Electrochemical glucose test strips, such as those used in the OneTouch® Ultra® whole blood testing kit, which is available from LifeScan, Inc., are designed to measure the concentration of glucose in a blood sample from patients with diabetes. The measurement of glucose can be based on the selective oxidation of glucose by the enzyme glucose oxidase (GO). The reactions that can occur in a glucose test strip are summarized below in Equations 1 and 2.
Glucose+GO(ox)→Gluconic Acid+GO(red) Eq. 1
GO(red)+2Fe(CN)63−→GO(ox)+2Fe(CN)64− Eq. 2
As illustrated in Equation 1, glucose is oxidized to gluconic acid by the oxidized form of glucose oxidase (GO(ox)). It should be noted that GO(ox) may also be referred to as an “oxidized enzyme.” During the reaction in Equation 1, the oxidized enzyme GO(ox) is converted to its reduced state, which is denoted as GO(red) (i.e., “reduced enzyme”). Next, the reduced enzyme GO(red) is re-oxidized back to GO(ox) by reaction with Fe(CN)63− (referred to as either the oxidized mediator or ferricyanide) as illustrated in Equation 2. During the re-generation of GO(red) back to its oxidized state GO(ox), Fe(CN)63− is reduced to Fe(CN)64− (referred to as either reduced mediator or ferrocyanide).
When the reactions set forth above are conducted with a test voltage applied between two electrodes, a test output signal can be created by the electrochemical re-oxidation of the reduced mediator at the electrode surface. Thus, since, in an ideal environment, the amount of ferrocyanide created during the chemical reaction described above is directly proportional to the amount of glucose in the sample positioned between the electrodes, the test output signal generated would be proportional to the glucose content of the sample. A mediator, such as ferricyanide, is a compound that accepts electrons from an enzyme such as glucose oxidase and then donates the electrons to an electrode. As the concentration of glucose in the sample increases, the amount of reduced mediator formed also increases; hence, there is a direct relationship between the test output signal, resulting from the re-oxidation of reduced mediator, and glucose concentration. In particular, the transfer of electrons across the electrical interface results in the flow of a test output signal (2 moles of electrons for every mole of glucose that is oxidized). The test output signal resulting from the introduction of glucose can, therefore, be referred to as a glucose output signal.
Because it can be very important to know the concentration of glucose in blood, particularly in people with diabetes, test meters have been developed using the principals set forth above to enable the average person to sample and test their blood for determining their glucose concentration at any given time. The glucose output signal generated is detected by the test meter and converted into a glucose concentration reading using an algorithm that relates the test output signal to a glucose concentration via a simple mathematical formula. In general, the test meters work in conjunction with a disposable test strip that may include a sample-receiving chamber and at least two electrodes disposed within the sample-receiving chamber in addition to the enzyme (e.g. glucose oxidase) and the mediator (e.g. ferricyanide). In use, the user pricks their finger or other convenient site to induce bleeding and introduces a blood sample to the sample-receiving chamber, thus starting the chemical reaction set forth above.
In one aspect, applicants have devised a glucose measurement system that includes at least one biosensor and a meter. The biosensor has a plurality of electrodes including at least two electrodes with a reagent disposed thereon. The meter includes a microcontroller coupled to a power source, memory and the plurality of electrodes of the biosensor. In this system, the microcontroller is configured to: drive a signal to the at least two electrodes when a fluid sample with an glucose is deposited proximate the at least two electrodes to start a test measurement sequence for an electrochemical reaction of the glucose in the fluid sample with the reagent; measure an output signal from at least one electrode during the electrochemical reaction over a series of time intervals to obtain a magnitude of the output signal for each time interval (i); determine an output differential as a difference in the respective magnitudes of the output signal for at least two consecutive time intervals within a predetermined time window during the test measurement sequence; if the output differential is greater than a predetermined threshold then increment an index value as equal to the sum of both a previous value of the index and the output differential and if the index is greater or equal to a predetermined index value then annunciate an error otherwise calculate the glucose value from the output signal and annunciate the glucose value.
In yet another aspect, a method of determining a glucose value from a fluid sample with a system is provided by applicant. The system includes a biosensor having at least two electrodes and reagent disposed thereon and a glucose meter having a microcontroller configured to connect to the biosensor and to a memory and a power source. The method can be achieved by: initiating a start of a test measurement sequence upon deposition of a fluid sample proximate the at least two electrodes of the biosensor; applying an input signal to the fluid sample to cause a transformation of glucose into an enzymatic by-product; measuring output signal transient from the fluid sample over a predetermined time window from the start of the test sequence, the measuring including sampling an output signal from at least one electrode during the electrochemical reaction over a series of time intervals to obtain a magnitude of the output signal for each time interval; determining an output differential as a difference in the respective magnitudes of the output signal for at least two consecutive time intervals within the predetermined time window during the test measurement sequence; if the output differential is greater than zero then setting an index value as equal to the sum of both a previous value of the index and the output differential otherwise if the index is greater than a predetermined index value then annunciating an error, otherwise calculating a glucose value of the fluid sample and annunciating the glucose value.
And for these aspects, the following features may also be utilized in various combinations with these previously disclosed aspects: the predetermined time window comprises from about 1 second after a start of a test sequence to about 8 seconds after the start of the test sequence; the predetermined index value comprises about 2 microamps and the predetermined threshold comprises about 0.5 microamps; the predetermined time window comprises from about 2 seconds after the start of a test sequence to about 8 seconds after the start of the test sequence; the predetermined index value comprises about 5 and the predetermined threshold comprises about 150; the calculating of the glucose value comprises measuring a magnitude of the output signal proximate a predetermined time interval from the start of the test sequence and utilizing an equation of the form:
These and other embodiments, features and advantages will become apparent to those skilled in the art when taken with reference to the following more detailed description of the exemplary embodiments of the invention in conjunction with the accompanying drawings that are first briefly described.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate presently preferred embodiments of the invention, and, together with the general description given above and the detailed description given below, serve to explain features of the invention (wherein like numerals represent like elements), in which:
The following detailed description should be read with reference to the drawings, in which like elements in different drawings are identically numbered. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. The detailed description illustrates by way of example, not by way of limitation, the principles of the invention. This description will clearly enable one skilled in the art to make and use the invention, and describes several embodiments, adaptations, variations, alternatives and uses of the invention, including what is presently believed to be the best mode of carrying out the invention.
As used herein, the terms “about” or “approximately” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein. More specifically, “about” or “approximately” may refer to the range of values ±10% of the recited value, e.g. “about 90%” may refer to the range of values from 81% to 99%. In addition, as used herein, the terms “patient,” “host,” “user,” and “subject” refer to any human or animal subject and are not intended to limit the systems or methods to human use, although use of the subject invention in a human patient represents a preferred embodiment. As used herein, “oscillating signal” includes voltage signal(s) or current signal(s) that, respectively, change polarity or alternate direction of current or are multi-directional. Also used herein, the phrase “electrical signal” or “signal” is intended to include direct current signal, alternating signal or any signal within the electromagnetic spectrum. The terms “processor”; “microprocessor”; or “microcontroller” are intended to have the same meaning and are intended to be used interchangeably.
Referring back to
Operational amplifier circuit 35 may include two or more operational amplifiers configured to provide a portion of the potentiostat function and the signal measurement function. The potentiostat function may refer to the application of a test voltage between at least two electrodes of a test strip. The current function may refer to the measurement of a test signal resulting from the applied test voltage. The signal measurement may be performed with a current-to-voltage converter. Microcontroller 38 may be in the form of a mixed signal microprocessor (MSP) such as, for example, the Texas Instrument MSP 430. The TI-MSP 430 may be configured to also perform a portion of the potentiostat function and the signal measurement function. In addition, the MSP 430 may also include volatile and non-volatile memory. In another embodiment, many of the electronic components may be integrated with the microcontroller in the form of an application specific integrated circuit (ASIC).
Strip port connector 22 may be configured to form an electrical connection to the test strip. Display connector 14a may be configured to attach to display 14. Display 14 may be in the form of a liquid crystal display for reporting measured glucose levels, and for facilitating entry of lifestyle related information. Display 14 may optionally include a backlight. Data port 13 may accept a suitable connector attached to a connecting lead, thereby allowing glucose meter 10 (or 100) to be linked to an external device such as a personal computer. Data port 13 may be any port that allows for transmission of data such as, for example, a serial, USB, or a parallel port. Clock 42 may be configured to keep current time related to the geographic region in which the user is located and also for measuring time. The meter unit may be configured to be electrically connected to a power supply such as, for example, a battery.
As shown, the sample-receiving chamber 61 is defined by the first electrode 66, the second electrode 64, and the spacer 60 near the distal end 80 of the test strip 62, as shown in
In an exemplary embodiment, the sample-receiving chamber 61 (or test cell or test chamber) may have a small volume. For example, the chamber 61 may have a volume in the range of from about 0.1 microliters to about 5 microliters, about 0.2 microliters to about 3 microliters, or, preferably, about 0.3 microliters to about 1 microliter. To provide the small sample volume, the cutout 68 may have an area ranging from about 0.01 cm2 to about 0.2 cm2, about 0.02 cm2 to about 0.15 cm2, or, preferably, about 0.03 cm2 to about 0.08 cm2. In addition, first electrode 66 and second electrode 64 may be spaced apart in the range of about 1 micron to about 500 microns, preferably between about 10 microns and about 400 microns, and more preferably between about 40 microns and about 200 microns. The relatively close spacing of the electrodes may also allow redox cycling to occur, where oxidized mediator generated at first electrode 66, may diffuse to second electrode 64 to become reduced, and subsequently diffuse back to first electrode 66 to become oxidized again. Those skilled in the art will appreciate that various such volumes, areas, and/or spacing of electrodes is within the spirit and scope of the present disclosure.
In one embodiment, the first electrode layer 66 and the second electrode layer 64 may be a conductive material formed from materials such as gold, palladium, carbon, silver, platinum, tin oxide, iridium, indium, or combinations thereof (e.g., indium doped tin oxide). In addition, the electrodes may be formed by disposing a conductive material onto an insulating sheet (not shown) by a sputtering, electroless plating, or a screen-printing process. In one exemplary embodiment, the first electrode layer 66 and the second electrode layer 64 may be made from sputtered palladium and sputtered gold, respectively. Suitable materials that may be employed as spacer 60 include a variety of insulating materials, such as, for example, plastics (e.g., PET, PETG, polyimide, polycarbonate, polystyrene), silicon, ceramic, glass, adhesives, and combinations thereof. In one embodiment, the spacer 60 may be in the form of a double sided adhesive coated on opposing sides of a polyester sheet where the adhesive may be pressure sensitive or heat activated. Applicants note that various other materials for the first electrode layer 66, the second electrode layer 64, and/or the spacer 60 are within the spirit and scope of the present disclosure.
Either the first electrode 66 or the second electrode 64 may perform the function of a working electrode depending on the magnitude and/or polarity of the applied test voltage. The working electrode may measure a limiting test signal that is proportional to the reduced mediator concentration. For example, if the signal limiting species is a reduced mediator (e.g., ferrocyanide), then it may be oxidized at the first electrode 66 as long as the test voltage is sufficiently greater than the redox mediator potential with respect to the second electrode 64. In such a situation, the first electrode 66 performs the function of the working electrode and the second electrode 64 performs the function of a counter/reference electrode. Applicants note that one may refer to a counter/reference electrode simply as a reference electrode or a counter electrode. A limiting oxidation occurs when all reduced mediator has been depleted at the working electrode surface such that the measured oxidation current is proportional to the flux of reduced mediator diffusing from the bulk solution towards the working electrode surface. The term “bulk solution” refers to a portion of the solution sufficiently far away from the working electrode where the reduced mediator is not located within a depletion zone. It should be noted that unless otherwise stated for test strip 62, all potentials applied by test meter 10 (or 100) will hereinafter be stated with respect to second electrode 64.
Similarly, if the test voltage is sufficiently less than the redox mediator potential, then the reduced mediator may be oxidized at the second electrode 64 as a limiting current. In such a situation, the second electrode 64 performs the function of the working electrode and the first electrode 66 performs the function of the counter/reference electrode.
Initially, an analysis may include introducing a quantity of a fluid sample into a sample-receiving chamber 61 via a port 70. In one aspect, the port 70 and/or the sample-receiving chamber 61 may be configured such that capillary action causes the fluid sample to fill the sample-receiving chamber 61. The first electrode 66 and/or second electrode 64 may be coated with a hydrophilic reagent to promote the capillarity of the sample-receiving chamber 61. For example, thiol derivatized reagents having a hydrophilic moiety such as 2-mercaptoethane sulfonic acid may be coated onto the first electrode and/or the second electrode.
In the analysis of strip 62 above, reagent layer 72 can include glucose dehydrogenase (GDH) based on the PQQ co-factor and ferricyanide. In another embodiment, the enzyme GDH based on the PQQ co-factor may be replaced with the reagent GDH based on the FAD co-factor. When blood or control solution is dosed into a sample reaction chamber 61, glucose is oxidized by GDH(ox) and in the process converts GDH(ox) to GDH(red), as shown in the chemical transformation T.1 below. Note that GDH(ox) refers to the oxidized state of GDH, and GDH(red) refers to the reduced state of GDH.
D-Glucose+GDH(ox)→Gluconic acid+GDH(red) T.1
Next, GDH(red) regenerated back to its active oxidized state by ferricyanide (i.e. oxidized mediator or Fe(CN)63−) as shown in chemical transformation T.2 below. In the process of regenerating GDH(ox), ferrocyanide (i.e. reduced mediator or Fe(CN)64−) is generated from the reaction as shown in T.2:
GDH(red)+2Fe(CN)63−→GDH(ox)+2Fe(CN)64− T.2
In one embodiment, the test meter 10 (or 100) may apply a test voltage and/or a signal between the first contact pad 67 and the second contact pad 63. Once the test meter 10 (or 100) recognizes that the strip 62 has been inserted, the test meter 10 (or 100) turns on and initiates a fluid detection mode. In one embodiment, the fluid detection mode causes test meter 10 (or 100) to apply a constant signal of about 1 microampere between the first electrode 66 and the second electrode 64. Because the test strip 62 is initially dry, the test meter 10 (or 100) measures a relatively large voltage. When the fluid sample bridges the gap between the first electrode 66 and the second electrode 64 during the dosing process, the test meter 10 (or 100) will measure a decrease in measured voltage that is below a predetermined threshold causing test meter 10 (or 100) to automatically initiate the glucose test.
In one embodiment, the test meter 10 (or 100) may perform a glucose test by applying a plurality of test voltages for prescribed intervals, as shown in
The plurality of test signal values measured during any of the time intervals may be performed at a frequency ranging from about 1 measurement per microsecond to about one measurement per 100 milliseconds. While an embodiment using three test voltages in a serial manner is described, the glucose test may include different numbers of open-circuit and test voltages. For example, as an alternative embodiment, the glucose test could include an open-circuit for a first time interval, a second test voltage for a second time interval, and a third test voltage for a third time interval. It should be noted that the reference to “first,” “second,” and “third” are chosen for convenience and do not necessarily reflect the order in which the test voltages are applied. For instance, an embodiment may have a potential waveform where the third test voltage may be applied before the application of the first and second test voltage.
Once the glucose assay has been initiated, the test meter 10 (or 100) may apply a first test voltage E1 (e.g., approximately 20 mV in
The first time interval t1 may be sufficiently long so that the sample-receiving chamber 61 may fully fill with sample and also so that the reagent layer 72 may at least partially dissolve or solvate. In one aspect, the first test voltage E1 may be a value relatively close to the redox potential of the mediator so that a relatively small amount of a reduction or oxidation signal is measured.
After applying the first test voltage E1, the test meter 10 (or 100) applies a second test voltage E2 between first electrode 66 and second electrode 64 (e.g., approximately 300 mVolts in
The second time interval t2 should be sufficiently long so that the rate of generation of reduced mediator (e.g., ferrocyanide) may be monitored based on the magnitude of a limiting oxidation current. Reduced mediator is generated by enzymatic reactions with the reagent layer 72. During the second time interval t2, a limiting amount of reduced mediator is oxidized at second electrode 64 and a non-limiting amount of oxidized mediator is reduced at first electrode 66 to form a concentration gradient between first electrode 66 and second electrode 64.
In an exemplary embodiment, the second time interval t2 should also be sufficiently long so that a sufficient amount of ferricyanide may be generated or diffused at the second electrode 64. A sufficient amount of ferricyanide is required at the second electrode 64 so that a limiting current may be measured for oxidizing ferrocyanide at the first electrode 66 during the third test voltage E3. The second time interval t2 may be less than about 60 seconds, and preferably may range from about 1 second to about 10 seconds, and more preferably range from about 2 seconds to about 5 seconds from the start. Likewise, the time interval indicated as tcap in
After applying the second test voltage E2, the test meter 10 (or 100) applies a third test voltage E3 between the first electrode 66 and the second electrode 64 (e.g., about −300 mVolts in
The third time interval t3 may be sufficiently long to monitor the diffusion of reduced mediator (e.g., ferrocyanide) near the first electrode 66 based on the magnitude of the oxidation current. During the third time interval t3, a limiting amount of reduced mediator is oxidized at first electrode 66 and a non-limiting amount of oxidized mediator is reduced at the second electrode 64. The third time interval t3 may range from about 0.1 seconds to about 5 seconds from the start and preferably range from about 0.3 seconds to about 3 seconds, and more preferably range from about 0.5 seconds to about 2 seconds.
A blood glucose concentration can be determined based on the test signal values. A first glucose concentration G1 may be calculated using a glucose algorithm as shown in Equation 1:
Where
All output test signal values (e.g., i1, i2, and i3) in Equation 1 use the absolute value of the current. The first test signal value i1 and the second test signal value i2 can each be defined by an average or summation of one or more predetermined test signal values that occur during the third time interval t3. The term i2 is a second signal value that is based on a fourth signal value i4, a fifth signal value i5, and a sixth signal value i6, which are all measured during a third time interval. The third test signal value i3 can be defined by an average or summation of one or more predetermined test signal values that occur during the second time interval t2. One skilled in the art will appreciate that names “first,” “second,” and “third” are chosen for convenience and do not necessarily reflect the order in which the signal values are calculated. A derivation of Eq. 1 can be found in U.S. Pat. No. 7,749,371, patented Jul. 6, 2010, which was filed on 30 Sep., 2005 and entitled “Method and Apparatus for Rapid Electrochemical Analysis,” which is hereby incorporated by reference in its entirety into this application.
Referring now to
ipc−2ipb=−iss Eq. 2
Because there is typically “no” glucose in the sample during the first time period it is believed that the reagent layer 72 does not generate substantial amount of reduced mediator. Therefore, the signal transients would reflect only the oxidation of interferents. At the early time scale regime of around 1.0 seconds, it is assumed that reagent layer 72 does not generate a significant amount of reduced mediator because of the glucose reaction. Further, it is assumed that the reduced mediator which is generated will mostly remain near first electrode 66, where reagent layer 72 was initially deposited, and not significantly diffuse to second electrode 64. Therefore, the magnitude of ipb is predominantly ascribed to interferent oxidation at second electrode 64 which is a direct interferent current.
At a duration after the third voltage E3 has been provided to the strip (e.g., about −300 mV) at around 4.1 seconds, reagent layer 72 does generate a significant amount of reduced mediator at first electrode 66 in the presence of glucose because of the glucose reaction. A significant amount of reduced mediator can also be generated because of a possible oxidation of an interferent with the oxidized mediator. As mentioned earlier, interferent that reduces oxidized mediator contributes to a signal which may be referred to as an indirect current. In addition, interferents can also be oxidized directly at first electrode 66 which may be referred to as a direct current. For the situation in which the mediator can be oxidized at the working electrode, it may be assumed that the sum of the direct oxidation and indirect oxidation is approximately equal to a direct oxidation current that would have been measured if there was “no” oxidized mediator disposed on the working electrode. In summary, the magnitude of the ipb is ascribed to both indirect and direct interferent oxidation, and the glucose reaction at one of the first electrode 66 or second electrode 64. Because it has been determined that ipb is controlled mainly by interferents, ipc can be used with ipb together to determine a correction factor. For example, as shown below ipb can be used with ipc in a mathematical function to determine a corrected signal i2(Corr) which is proportional to glucose and less sensitive to interferents:
Eq. 3 was empirically derived to calculate a signal i2(Corr) which is proportional to glucose and has a relative fraction of signal removed that is ascribed to interferents. The term iss was added to both the numerator and denominator to allow the numerator to approach zero when “no” glucose is present. Determination of the steady-state signal iss following application of the second electric potential is detailed in co-pending patent application Ser. No. 11/278,341, which is incorporated by reference into this application herein. Some examples of methods for calculating iss can be found in U.S. Pat. Nos. 5,942,102 and 6,413,410, each of which is hereby incorporated by reference in its entirety.
Referring back now to Equation 1, Equation 3 can be represented in terms of i1, i3 and i2 as based on signal measurements i4, i5, i6, and i7 as Equation 4:
Where, as before, i2 is a second signal value that is based on a fourth signal value i4, a fifth signal value i5, and a sixth signal value i6 which are all measured during a third time interval t3, and i7 which in one embodiment is a seventh signal value measured in a first time interval t1, and B and F are empirically derived constants. The time window for each signal measurement is discussed below.
This technique of accounting for the presence of interferents in an analyte can now be further refined to account for effects due to variation in temperature. In one example embodiment, i7 may be the test signal value measured at an interval during a ramping from the first voltage E1 to the second voltage, which for convenience, has been designated as approximately 1.0 seconds into the test. While this ramped signal i7 has been observed as a current change in an interval from the ramping of the first voltage E1 to the second voltage E2 at the transition line TL, ramped signal i7 may be measured at a time point within a suitable range as defined by a signal measured when the first voltage E1 is in the process of ramping to the second voltage E2 (from 0.7 second to near 1.1 second from the start in
Equation 4 can be modified to provide an even more accurate glucose concentration. Instead of using a simple average of summation of test signal values, the term i1 can be defined to include peak signal values ipb and ipc and the steady-state signal iss, as shown in Equation 5, which is similar to Equation 3:
where a calculation of the steady-state signal iss can be based on a mathematical model, an extrapolation, an average at a predetermined time interval, a combination thereof, or any number of other ways for calculating a steady-state current.
Alternatively, iss may be estimated by multiplying the test signal value at about 5 seconds from the start with a constant K8 (e.g., 0.678). Thus, iss≈i(5) “×” K8. The term K8 can be estimated using Equation 6:
where the number 0.975 is about the time in seconds after the third test voltage or signal E3 is applied that corresponds to the signal at approximately 5 seconds for the particular embodiment of the strip 62, which, assuming a linear variation over the time between about 0.95 seconds and 1 second, is the average signal between 0.95 and 1 second, the term D is assumed to be about 5 “×” 10−6 cm2/sec as a typical diffusion coefficient in blood, and the term L is assumed to be about 0.0095 cm, which represents the height of the spacer 60.
Turning again to Eq. 3, ipc may be the test signal value at about 4.1 seconds, and ipb may be the test signal value at about 1.1 second from the start, based on the test voltage or signal and test signal waveforms in
Turning back to Eq. 1, i2 may be defined to be
and i3 may be defined to be
Equation 3 may be combined with Equations 1 and 2 to yield an equation for determining a more accurate glucose concentration that may compensate for the presence of endogenous and/or exogenous interferents in a blood sample, as shown in Equation 7:
where the first glucose concentration G1 is the output of the blood glucose algorithm and the terms A, p, and z are constants that may be derived empirically from manufacturing samples of the test strip.
The selection of the time intervals in which i1, i3 and i2 may be calculated is described in co-pending Patent Application Publication No. 2007/0227912 entitled ‘Methods and Apparatus for Analyzing a Sample in the Presence of Interferents’, and methods for calibrating strip lots are described in U.S. Pat. No. 6,780,645, both of which are hereby incorporated by reference in their entirety into this application.
In the preferred embodiment, the glucose concentration G1 of Equation 7 is determined by Equation 8 that utilizes signal i2(Corr), (which is proportional to glucose and has a relative fraction of signal removed that is ascribed to interferents):
Where
For the embodiments described here, A is approximately 0.192, B is approximately 0.68, C is approximately 2, p is approximately 0.52, and zgr is approximately 2.
In my research into bias or error in the signal transient for this particular analyte system, my presumption is that a transient decaying too fast may result in extreme low bias. As the absolute signal is tied to glucose concentration it cannot be an indicator of error trigger leading to low bias at all glucose concentration within system range. Therefore, a derivative approach should be pursued. Such an effort, however, is usually linked to curve fitting or other computationally intensive processes. Further, I believe that there is a specific transient shape, which will always lead to a negatively biased result. This mode features a shallow transient decay. Unfortunately, this mode cannot be identified by an absolute signal measurement, as this is modulated by the analyte concentration itself (e.g., glucose).
The technique that I have devised here (
Accordingly, I have configured microcontroller 38 (which is coupled to a power source, memory and the plurality of electrodes of the biosensor 62) so that the microcontroller is programmed with logic process 800 (
At step 820, if the output differential ΔI is greater than zero then the microcontroller 38 increments index “x” by the output differential Δ1, i.e., x=x+ΔI. At query step 824, if the index “x” is greater or equal to a predetermined value “a” then controller moves to step 826 to flag or annunciate an error. Otherwise, if the query at step 824 returns a “no” (i.e., x<a) then the system returns to step 808 to determine if the time period is outside the time window from the start of the test sequence to the end of the test sequence time interval. If query 808 returns a true or “yes” then the system calculates (described earlier) the glucose value from the output signal at step 810 and at step 812 returns to the main routine and annunciate the glucose measurement or value as determined from Equations 8 through 8.2. Assuming that the query at 824 returns a “no” then there is no error in the output signal(s) of the electrodes and the system may annunciate the glucose measurement calculated from step 810.
As implemented, my technique provides a technical contribution or technical effect to the art in that it takes as little resource as possible from the microcontroller—only four parameters need to be introduced (‘a’, ‘b’ along with window start time ‘c’ and end time ‘d’ of the test sequence) and one variables retained and updated (‘x’). For the system utilizing strip 62, Table 1 provides the range of parameters for such system in the utilization of logic process 800 of
My technique described here is the simplest possible, meaning implementation on the meter takes as little resource as possible—only four parameters need to be introduced (‘a’, ‘b’, ‘c’ & ‘d’) and two variables retained and updated (i.e., ‘x’ & ‘y’). Parameter ‘a’ describes the total sum of signal points necessary to trigger the error (which equates to sum area). Parameter ‘b’ defines the difference of consecutive measurement points (current signal output point minus last point) necessary to be counted by the algorithm. Parameters ‘c’ and ‘d’ define the time window in which the error has to occur to merit an error trigger (where ‘c’ is the start time, ‘d’ is the end time). Only if both conditions are satisfied (i.e., the sum of signal differences within the specified time window Tw), the error is triggered. This makes my technique scalable, which in turns allows finding an appropriate balance between true positives (i.e., transients which trigger the trap, and lead to an inaccurate result) and false positives (i.e., output transients which trigger the trap, yet lead to an accurate result).
While the invention has been described in terms of particular variations and illustrative figures, those of ordinary skill in the art will recognize that the invention is not limited to the variations or figures described. In addition, where methods and steps described above indicate certain events occurring in certain order, it is intended that certain steps do not have to be performed in the order described but in any order as long as the steps allow the embodiments to function for their intended purposes. Therefore, to the extent there are variations of the invention, which are within the spirit of the disclosure or equivalent to the inventions found in the claims, it is the intent that this patent will cover those variations as well.
Number | Name | Date | Kind |
---|---|---|---|
4919770 | Preidel et al. | Apr 1990 | A |
5001048 | Taylor et al. | Mar 1991 | A |
5243516 | White | Sep 1993 | A |
5429735 | Johnson et al. | Jul 1995 | A |
5437999 | Diebold et al. | Aug 1995 | A |
5508203 | Fuller et al. | Apr 1996 | A |
5704354 | Preidel et al. | Jan 1998 | A |
5708247 | McAleer et al. | Jan 1998 | A |
5792668 | Fuller et al. | Aug 1998 | A |
5942102 | Hodges et al. | Aug 1999 | A |
5951836 | McAleer et al. | Sep 1999 | A |
6001239 | Douglas et al. | Dec 1999 | A |
6179979 | Hodges et al. | Jan 2001 | B1 |
6193873 | Ohara et al. | Feb 2001 | B1 |
6241862 | McAleer et al. | Jun 2001 | B1 |
6284125 | Hodges et al. | Sep 2001 | B1 |
6287451 | Winarta et al. | Sep 2001 | B1 |
6391645 | Huang et al. | May 2002 | B1 |
6413410 | Hodges et al. | Jul 2002 | B1 |
6475372 | Ohara et al. | Nov 2002 | B1 |
6517482 | Elden et al. | Feb 2003 | B1 |
6576117 | Iketaki et al. | Jun 2003 | B1 |
6645368 | Beaty et al. | Nov 2003 | B1 |
6685633 | Albert et al. | Feb 2004 | B2 |
6716577 | Yu et al. | Apr 2004 | B1 |
6733655 | Davies et al. | May 2004 | B1 |
6749887 | Dick et al. | Jun 2004 | B1 |
6767441 | Cai et al. | Jul 2004 | B1 |
6780645 | Hayter et al. | Aug 2004 | B2 |
6841389 | Novikov et al. | Jan 2005 | B2 |
6863801 | Hodges et al. | Mar 2005 | B2 |
6890421 | Ohara et al. | May 2005 | B2 |
7018843 | Heller | Mar 2006 | B2 |
7045046 | Chambers et al. | May 2006 | B2 |
7050847 | Ollmar et al. | May 2006 | B2 |
7258769 | Cui et al. | Aug 2007 | B2 |
7291256 | Teodorczyk et al. | Nov 2007 | B2 |
7338639 | Burke et al. | Mar 2008 | B2 |
7390667 | Burke et al. | Jun 2008 | B2 |
7407811 | Burke et al. | Aug 2008 | B2 |
7452457 | Burke et al. | Nov 2008 | B2 |
7488601 | Burke et al. | Feb 2009 | B2 |
7494816 | Burke et al. | Feb 2009 | B2 |
7498132 | Yu et al. | Mar 2009 | B2 |
7597793 | Burke et al. | Oct 2009 | B2 |
7601249 | Iyengar et al. | Oct 2009 | B2 |
7604721 | Groll et al. | Oct 2009 | B2 |
7645373 | Groll et al. | Jan 2010 | B2 |
7645421 | Groll | Jan 2010 | B2 |
7678250 | Bell et al. | Mar 2010 | B2 |
7718439 | Groll | May 2010 | B2 |
7727467 | Burke et al. | Jun 2010 | B2 |
7749371 | Guo | Jul 2010 | B2 |
7749437 | Mosoiu et al. | Jul 2010 | B2 |
7751864 | Buck, Jr. | Jul 2010 | B2 |
7829023 | Burke et al. | Nov 2010 | B2 |
7879618 | Mosoiu et al. | Feb 2011 | B2 |
7892849 | Burke et al. | Feb 2011 | B2 |
7923258 | Heller | Apr 2011 | B2 |
7927882 | Heller | Apr 2011 | B2 |
7955492 | Fujiwara et al. | Jun 2011 | B2 |
7964089 | Harding et al. | Jun 2011 | B2 |
7972851 | Wang et al. | Jul 2011 | B2 |
7972861 | Deng et al. | Jul 2011 | B2 |
8080153 | Feldman et al. | Dec 2011 | B2 |
8083925 | Feldman et al. | Dec 2011 | B2 |
8088271 | Fujiwara et al. | Jan 2012 | B2 |
8148164 | Diebold et al. | Apr 2012 | B2 |
8163162 | Chatelier et al. | Apr 2012 | B2 |
8409424 | Chen et al. | Apr 2013 | B2 |
8623660 | Kraft et al. | Jan 2014 | B2 |
20040005716 | Beaty et al. | Jan 2004 | A9 |
20040079652 | Vreeke et al. | Apr 2004 | A1 |
20040157339 | Burke et al. | Aug 2004 | A1 |
20070084734 | Roberts et al. | Apr 2007 | A1 |
20070087397 | Kraft et al. | Apr 2007 | A1 |
20070227912 | Chatelier et al. | Oct 2007 | A1 |
20080083618 | Neel et al. | Apr 2008 | A1 |
20080274447 | Mecklenburg | Nov 2008 | A1 |
20090177406 | Wu | Jul 2009 | A1 |
20090194432 | Deng | Aug 2009 | A1 |
20090223834 | Cai et al. | Sep 2009 | A1 |
20090236237 | Shinno et al. | Sep 2009 | A1 |
20100005865 | Miura | Jan 2010 | A1 |
20100089775 | Chen et al. | Apr 2010 | A1 |
20100170807 | Diebold et al. | Jul 2010 | A1 |
20100206749 | Choi | Aug 2010 | A1 |
20100276303 | Fujiwara et al. | Nov 2010 | A1 |
20100283488 | Nakamura et al. | Nov 2010 | A1 |
20100320097 | Miyazaki et al. | Dec 2010 | A1 |
20110030093 | Dhugga | Feb 2011 | A1 |
20110036729 | Matsuda et al. | Feb 2011 | A1 |
20110168575 | Lica et al. | Jul 2011 | A1 |
20110294554 | Barratt et al. | Dec 2011 | A1 |
20110297554 | Wu et al. | Dec 2011 | A1 |
20110297557 | Wu et al. | Dec 2011 | A1 |
20110301857 | Huang et al. | Dec 2011 | A1 |
20120031777 | Burke et al. | Feb 2012 | A1 |
20120043227 | Miyazaki et al. | Feb 2012 | A1 |
20120129423 | Finizza | May 2012 | A1 |
20130337571 | Mizuoka et al. | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
738325 | Sep 2001 | AU |
749332 | Mar 1995 | EP |
691539 | Jun 1995 | EP |
1394545 | Mar 2004 | EP |
1828759 | Oct 2005 | EP |
1804048 | Dec 2005 | EP |
1042667 | Jun 2009 | EP |
WO 9932881 | Jul 1999 | WO |
WO 2006040200 | Apr 2006 | WO |
WO 2006070200 | Jul 2006 | WO |
WO 2008036516 | Mar 2008 | WO |
WO 2008040998 | Apr 2008 | WO |
WO 2008049075 | Apr 2008 | WO |
WO 2010049669 | May 2010 | WO |
WO 2011121292 | Oct 2011 | WO |
WO 2012091728 | Jul 2012 | WO |
WO 2012153535 | Nov 2012 | WO |
Entry |
---|
U.S. Appl. No. 61/530,795, McColl et al., filed Sep. 2, 2011. |
U.S. Appl. No. 61/530,808, McColl et al., filed Sep. 2, 2011. |
U.S. Appl. No. 61/581,087, Malecha et al., filed Dec. 29, 2011. |
U.S. Appl. No. 61/581,089, Malecha et al., filed Dec. 29, 2011. |
U.S. Appl. No. 61/581,099, Malecha et al., filed Dec. 29, 2011. |
U.S. Appl. No. 61/581,100, Smith et al., filed Dec. 29, 2011. |
U.S. Appl. No. 61/654,013, Malecha et al., filed May 31, 2012. |
International Application No. PCT/GB2012/053276, PCT International Search Report and Written Opinion, 13 pages, dated May 3, 2013. |
International Application No. PCT/GB2012/053277, PCT International Search Report and Written Opinion, 13 pages, dated May 3, 2013. |
International Application No. PCT/GB2012/053279, PCT International Search Report and Written Opinion, 13 pages, dated May 3, 2013. |
Patent Examination Report issued in related Australian Patent Application No. 2012327229, May 28, 2014, 5 pages. |
Wegener, Joachim et al., “Electric Cell—Substrate Impedance Sensing (ECIS) as a Noninvasive Means to Monitor the Kinetics of Cell Spreading to Artificial Surfaces,” Experimental Cell Research 259, 158-166 (2000) doi:10.1006/excr.2000.4919, available online at http://www.idealibrary.coml. |
Kohma, Takuya et al., “Utilization of AC Impedance Measurements for Electrochemical Glucose Sensing Using Glucose Oxidase to Improve Detection Selectivity,” Bull. Chem. Soc. Jpn. vol. 80, No. 1, 158-165 (2007). |
Baskurt, Oguz K. et al., “Blood Rheology and Hemodynamics,” Seminars in Thrombosis and Hemostasis, vol. 29, No. 5, 2003. |
Nordbotten, Bernt, J. et al., “Methods for calculating phase angle from measured whole body bioimpedance modulus.”. |
Wang, J. et al., “Electrochemical Impedance Biosensor for Glucose Detection Utilizing a Periplasmic E. coli Receptor Protein,” Electrochemical and Solid-State Letters, 8 (8) H61-H64 (2005). |
Caduff, A. et al., “First human experiments with a novel non-invasive, non-optical continuous glucose monitoring system,” Biosensors and Bioelectronics 19 (2003) 209-217. |
Guevara, Edgar et al., “Prediction of Glucose Concentration by Impedance Phase Measurements,” CP1032, Medical Physics—Tenth Symposium of Medical Physics, 2008 American Institute of Physics 978-0-7354-0556, 259-261. |
Park, J.-H. et al., “The correlation of the complex dielectric constant and blood glucose at low frequency,” Biosensors and Bioelectronics 19 (2003) 321-324. |
De Vries, P.M.J.M. et al., “Implications of the dielectrical behavior of human blood for continuous online measurement of haematocrit,” Med. & Biol. Eng. & Comput. 1993, 31, 445-448. |
“Annex A—Bioimpedance monitoring for physicians: an overview,” pp. 131-178. |
Koschinsky, T. et al., “Sensors for glucose monitoring: technical and clinical aspects,” Diabetes Metab Res Rev 2001; 17: 113-123. |
Marks, Vincent, “Blood glucose: its measurement and clinical importance,” Clinica Chimica Acta 251 (1996) 3-17. |
Shervedani, Reza Karimi et al., “A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor,” Bioelectrochemistry 69 (2006) 201-208. |
Tura, Andrea et al., “Non-invasive glucose monitoring: Assessment of technologies and devices according to quantitative criteria,” Diabetes Research and Clinical Practice 77 (2007) 16-40. |
Tierney, M.J. et al., “Clinical evaluation of the GlucoWatch® biographer: a continual, non-invasive glucose monitor for patients with diabetes,” Biosensors & Bioelectronics 16 (2001) 621-629. |
Tura, A. et al., “Impedance spectroscopy of solutions at physiological glucose concentrations,” Biophysical Chemistry 129 (2007) 235-241. |
International Preliminary Report on Patentability issued in related International Patent Application No. PCT/GB2012/053279, issued Jul. 1, 2004, 10 pages. |
Patent Examination Report issued in related Australian Patent Application No. 2012340500, issued Aug. 4, 2014, 3 pages. |
International Preliminary Report on Patentability issued in related International Patent Application No. PCT/GB2012/053277, issued Jul. 1, 2004, 11 pages. |
International Preliminary Report on Patentability issued in related International Patent Application No. PCT/GB2012/053276, issued Jul. 1, 2004, 11 pages. |
International Search Report and Written Opinion issued in related International Patent Application No. PCT/EP2014/068318, mailed Nov. 17, 2014, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20150060299 A1 | Mar 2015 | US |