METHOD AND SYSTEM TO CONTROL INTERNAL COMBUSTION ENGINE IDLE SHUT DOWN

Abstract
A method for controlling a compression ignition electronic control module equipped compression ignition internal combustion engine installed in a vehicle to permit engine idling to conform to requirements of a geographical location.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an internal combustion engine incorporating various features of the present invention.



FIG. 2 is a block diagram illustrating a system for implementing idle shut down strategies according to the present invention.



FIG. 3 is a block diagram illustrating operation of a system or method for controlling idle shut down strategies according to the present invention.





DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT(S)

Turning now to the drawings wherein like numbers refer to like structures, and particularly to FIG. 1, there is shown a perspective view of a compression-ignition internal combustion engine 10 incorporating various features according to the present invention. As will be appreciated by those of ordinary skill in the art, engine 10 may be used in a wide variety of applications including on-highway trucks, construction equipment, marine vessels, and stationary generators, among others. Engine 10 includes a plurality of cylinders disposed below a corresponding cover, indicated generally by reference numeral 12. In a preferred embodiment, engine 10 is a multi-cylinder compression ignition internal combustion engine, such as a 4, 6, 8, 12, 16, or 24, cylinder diesel engine, for example. Moreover, it should be noted that the present invention is not limited to a particular type of engine or fuel.


Engine 10 includes an engine control module (ECM) or controller representatively indicated by reference numeral 14. ECM 14 communicates with various engine sensors and actuators via associated cabling or wires, indicated generally by reference numeral 18, to control the engine. In addition, ECM 14 communicates with the engine operator using associated lights, switches, displays, and the like as illustrated in greater detail in FIG. 2. The ECM 14 may also have the ability to communicate with Global Positioning Satellites or similar wireless forms or communication to review data useful to the operation of the engine. When mounted in a vehicle, engine 10 is coupled to a transmission via flywheel 16. As is well known by those in the art, many transmissions include a power take-off (PTO) configuration in which an auxiliary shaft may be connected to associate auxiliary equipment that is driven by the engine/transmission at a relatively constant rotational speed using the engine's variable speed governor (VSG). Auxiliary equipment may include hydraulic pumps for construction equipment, water pumps for fire engines, power generators, and any of a number of other rotationally driven accessories. Typically, the PTO mode is used only while the vehicle is stationary. However, from the description that follows, those who have ordinary skill in the art will appreciate that the present invention is independent of the particular operation mode of the engine, or whether the vehicle is stationary or moving for those applications in which the engine is used in a vehicle having a PTO mode.


Referring now to FIG. 2, a block diagram illustrating a system for idle shutdown override with defeat protection according to the present invention is shown. System 30 represents the control system for engine 10 of FIG. 1. System 30 preferably includes a controller 32 in communication with various sensors 34 and actuators 36. Sensors 34 may include various position sensors such as an accelerator or brake position sensor 38. Likewise, sensor 34 may include a coolant temperature sensor 40 that provides an indication of the temperature of engine block 42. Likewise, an oil pressure sensor 44 is used to monitor engine-operating conditions by providing an appropriate signal to controller 32. Other sensors may include rotational sensors to detect the rotational speed of the engine, such as RPM sensor 88 and a vehicle speed sensor (VSS) 90 in some applications. VSS 90 provides an indication of the rotational speed of the output shaft or tail-shaft of a transmission (not shown) that may be used to calculate the vehicle speed. VSS 90 may also represent one or more wheel speed sensors that are used in anti-lock breaking system (ABS) applications, for example.


Actuators 36 include various engine components that are operated via associated control signals from controller 32. As indicated in FIG. 2, various actuators 36 may also provide signal feedback to controller 32 relative to their operational state, in addition to feedback position or other signals used to control actuators 36. Actuators 36 preferably include a plurality of fuel injectors 46 which are controlled via associated solenoids 64 to deliver fuel to the corresponding cylinders. In one embodiment, controller 32 controls a fuel pump 56 to transfer fuel from a source 58 to a common rail or manifold 60. Operation of solenoids 64 controls delivery of the timing and duration of fuel injection as is well known in the art. While the representative control system of FIG. 2 with associated fueling subsystem illustrates the typical application environment of the present invention, the invention is not limited to any particular type of fuel or fueling system.


Sensors 34 and actuators 36 may be used to communicate status and control information to an engine operator via a console 48. Console 48 may include various switches 50 and 54 in addition to indicators 52. Console 48 is preferably positioned in close proximity to the engine operator, such as in the cab of a vehicle. Indicators 52 may include any of a number of audio and visual indicators such as lights, displays, buzzers, alarms, and the like. Preferably, one or more switches, such as switch 50 and switch 54, are used to request a particular operating mode, such as cruise control or PTO mode, for example.


In one embodiment, controller 32 includes a programmed microprocessing unit 70 in communication with the various sensors 34, 38, 40, 44, 62 and actuators 36 via input/output port 72. As is well known by those of skill in the art, input/output ports 72 provide an interface in terms of processing circuitry to condition the signals, protect controller 32, and provide appropriate signal levels depending on the particular input or output device. Processor 70 communicates with input/output ports 72 using a conventional data/address bus arrangement 74. Likewise, processor 70 communicates with various types of computer-readable storage media 76 which may include a non-volatile RAM (NVRAM) 78, a read-only memory (ROM) 80, and a random-access memory (RAM) 82. The various types of computer-readable storage media 76 provide short-term and long-term storage of data used by controller 32 to control the engine. Computer-readable storage media 76 may be implemented by any of a number of known physical devices capable of storing data representing instructions executable by microprocessor 70. Such devices may include PROM, EPROM, BEPROM, flash memory, and the like in addition to various magnetic, optical, and combination media capable of temporary and/or permanent data storage.


Computer-readable storage media 76 include data representing program instructions (software), calibrations, operating variables, and the like used in conjunction with associated hardware to control the various systems and subsystems of the engine and/or vehicle. The engine/vehicle control logic is implemented via controller 32 based on the data stored in computer-readable storage media 76 in addition to various other electric and electronic circuits (hardware).


In one embodiment of the present invention, controller 32 includes control logic to reduce unnecessary engine idling and conform the engine idling to the regulations required by the geographical location within which the engine is operating. It is contemplated that the controller 32 has data tables that are loaded with idling requirements of any geographical location. Control logic implemented by controller 32 monitors operating conditions of the engine and/or vehicle to determine that the vehicle is stationary. Likewise, controller 32 determines that the engine has been idling for a period of time by initiating a timer/counter to track the idling time. Determining that the engine is idling may be performed in a number of manners. For example, an engine idling condition may be determined based on position of an accelerator pedal, or the engine speed being below a predetermined idle speed (which may vary according to the engine or ambient temperature). Controller 32 then determines the engine load to detect whether the engine is being used, for example, to drive an auxiliary device. However, those having ordinary skill in the art will appreciate that the present invention is not limited to this operational condition.


Controller 32 then will receive information relative to the geographical location of the engine and will automatically stop the engine when the idling time exceeds a programmable limit and the engine load is less than a second programmable limit indicating the engine is not being used to drive an auxiliary device. Of course, depending upon the particular application, one or more load thresholds may be utilized to determine whether the engine is being used to drive an auxiliary device.


As used throughout the description of the invention, a selectable or programmable limit or threshold may also be selected by any of a number of individuals via a programming device, such as device 66 selectively connected via an appropriate plug or connector 68 to controller 32. Rather than being primarily controlled by software, the selectable or programmable limit may also be provided by an appropriate hardware circuit having various switches, dials, and the like. Of course, the selectable or programmable limit may also be changed using a combination of software and hardware without departing from the spirit of the present invention.


As described above, compression ignition engines having an idle shut down feature have been employed to reduce the amount of unnecessary idling of the engine. Typically, the systems automatically stop the engine after a predetermined or selectable idling time to conserve fuel. However, many engine operators attempt to defeat this feature to keep the engine idling for an indefinite period of time. For example, a driver may want to keep the engine idling to avoid difficulty in restarting the engine after stopping at a rest area. As such, the driver “tricks” the engine by selecting an operating mode that does not activate or trigger the idle shut down feature. One example where an operator may attempt to override idle shut down occurs where an operator selects the PTO mode of operation even though the engine is not being used to drive an auxiliary load. Typically, operation in the PTO mode automatically disables the idle shut down feature of the engine. By selecting an operating mode (PTO) that is inconsistent with the current operating conditions (no auxiliary device connected), the operator has defeated the idle shut down feature. According to the present invention, controller 32 determines whether the requested operating mode is inconsistent with the current operating conditions to determine whether to automatically stop the engine. In one embodiment, engine controller 32 provides a warning to the operator to indicate that the engine will be automatically stopped. The driver is afforded a limited number of opportunities to override the automatic engine shut down. Preferably, controller 32 determines whether the requested operating mode is consistent (or inconsistent) with the current operating conditions by comparing the engine load to a selectable or programmable load threshold. If the engine is being used to drive an auxiliary device, the engine will be loaded accordingly. As such, controller 32 will override the automatic shut down feature to keep the engine running. However, if the engine operating conditions indicate that the selected mode of operation is inconsistent or inappropriate, the idle shutdown feature will be activated and the engine will be automatically stopped after the associated criteria have been satisfied, i.e. idle time, number of overrides, etc.


Turning to FIG. 3, there is illustrated a software flow diagram of one embodiment of the idle shutdown strategy of the present invention. The method of the present invention is illustrated in FIG. 3 in connection with one representative operational mode where the vehicle may be in a PTO mode for auxiliary devices. However, those having ordinary skill in the art will appreciate that this representation is exemplary, only, and that the method of the present invention is not limited for use only where the vehicle is in PTO mode for auxiliary devices. Specifically, method 92 initiates with starting the engine at step 94. Step 96 is determining whether the engine is idling. If the determination is made that the engine is idling, step 98 is determining whether the engine is currently in a geographical location that restricts idling. This may be accomplished by the ECM receiving a signal from a Global Positioning satellite system setting forth the geographical location of the engine, or by means of a wireless signal received by the ECM setting forth the geographical location of the engine, or by means of a hand held device that inputs the geographical location of the vehicle, or by any other means such as may be known by those of ordinary skill in the art. If the determination in step 98 is that the engine is not in a geographical location that restricts engine idle time, the ECM will proceed to step 99, which is executing a traditional idle shut down strategy such as is known in the art. If the determination is made that the engine is in a geographical location that restricts engine idling, reference is made to a look up table within the ECM and step 100 is determining the allowed idle time permitted by the geographical location within which the engine is operating. In the representative example illustrated here, step 102 is determining whether the engine is in PTO mode, and whether there are any auxiliary devices such as refrigeration or heating devices that are dependent upon the operation of the engine for operation. If the vehicle is in PTO mode and there are no auxiliary devices dependent upon the operation of engine, the method proceeds to Step 104, which is determining whether the engine idling time experienced by the engine at any given current operating time is greater than or equal to the allowed idling time permitted by the geographical location within which the engine is operating. If there are auxiliary devices that are dependent upon the operation of the engine, the system executes step 99.


If the engine idling time is greater than the allowed idle time, step 106 is shutting down the engine. The idle shut down strategy of the present invention may be overridden by merely depressing the accelerator pedal.


Those skilled in the art will understand that the terms used in this description are illustrative and are not intended to be limiting in any way to the scope of the invention. In addition, various modifications will become apparent to those skilled in the art without departing form the scope and spirit of the invention.

Claims
  • 1. A method for controlling an electronic control module equipped internal combustion engine idling to conform to requirements of a geographical location, comprising; determining whether the engine is idling;determining whether the engine is located within a geographical location that restrict engine idling;determining whether the engine idle time is greater than or equal to the allowed engine idle time within the geographical location within which the engine is operating;shutting down the engine when the engine idle time exceeds the allowed idle time within the geographical location within which the engine is operating.
  • 2. The method of claim 1, further including the step of determining whether auxiliary devices mode require engine operation.
  • 3. The method of claim 1, further including the step of overriding idle shutdown by depressing the accelerator pedal.
  • 4. The method of claim 1, wherein the electronic control module is equipped with look up tables that contain data on engine idle operation permitted by any given geographical location.
  • 5. The method of claim 1, wherein said geographical location of the engine is communicated to the electronic control module by wireless communication.
  • 6. The method of claim 5, wherein said wireless communication is a global positioning satellite transmission signal.
  • 7. The method of claim 1, wherein said geographical location of the engine is communicated to the electronic control module through an interface to the electronic control module.
  • 8. The method of claim 1, wherein said power take off mode includes said auxiliary power mode.
  • 9. The method of claim 1, further including monitoring the vehicle engine to determine whether the vehicle engine is idling.