The present application relates to a method and system to avoid plant shadows for vegetation and soil imaging, and more particularly, to a method and system to avoid and/or reduce plant shadowing for vegetation and soil imaging from an aerial vehicle using one or more cameras and obtaining images based on a location of the sun relative to the aerial vehicle and, for example, plants and/or vegetation.
Aerial vehicles can include manned airplanes, rotary type unmanned aerial vehicles (UAV) including helicopters, quadcopters, hexacopters, octocopters, and/or fixed wing UAVs can be used to obtain aerial photographs. While capturing the images, shadowing of plant leaves on nearby crop plants and soil can reduce accuracy of remote sensing. In addition, for example, the problem can be worse with high resolution low elevation remote sensing.
In consideration of the above issues, it would be desirable to have a method and system to help avoid and/or reduce plant shadows for vegetation and soil imaging.
In accordance with an exemplary embodiment, a method is disclosed of obtaining aerial images from an aerial vehicle to avoid shadows produced by the sun, the method comprising: providing the aerial vehicle with one or more cameras configured to capture images of a landscape; and arranging the one or more cameras to capture the images from an angle which is opposite in direction of the sun.
In accordance with an exemplary embodiment, a computer program product comprising a non-transitory computer readable medium having a computer readable code embodied therein for obtaining aerial images from an aerial vehicle which avoids shadows produced by the sun is disclosed, the computer readable program code configured to execute a process, which includes the steps of: providing the aerial vehicle with one or more cameras configured to capture images of a landscape; and arranging the one or more cameras to capture the images from an angle which is opposite in direction of the sun.
In accordance with an exemplary embodiment, a system of obtaining aerial images from an aerial vehicle to avoid shadows produced by the sun, the system comprising: an aerial vehicle with one or more cameras configured to capture images of a landscape, and wherein the one or more cameras are arranged to capture the images from an angle which is opposite in direction of the sun.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention. In the drawings,
Shadows can reduce the accuracy of vegetation and soil remote sensing. For example, in accordance with an exemplary embodiment, adjustments can be made to the camera angle such that the camera angle is opposite to the sun direction to help reduce shadows. In accordance with an exemplary embodiment, by detecting the direction of the sun, one can help reduce the effects of shadows in aerial photographs. The direction of the sun can be detected by using the shadow direction of an aerial vehicle, or data including information obtained from GPS including time, date, and geographical location. In addition, it can be desirable to detect shadows on lower edge of plants closest to an optical axis, and/or luminance or near infrared bands, which can help improve detection of shadows.
In accordance with an exemplary embodiment, a method and system is disclosed, which can improve accuracy of vegetation and soil imaging by reducing shadows on the images. In addition, the method and system as disclosed can reduce the time consuming post processing needed to remove shadowing over existing methods.
In accordance with an exemplary embodiment, the method and system as disclosed can determine sun direction using, for example, a direction of an aerial vehicle shadow and/or combination of GPS geographic location, date and time. In accordance with an exemplary embodiment, the camera can be oriented, or a flight direction of the aerial vehicle can be changed such that the camera can be oriented opposite to the sun direction, which can help minimize plant shadows on neighboring vegetation and soil.
In accordance with an exemplary embodiment, near infrared and luminance can be utilized to improve detection of residual shadows. In accordance with an exemplary embodiment, for example, healthy vegetation can reflect near infrared, however shadows reflect near infrared much less, especially, for example, if shadows are on the ground. Healthy vegetation can also be brighter than shadows, allowing luminance to differentiate between shadows and healthy vegetation. In addition, the side of a shadow can be seen towards the opposite direction of the sun (shadow of aerial vehicle), which characteristics can be used for accurate shadow detection.
In accordance with an exemplary embodiment, the direction of the sun can be determined by detection of the aerial vehicle shadow using several consecutive image frames. As the result, objects on the ground will be blurry while the shadow is almost the same. In accordance with an exemplary embodiment, removal of aerial vehicle shadow can be accomplished by replacing aerial vehicle shadow pixels of frame with subsequent frames containing non-shadow pixels, which can be performed using an image processing method. For example, in accordance with an exemplary embodiment, once the aerial vehicle shadow position is detected, the portion of image on both sides of the detected shadow can be extracted as bands and the area of the image containing the aerial vehicle shadow can be avoided to eliminate effect of aerial vehicle shadow. However, to detect actual area of plant leaves, images taken toward the sun angle and away from the sun angle can be combined to form an image with minimal shadows on either side, which procedure allows more accurate vegetation analysis by analyzing only the leaf itself and not the leaf's shadow.
In accordance with an exemplary embodiment, the method and system as disclosed can avoid shadows by adjusting the camera angle to point in a direction opposite to the sun.
In accordance with an exemplary embodiment, the method and system as disclosed can use dual cameras 110, which can include a first camera 114 pointing towards the front of the aerial vehicle 100 and a second camera 112 pointing behind the aerial vehicle as shown in
In accordance with an exemplary embodiment, the method and system as disclosed can use gimbal camera mount 300 as shown in
In accordance with an exemplary embodiment, the method and system as disclosed can use a camera 110 having a tilted and/or shifted lens as shown in
In accordance with an exemplary embodiment, the method and system as disclosed can use a digital image adjustment by adjusting utilized pixel locations on sensor as shown in
In accordance with an exemplary embodiment, the method and system as disclosed can use a digital image processing using a morphing technique, which can include the optical axis of camera being adjustable to a direction, which is opposite of the sun.
In accordance with an exemplary embodiment, the method and system as disclosed can use sun direction detection methods, which can include the use of the GPS geographical location of the aerial vehicle, time and date of captured image.
As shown in
In accordance with an exemplary embodiment, tilt and shift can encompass two different types of movements, which include rotation of the lens plane relative to the image plane, or tilt, and movement of the lens parallel to the image plane, or shift. Tilt can be used to control the orientation of the plane of focus (PoF), and hence the part of an image that appears sharp, which makes use of the Scheimpflug principle. Shift can be used to adjust the position of the subject in the image area without moving the camera back, which can be helpful in avoiding the convergence of parallel lines, as when photographing tall buildings.
In accordance with an exemplary embodiment, the method and system as disclosed can adjust the camera angle based on an angle of the sun 120. For example, in accordance with an exemplary embodiment, the camera adjustment can be adjusted to be opposite the direction of the sun. For example, assume the aerial vehicle is flying on a course of 270° W. The flight is taking place over northern Iowa on Jun. 4, 2015 at 10:00 AM. The GPS locations from the aerial vehicle navigation system are latitude 43.2932, longitude −92.680664. The sun azimuth angle is determined to be 102.65° and the sun elevation angle is 45.93° using parameters of GPS coordinates of the flight area and the date and time of the flight inputted into online sun position calculators such as that provided by the National Oceanic and Atmospheric Administration (http://www.esrl.noaa.gov/gmd/grad/solcalc/) or using the position and length of the aerial vehicle shadow. Based on this information, in accordance with an exemplary embodiment, the camera angle would be pointed towards the front of the aerial vehicle 100 since the sun direction is behind the aerial vehicle on the port side at an approximate angle, for example, of 13°.
In accordance with an exemplary embodiment, when imaging, for example, an agricultural field, the aerial vehicle 100 can traverse the field multiple times to image the entire field, using various methods such as a racetrack or lawnmower pattern as shown in
For this example, the aerial vehicle 100 flight direction for the opposite lawnmower pattern, the camera 110 would be pointed behind the aerial vehicle 100, approximately opposite to the sun 120 direction to minimize the effect of crop shadows on the images.
In accordance with an exemplary embodiment, images from one or more cameras 110 can be stitched or processed together for vegetation and soil imaging. For example, images can be obtained by one or more of the above disclosed methods using one or more fixed cameras 110, dual cameras 112, 114, a gimbal mount 300 and/or a tilted and shifted lens 400 and obtaining images from the aerial vehicle 100, which are taken from a non-shadow side and assembled together such that as the aerial vehicle 100 travels along a direction, one or more overlapping images can be obtained and assembled to reduce the shadows within the assembled image.
In accordance with an exemplary embodiment, a computer program product comprising a non-transitory computer readable medium having a computer readable code embodied therein for obtaining aerial images from an aerial vehicle which avoids shadows produced by the sun is disclosed, the computer readable program code configured to execute a process, which includes the steps of: providing the aerial vehicle with one or more cameras configured to capture images of a landscape; and arranging the one or more cameras to capture the images from an angle which is opposite in direction of the sun.
The non-transitory computer usable medium may be a magnetic recording medium, a magneto-optic recording medium, or any other recording medium which will be developed in future, all of which can be considered applicable to the present invention in all the same way. Duplicates of such medium including primary and secondary duplicate products and others are considered equivalent to the above medium without doubt. Furthermore, even if an embodiment of the present invention is a combination of software and hardware, it does not deviate from the concept of the invention at all. The present invention may be implemented such that its software part has been written onto a recording medium in advance and will be read as required in operation.
While the present invention may be embodied in many different forms, a number of illustrative embodiments are described herein with the understanding that the present disclosure is to be considered as providing examples of the principles of the invention and such examples are not intended to limit the invention to preferred embodiments described herein and/or illustrated herein.
The present invention includes any and all embodiments having equivalent elements, modifications, omissions, combinations (e.g. of aspects across various embodiments), adaptations and/or alterations as would be appreciated by those in the art based on the present disclosure. The limitations in the claims are to be interpreted broadly based on the language employed in the claims and not limited to examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive. For example, in the present disclosure, the term “preferably” is non-exclusive and means “preferably, but not limited to”.
In this disclosure and during the prosecution of this application, means-plus-function or step-plus-function limitations will only be employed where for a specific claim limitation all of the following conditions are present In that limitation: a) “means for” or “step for” is expressly recited; b) a corresponding function is expressly recited; and c) structure, material or acts that support that structure are not recited. In this disclosure and during the prosecution of this application, the terminology “present invention” or “invention” may be used as a reference to one or more aspect within the present disclosure.
In this disclosure and during the prosecution of this application, the terminology “embodiment” can be used to describe any aspect, feature, process or step, any combination thereof, and/or any portion thereof, etc. In some examples, various embodiments may include overlapping features.
This application claims priority to U.S. Provisional Patent Application Ser. No. 62/139,519, filed on Mar. 27, 2015, the entire content of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62139519 | Mar 2015 | US |