The present invention relates generally to systems that aid the handicapped, and more particularly to a system enabling handicapped persons to more easily make floor selections in a common elevator.
Many handicapped people are challenged to accomplish everyday tasks that non-handicapped people take for granted, and systems and mechanisms are known in the art to help the handicapped. For example, U.S. Pat. No. 5,878,530 to Eccleston (1999) entitled “Remotely Controllable Automatic Door Operator . . . “provides a system to help the handicapped open and close room doors.
Modern wheelchairs have improved mobility for many handicapped people. However after a wheelchair bound person has entered a public building, it can be very challenging for such persons to make elevator floor selections.
For many wheelchair bound individuals, the control buttons for many elevators are located too far above floor level to be easily reached, thus making it difficult for such individuals to select a floor by pressing an elevator control button. Some wheelchair bound individuals may not have the use of their hands and consequently will control their wheelchair with a specialized system. Some such systems are controlled by positions of the handicapped person's head, or by a straw mechanisms through which the handicapped persons blows and sucks air.
Even if the elevator control buttons are within reach, many handicapped individuals lack sufficient hand motor skills to press the desired button to select a floor. For example, a person, wheelchair bound or otherwise, with a severe hand palsy may lack to the ability to press a single small button that is one of many buttons on the elevator control panel. In practice, it is not uncommon for a wheelchair bound person to wait, often for an extended period of time, until a non-handicapped person can be asked to assist in pressing the elevator control button.
In short, there is a need for a system to enable handicapped individuals, including wheelchair bound individuals, to more easily select floors for an elevator without assistance from others. Such system should be universally accessible and controllable by any wheelchair bound person as long as that person can control their wheelchair. Preferably such system should provide user selection of floors using a single control, which control should be actuatable by contact with a portion of a wheelchair and/or another object under the control of a user, including a portion of a user's body. Such system should provide universal access in that the handicapped person should not require special skills or equipment to make use of such system. Such system should provide for visual and/or audible choices for the floor selections that are available. Preferably such system should be useable from inside an elevator and/or from outside the elevator, e.g., adjacent the elevator entrance.
The present invention provides such a system.
In general, when a passenger selects a floor by pressing a button 30, control electrons 50 associated with elevator 10 causes the elevator to stop at floors so selected. Further, control electronics 50 can illuminate selected buttons 30 or present another display to confirm floor numbers that have been selected by passengers.
In
The continuous sequential display 110 of available floors preferably occurs under control of electronics 120 associated with system 100. In addition to visually signaling potential floor selections, electronics 120 can via speaker 130 also (or instead) acoustically generate acoustic signals 140 announcing potential floor selections. In this regard, electronics 110 can include a voice synthesizer 150 (see
At the risk of making system 100 somewhat less universal, if desired electronics 120 could include a low power wireless transmitter 160 that could broadcast the annunciated floor selection signals to a receiver 170 close to the handicapped person's ear. In such embodiment, speaker 130 can be omitted as the annunciated signals would be generated by receiver 170 such that only a person very close to the receiver would hear the spoken signals. Transmitter 160 could be a low power RF transmitter perhaps operating at a frequency within the receiving frequency range of an ordinary transistor receiver 170, e.g., perhaps 1600 KHz. Alternatively, transmitter 160 could be an IR unit, a sub-sonic transmitter, a super-sonic transmitter, in which case receiver 170 would be selected to receive such transmissions.
System 100 includes a preferably large touch control 180 that preferably is sized and positioned for easy contact by a portion of a handicapped passenger's wheelchair. Of course touch control 180 may also be contacted by a portion of a handicapped person's body, e.g., a hand, an elbow, etc. In a preferred embodiment, when touch control 180 is contacted, the currently displayed or annunciated floor selection is “frozen” within electronics 120, thus indicating a desired floor selection. If multiple digits are sequenced, e.g., “tens”, “units”, the remaining digit will now sequence to be frozen when panel 180 is again contacted. Once digit(s) selection occurs, electronics 140, which also can control the sequential display 110, couples the floor selection electronically to elevator control electronics 50, which will cause elevator 10 to stop at the selected floor.
Touch control 180 may be 24″ in height and perhaps 6″ in width, a total area of perhaps 144 inch2, which area makes the touch control an easy “target” for a wheelchair. Clearly such a large touch control is easier for a handicapped person to interface with than a tiny, often inaccessibly high elevator button 30. Of course other dimensions may be used for touch control 180, however the suggested dimensions enable the control to be readily contacted by a portion of a wheelchair. Although more than one touch control 180 may be disposed within (and/or adjacent an external portion of) elevator 10, the placement of too many controls 180 increase the likelihood of inadvertent floor selection by an elevator passenger simply bumping into the control.
Touch control 180 may be implemented in various ways, for example by coupling to a mechanical switch. Without limitation, touch control 180 may instead include a piezo-electric region that senses pressure, and/or may include a capacitive region that responds to physical proximity of an object, e.g., a contacting wheelchair portion, a portion of a user's body, etc.
As noted, system 100 typically will be installed within an elevator, but may also (or even instead) be installed externally to the elevator, for example adjacent the elevator door. From the standpoint of the owner of the building in which the elevator is located, it is less expensive to install a single system 100 within an elevator than to install a separate system 100 at each floor in the building at which the elevator stops.
In summary, the present invention can provide universal access for wheelchair bound persons to select a destination floor in an elevator without use of the hand. The invention need not require special skills by the handicapped (or other) passenger, and in the broadest sense does not require that the handicapped passenger carry special equipment to work with the present invention.
Modifications and variations may be made to the disclosed embodiments without departing from the subject and spirit of the invention as defined by the following claims.
Priority is claimed to U.S. provisional patent application Ser. No. 60/392,233 filed by applicant herein on Jun. 27, 2002, and entitled “Method and System to Select Elevator Floors Using a Single Control”.
Number | Name | Date | Kind |
---|---|---|---|
4032882 | Mandel et al. | Jun 1977 | A |
4678062 | Sumka | Jul 1987 | A |
5192836 | Schroder | Mar 1993 | A |
5878530 | Eccleston | Mar 1999 | A |
6105729 | Nakamori et al. | Aug 2000 | A |
6152265 | Bittar et al. | Nov 2000 | A |
6696926 | Tsukamoto et al. | Feb 2004 | B2 |
Number | Date | Country |
---|---|---|
04112174 | Apr 1992 | JP |
04159981 | Jun 1992 | JP |
04169478 | Jun 1992 | JP |
06001549 | Jan 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20040000453 A1 | Jan 2004 | US |
Number | Date | Country | |
---|---|---|---|
60392233 | Jun 2002 | US |