC, with the location of TPC data within a slot fixed for two or more slots in relation to pilot symbols, the power control being adaptive to loop delays varying to be larger than or smaller than the duration of one slot.
If the distance between the MS and the RBS is larger than the one-slot distance, the power control loop delay will cause TPC commands to be issued in a slot later than the transmission instant. If the distance is close to the one-slot distance, it is likely for the control loop delay to vary between one and two slots due to movements of the mobile station. If the loop delay is larger than one slot and a TPC command needs to be transmitted within one slot, the TPC command will be transmitted prior to estimation of channel quality of corresponding slot has been completed. Correspondingly, if loop delay is larger than two, three, four, etc. slots and a TPC command needs to be transmitted within two, three, four etc. slots respectively, the TPC command will be transmitted prior to estimation of channel quality has been completed.
TPC commanded power level tends to oscillate particularly for immovable user equipment or user equipment moved at low speed. This is even more predominant if SIR data is filtered with long integration time for SIR measurements.
Consequently, there is a need to assign a TPC command and find a basis for the assignment that avoids excessive variations or oscillations.
There is a problem in assigning the TPC command such that interference level is not increased and the connection is not lost. If transmission power would have been commanded to decrease were the loop delay not larger than one slot, the interference level to other users could increase if the assigned TPC command indicates a power increase. Similarly, if transmission power would have been commanded to increase were the loop delay not larger than one slot, the connection could be lost if the assigned TPC command indicates a power decrease. The restriction of TPC commands to indicate only a transmission power increase or decrease, in accordance with the 3GPP Technical Specification, makes the assignment critical.
The TPC command assignment should take into account a transitional phase when the loop delay increases or decreases to pass a slot-border. It should also apply in a (quasi-) stationary environment with loop delays larger than one (or more) slot intervals.
It is consequently an object of the present invention to achieve transmission power control that is stable when transmission power control loop delay increases beyond a slot border.
It is also an object to achieve a system stabilized for loop delays essentially not varying over time.
An object is also to have a transmission power control that is stable and robust.
Another object is to estimate transmission power control loop delay.
Finally, it is an object to reduce radio interference between different connections and reduce transmission power level in a cell of a cellular radio communications system.
These objects are met by a method and apparatus transmitting a TPC command based upon a latest available earlier measurement adjusting for excessive oscillating variability by a quasi-periodic correcting signal with a cycle time corresponding to half the TPC control delay.
In particularly a CDMA system it is important to control the uplink (and downlink) transmission power to a level not larger than necessary in order to keep the interference level and power consumption of the system at a minimum.
Loop delays tend to create an oscillatory behavior of controlled transmission power as illustrated in
There are present solutions to reduce or eliminate the influence from excessive loop delay that operate satisfactorily for user equipment moving at high or medium speed, the motion causing loop delay to vary. However, for immovable or slowly moving terminals such solutions do not apply.
The invention operates using smallest available loop delay and compensates for oscillations as they occur. The loop delay depends not only on distance between base station and user equipment but also on load and user terminal performance.
In prior art, oscillation peaks may well cause transmission power to pass beyond SIR target, thereby introducing excess interference and reducing system performance.
Received pilot bits, used for SIR measurement, may be detected for evaluation or filtered for estimation of received transmission power. In the latter case additional delay and associated oscillating behavior is introduced, further contributing to oscillatory behavior. Also this negative contribution is compensated for according to the invention.
The invention detects oscillatory behavior of the controlled power control level. A quasi-stationary cycle time, or equivalently a quasi-stationary frequency component, is preferably used for estimating closed loop transmission power control loop-delay.
Transmission power control, TPC, commands are predistorted to compensate for oscillations when present. During transitional phases, when there are no full periods for loop delay estimations, preferably no predistorsion is introduced.
According to prior art, radio receiving entity sends to radio transmitting entity 1500 TPC commands per second, each indicating whether transmission power should be increased or reduced. The command is determined in accordance with received signal and interference levels as compared to one or more targets.
A preferred estimate of the loop delay is ¼ of quasi-stationary cycle time as determined or, equivalently, 1/(4fo), where fo is detected quasi-stationary oscillation frequency. Units of time are e.g. (fractions of) seconds or number of slots or power control regulation intervals.
According to a preferred mode of the invention, oscillations to be compensated, if any, in commanded transmission power are analyzed in frequency domain. Oscillations to be compensated are detected when one frequency component, fo, smaller than the TPC command rate, strongly dominates over others, if any.
According to a second mode of the invention, all frequency components above a threshold are compared to frequency components below the threshold. If accumulated power of frequencies below the threshold dominates accumulated power of frequencies above the threshold, oscillation to be compensated for is considered to prevail.
A preferred predistorsion of an oscillating uncompensated TPC commanded power level is illustrated in
Initially, a periodic predistorsion signal halving cycle time and amplitude (peak-peak) to ½ of an uncompensated TPC command sequence power level <<uncompensated transmission power>> oscillation cycle time and amplitude (peak-peak), respectively. A binary sequence <<Bin. seq.>> corresponding to TPC commands (0/1) as would cause a power change corresponding to the predistorsion signal <<predistorsion power>> is determined and added modulo-2 to the uncompensated candidate TPC command sequence (0/1) <<Cand. seq.>> to achieve the compensated TPC commands (0/1) <<TPC seq.>> command by command prior to transmission of the respective TPC commands. Of course, the same resulting signal would be achieved if the compensation signal and the uncompensated TPC commands were antipodal (±1) and the signal components were multiplied, as the different representations are algebraically equivalent.
Subsequently, the process may be repeated for refined compensation, halving the cycle time and peak-peak amplitude of the initially compensated periodic signal. This can be repeated until the cycle time equals two slots. This additional step is illustrated in
Of course, the above-mentioned repeated refinement does not necessarily imply that the compensation is actually performed recursively. It can be achieved by adding a compensating sequence at once with a resulting transmission power control command sequence equivalent to iteratively determined compensation.
In one mode of the invention, the compensating sequence is produced by means of a neural network in a back-propagation arrangement.
Another mode of the invention uses predefined sub-sequences for compensation.
In a further mode of the invention the sub-sequences for compensation are generated pseudo-randomly.
It is preferred that predistorsion is introduced not until a predefined number of slots indicate oscillation to be compensated. In the illustrated example of
Predistorsion is interrupted (or not introduced) when all TPC commands commanding power changes in one and the same direction (transmission power increase or decrease) during an interval corresponding to loop delay as estimated are obtained.
The invention covers three embodiments:
In an alternative embodiment, the cell interference measurement and correlation with cell interference level is replaced by per cell pair-wise correlations of uncompensated TPC command power levels of the various radio links and a predistorsion pattern is injected to one of the uncompensated transmission power control signals at a time.
A person skilled in the art readily understands that the receiver and transmitter properties of an RBS or an MS are general in nature. The use of concepts such as RBS or MS within this patent application is not intended to limit the invention only to devices associated with these acronyms. It concerns all devices operating correspondingly, or being obvious to adapt thereto by a person skilled in the art, in relation to the invention. As an explicit non-exclusive example the invention relates to mobile stations without a subscriber identity module, SIM, as well as user equipment including one or more SIMs.
The invention is not intended to be limited only to the embodiments described in detail above. Changes and modifications may be made without departing from the invention. It covers all modifications within the scope of the following claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE03/01559 | 10/7/2003 | WO | 00 | 4/5/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/034380 | 4/14/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5852782 | Komatsu | Dec 1998 | A |
6075974 | Saints et al. | Jun 2000 | A |
6493541 | Gunnarsson et al. | Dec 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20080214224 A1 | Sep 2008 | US |