1. Technical Field
Embodiments of the subject matter disclosed herein relate to an engine cooling system.
2. Discussion of Art
To reduce overheating of an engine and related components, a cooling system may route coolant through a single cooling circuit that includes the engine, a coolant pump, a radiator, and additional heat exchangers. The cooling system may have two parallel return paths from the radiator and back to the pump: a radiator main return path and sub-cooled return path. The sub-cooled return path may include more heat exchangers than the radiator main return path, thereby increasing a resistance of the sub-cooled return path relative to a resistance of the radiator main return path. Additionally, one or more of the heat exchangers may be positioned a vertical distance above the coolant pump. The coolant pump may be driven by an engine crankshaft and as engine speed decreases, flow and pressure in the engine cooling system may decrease. As a result, less coolant flow may flow through the sub-cooled return line and the components of the sub-cooled return line may not be completely flooded with coolant. This may cause thermal gradients to form across the un-flooded heat exchangers, thereby resulting in component degradation and non-homogeneous temperatures in the cooling system.
In one embodiment, a method for an engine comprises adjusting a first resistance of a radiator main return line to be greater than a second resistance of a sub-cooled return line in response to an engine speed below a threshold speed, the sub-cooled return line arranged in parallel with the radiator main return line in an engine cooling system.
The following description relates to embodiments of an engine cooling system. The engine cooling system includes a pump flowing fluid to a radiator and then to two parallel return paths coupled between the radiator and the pump. As engine speed decreases, the pump output may also decrease, thereby decreasing coolant flow to the higher resistance path of the two parallel return paths. In one example, the higher resistance path may be a sub-cooled return path including one or more heat exchangers and the other return path is a radiator main return line including fewer heat exchangers than the sub-cooled return path. As one example, a method for the engine includes adjusting a first resistance of the radiator main return line to be greater than a second resistance of the sub-cooled return line in response to an engine speed below a threshold speed, the sub-cooled return line arranged in parallel with the radiator main return line in the engine cooling system.
One embodiment of a vehicle in which the engine may be installed is shown in
The approach described herein may be employed in a variety of engine types, and a variety of engine-driven systems. Some of these systems may be stationary, while others may be on semi-mobile or mobile platforms. Semi-mobile platforms may be relocated between operational periods, such as mounted on flatbed trailers. Mobile platforms include self-propelled vehicles. Such vehicles can include on-road transportation vehicles, as well as mining equipment, marine vessels, rail vehicles, and other off-highway vehicles (OHV). For clarity of illustration, a locomotive is provided as an example of a mobile platform supporting a system incorporating an embodiment of the invention.
Before further discussion of the approach for adjusting the resistance of a radiator main return line relative to the resistance of a sub-cooled return line in an engine cooling system, an example of a platform is disclosed in which an engine and engine cooling system may be configured for a vehicle, such as a rail vehicle. For example,
The engine receives intake air for combustion from an intake passage 114. The intake passage receives ambient air from an air filter 160 that filters air from outside of the rail vehicle. Exhaust gas resulting from combustion in the engine is supplied to an exhaust passage 116. Exhaust gas flows through the exhaust passage, and out of an exhaust stack of the rail vehicle. In one example, the engine is a diesel engine that combusts air and diesel fuel through compression ignition. In another example, the engine is a dual or multi-fuel engine that may combust a mixture of gaseous fuel and air upon injection of diesel fuel during compression of the air-gaseous fuel mix. In other non-limiting embodiments, the engine may additionally combust fuel including gasoline, kerosene, natural gas, biodiesel, or other petroleum distillates of similar density through compression ignition (and/or spark ignition).
In one embodiment, the rail vehicle is a diesel-electric vehicle. As depicted in
The alternator/generator produces electrical power that may be stored and applied for subsequent propagation to a variety of downstream electrical components. As an example, the alternator/generator may be electrically coupled to a plurality of traction motors and the alternator/generator may provide electrical power to the plurality of traction motors. As depicted, the plurality of traction motors are each connected to one of the plurality of wheels to provide tractive power to propel the rail vehicle. One example configuration includes one traction motor per wheel set. As depicted herein, six traction motors correspond to each of six pairs of motive wheels of the rail vehicle. In another example, alternator/generator may be coupled to one or more resistive grids 126. The resistive grids may be configured to dissipate excess engine torque via heat produced by the grids from electricity generated by alternator/generator.
In some embodiments, the vehicle system may include a turbocharger 120 that is arranged between the intake passage and the exhaust passage. The turbocharger increases air charge of ambient air drawn into the intake passage in order to provide greater charge density during combustion to increase power output and/or engine-operating efficiency. The turbocharger may include a compressor (not shown) which is at least partially driven by a turbine (not shown). While in this case a single turbocharger is included, the system may include multiple turbine and/or compressor stages. Additionally or alternatively, in some embodiments, a supercharger may be present to compress the intake air via a compressor driven by a motor or the engine, for example. Further, in some embodiments, a charge air cooler (e.g., water-based intercooler) may be present between the compressor of the turbocharger or supercharger and intake manifold of the engine. The charge air cooler may cool the compressed air to further increase the density of the charge air.
In some embodiments, the vehicle system may further include an aftertreatment system coupled in the exhaust passage upstream and/or downstream of the turbocharger. In one embodiment, the aftertreatment system may include a diesel oxidation catalyst (DOC) and a diesel particulate filter (DPF). In other embodiments, the aftertreatment system may additionally or alternatively include one or more emission control devices. Such emission control devices may include a selective catalytic reduction (SCR) catalyst, three-way catalyst, NOx trap, or various other devices or systems.
The vehicle system may further include an exhaust gas recirculation (EGR) system 130 coupled to the engine, which routes exhaust gas from the exhaust passage of the engine to the intake passage downstream of the turbocharger. In some embodiments, the exhaust gas recirculation system may be coupled exclusively to a group of one or more donor cylinders of the engine (also referred to a donor cylinder system). As depicted in
In some embodiments, the EGR system may further include an EGR valve for controlling an amount of exhaust gas that is recirculated from the exhaust passage of the engine to the intake passage of the engine. The EGR valve may be an on/off valve controlled by a controller 110, or it may control a variable amount of EGR, for example. As shown in the non-limiting example embodiment of
As depicted in
The rail vehicle further includes the controller (e.g., engine controller) to control various components related to the rail vehicle. As an example, various components of the vehicle system may be coupled to the controller via a communication channel or data bus. In one example, the controller includes a computer control system. The controller may additionally or alternatively include a memory holding non-transitory computer readable storage media (not shown) including code for enabling on-board monitoring and control of rail vehicle operation. In some examples, the controller may include more than one controller each in communication with one another, such as a first controller to control the engine and a second controller to control other operating parameters of the locomotive (such as tractive motor load, blower speed, etc.). The first controller may be configured to control various actuators based on output received from the second controller and/or the second controller may be configured to control various actuators based on output received from the first controller.
The controller may receive information from a plurality of sensors and may send control signals to a plurality of actuators. The controller, while overseeing control and management of the engine and/or rail vehicle, may be configured to receive signals from a variety of engine sensors, as further elaborated herein, in order to determine operating parameters and operating conditions, and correspondingly adjust various engine actuators to control operation of the engine and/or rail vehicle. For example, the engine controller may receive signals from various engine sensors including, but not limited to, engine speed, engine load, intake manifold air pressure, boost pressure, exhaust pressure, ambient pressure, ambient temperature, exhaust temperature, particulate filter temperature, particulate filter back pressure, engine coolant pressure, gas temperature in the EGR cooler, or the like. The controller may also receive a signal of an amount of water in the exhaust from an exhaust oxygen sensor 162. Additional sensors, such as coolant temperature sensors, may be positioned in the cooling system and will be described further below with reference to
The pump provides coolant flow to all the engine cooling system components. In one example, the coolant pumped through the engine cooling system is water. In another example, the coolant in the engine cooling system is another type of coolant. Cooled engine coolant flows from the pump to the engine 104 and the EGR cooler 134 to provide cooling to engine components and exhaust flowing through the EGR cooler. The engine and EGR cooler are positioned in parallel with one another in the cooling circuit, downstream from the pump. Warmer engine coolant exits the engine and the EGR cooler and then rejoins into a heated engine coolant line 202. Warmer engine coolant is pumped through the heated engine coolant line to the radiator 152. The radiator is a radiator heat exchanger which removes heat from the coolant and may be referred to herein as the main radiator of the engine cooling system. After the radiator, the engine cooling circuit branches into two parallel return flow paths: a radiator main return line 204 and a sub-cooled return line 206. Both the radiator main return line and the sub-cooled return line flow cooled coolant back to the pump. As such, the pump must provide propulsive power to flow coolant through the components in both the return lines.
The sub-cooled return line is coupled between the radiator and the pump. Further, the sub-cooled return line includes a plurality of heat exchangers. As shown in
The engine cooling system includes one or more coolant (e.g., water) tanks 214. In one example, the engine cooling system includes two water tanks positioned in series with one another. Coolant flowing out of vents of the heat exchangers in the sub-cooled return line (e.g., sub-cooler heat exchanger, oil heat exchanger, and/or water-based intercooler) may flow into a first water tank via vent lines 216. If the system includes two water tanks in series, the first water tank may be a top water tank stacked above a second water tank. Water then flows into the second water tank and then back into the pump inlet via a coolant supply line 218.
The radiator main return line includes fewer components (e.g., heat exchangers) than the sub-cooled return line. As one example, as shown in
When the coolant flows through the path of least resistance (radiator main return line), if the system pressure at the sub-cooled return line is not high enough, the components of the sub-cooled return line may not be flooded with coolant. As referred to herein, flooded components refer to components (such as heat exchangers) which are completely filled with coolant. For example, the cooling tubes of flooded heat exchangers may be completely filled with coolant such that there is no air in the coolant tubes. If the heat exchange components are not flooded with coolant, thermal gradients may form across the heat exchangers and/or coolers. As a result, thermal stress may cause degradation of the cooling system components. Additionally, the temperature in the heat exchangers may not be homogeneous, thereby decreasing the cooling efficiency of each component and the engine cooling system. If the sub-cooled return line loses coolant flow (e.g., coolant flow below a threshold flow is provided to the sub-cooled return line), a difference in temperature between the oil and coolant may result. This difference in temperature may falsely indicate engine component failure and result in the controller 110 shutting down the engine. Pressures in the cooling system may be based on pump speed at different engine operating conditions and the vertical heights of each component with respect to the pump height. This is described further below with reference to
One or more restrictive (e.g., resistive) elements may be positioned in the radiator main return line and/or the sub-cooled return line to adjust flow through the two parallel return lines in order to maintain flooding of all components at different engine operating conditions. As shown in
The controller may adjust a position of the restrictive element based on engine operating conditions including engine speed. In some embodiments, the restrictive element may be adjusted only based on engine speed and not based on system temperatures (e.g., engine temperature and/or coolant temperature). For example, when engine speed is at or above a threshold speed, the controller may adjust the restrictive into a first position. In the first position, the resistance of the radiator main return line may be smaller than the resistance of the sub-cooled return line. In another example, the first position may be a position that provides minimal to no flow restriction in the radiator main return line. As such, the first position may allow for unrestricted flow through the radiator main return line. Alternatively, when engine speed is below the threshold speed, the controller may adjust the restrictive element into a second position. The second position may restrict the flow through the radiator main return line by a greater amount than when in the first position. In one example, in the second position, the resistance (e.g., flow resistance) of the radiator main return line may be greater than the resistance of the sub-cooled return line. As a result, more coolant may flow through the sub-cooled return line than the radiator main return line, thereby providing complete flooding of the heat exchangers in the sub-cooled return line. However, in the second position, coolant still flows through the radiator main return line. Thus, no position of the restrictive element ever completely restricts (e.g., blocks) flow through either of the sub-cooled return line or the radiator main return line. In this way, the resistances of both parallel return lines are always non-zero and flow is always flowing through both the sub-cooled return line and the radiator main return line at all engine speeds (including engine idle speed). In another example, in the second position, the resistance of the radiator main return line may not be greater than the resistance of the sub-cooled return line. However, in this example, the resistance of the radiator main return line is increased from the first position by an amount that provides enough flow and pressure to the sub-cooled return line in order to fully flood the heat exchangers of the sub-cooled return line.
In an alternate embodiment, the restrictive element may be positioned in the sub-cooled return line instead of the radiator main return line. In this example, the controller may adjust the restrictive element to restrict flow through the sub-cooled return line when engine speed is greater than the threshold speed and not restrict flow through the sub-cooled return line when engine speed is less than the threshold speed. The diameters of the two parallel return lines, the restrictive element, and/or the pump settings may be adapted such that when engine speed is below the threshold speed, the resistance through the sub-cooled return line is decreased below the resistance of the radiator main return line.
As discussed further below with reference to
The engine cooling system includes a variety of sensors sending signals to the controller. The controller may then use these signals to adjust operation of the pump and/or adjust a position of the restrictive element. For example, the engine cooling system may include an engine temperature sensor 222 and one or more engine coolant temperature sensors positioned throughout the engine cooling circuit. As shown in
Turning now to
The pump 156 is positioned at a first position 302. The first position may be a base position from which the vertical heights of all other components or flow conduits (e.g., flow lines) are measured. More specifically, the first position is positioned at a pump inlet of the pump. The pump pumps fluid upward to the engine 104 and the EGR cooler 134 which are in parallel with one another in the engine cooling circuit (e.g., engine cooling system 150). From the engine and EGR cooler, the pump pumps coolant through the heated engine coolant line 202 to an inlet 304 (e.g., inlet line) to the radiator 152 and the sub-cooler heater exchanger 208. The inlet to the radiator 152 is at a second position 306. The second position is at a first vertical height 307 above the pump (e.g., above a height of the pump inlet). In one example, the first vertical height may be in a range of about 188 to about 208 cm (74-82 in). In another example, the first vertical height may be approximately 198 cm (78 in).
The pump then pumps coolant from the inlet to the radiator and through the radiator core. A top corner of the radiator (and the radiator core) is at a third position 308. The top corner of the radiator may be the topmost position that the pump must pump coolant to in the engine cooling system. The third position is at a second vertical height 309 above the pump. The second vertical height is greater than the first vertical height. In one example, the second vertical height may be in a range of about 254 cm to about 280 cm (100-110 in). In another example, the second vertical height may be approximately 264 cm (104 in).
From the radiator, coolant is then pumped to either the sub-cooler heat exchanger 208 in the sub-cooled return line 206 or the radiator main return line 204. As discussed above with regard to
In one example, as shown in
From the oil heat exchanger, the coolant is pumped vertically upward to the water-based intercooler 212. The water-based intercooler is positioned at a fourth position 310. The fourth position is at a third vertical height 311 above the pump (e.g., above the pump inlet). The third vertical height is greater than the first vertical height of the radiator inlet and less that the second vertical height of the top of the radiator. In one example, the third vertical height is in a range of about 238 cm to about 259 cm (94-102 in). In another example, the third vertical height is approximately 249 cm (98 in).
Coolant then flows from the water-based intercooler and to the radiator main return line where the two parallel return lines join into one return line. A joined portion of the radiator main return line 312 then carries coolant from both the radiator main return line upstream of the joining point and the sub-cooled return line to the pump inlet. In an alternate embodiment, both the radiator main return line and the sub-cooled return line may join and enter the pump at the pump inlet.
As shown in
Thus, the pump must provide enough pressure to pump coolant to at least the third position 308 (e.g., the second vertical height above the pump). Additionally, this pressure must be sufficient to drive flow through the heat exchangers. In this way, the pump outlet pressure may be based on the second vertical height. For example, a pump outlet pressure of approximately 26.3 kPa (3.8 psig) may lift the coolant to approximately 274 cm (108 in) in elevation.
As heat exchange requirements of engines increase, higher flows through the coolant system may be necessary to provide the required heat rejection. For example, engines utilizing higher EGR flow rates may require larger EGR coolers capable of transferring more heat from recirculated exhaust gases and to the engine coolant system. In one example, increased coolant pump flows and larger cooling system piping may help to increase heat rejection in the cooling system heat exchangers, including the EGR cooler. In order to achieve the required higher pump flow rates at higher engine speeds, the system backpressure may be reduced. Thus, in one example, the cooling system backpressure may be selected to provide high pump flows at high engine loads. However, at lower engine loads and lower pump speeds (e.g., since the pump is crank-driven), the system backpressure may be even smaller. As a result of the lower backpressure, it may be more difficult for coolant to reach the cooling system components positioned at the highest vertical heights in the system (e.g., the radiator, sub-cooler heat exchanger, and the water-based intercooler). Thus, when engine speed is below the threshold speed, these higher positioned heat exchangers (relative to the pump height) may not be completely flooded with coolant. As discussed above, this may result in thermal gradients forming across the heat exchangers, thereby resulting in increased mechanical stress and component degradation. Additionally, since only a single pump (e.g., coolant pump) is providing coolant flow to all the components in both a radiator main return line and a sub-cooled return line, flow may preferentially flow through the lower-resistance radiator main return line, thereby further decreasing pressure at the heat exchangers of the sub-cooled return line. This further decreased pressure further reduces the flooding of the components of the sub-cooled return line.
Adjusting the restrictive element (e.g., valve) in the engine cooling system to maintain flow through the sub-cooled return line and maintain flooding of the components of the sub-cooled return line may decrease thermal gradients across these components and thus the mechanical stress on the components.
As one embodiment, the ball valve with the two differently sized orifices may be positioned in the radiator main return line, as shown by the restrictive element 220 in
In an alternate embodiment, the ball valve shown in
Method 500 begins at 502 by estimating and/or measuring engine operating conditions. Engine operating conditions may include engine speed, engine load, engine notch setting, engine coolant temperature, engine temperature, exhaust temperature, water in the exhaust, coolant level, or the like. At 504 the method includes adjusting the speed of the coolant pump in the engine cooling system (e.g., pump 156 shown in
At 506, the method includes determining whether engine speed is less than a threshold speed. As introduced above, the threshold speed may be a speed below which a system backpressure output by the pump is not sufficient to flood all the heat exchange components of the sub-cooled return line (e.g., the sub-cooler heat exchanger and/or the water-based intercooler). In this way, the threshold engine speed may be based on a threshold pressure required to flood all cooling system components. In another embodiment, the threshold speed may be an engine idle speed. In yet another example, the threshold speed may be a threshold speed range. For example, the threshold engine speed range may be a range between engine idle and a second, higher threshold speed (e.g., such as notch 1). When operating at or below the threshold speed, the engine speed may be considered below the threshold speed.
If the engine speed is below the threshold speed (or in or below the threshold speed range) at 506, the controller adjusts the resistance of the radiator main return line to be greater than the resistance of the sub-cooled return line at 508. As a result, increased coolant flow may flow through the sub-cooled return line, thereby flooding the components of the sub-cooled return line. As one embodiment, adjusting the resistance of the radiator main return line to be greater than the resistance of the sub-cooled return line includes adjusting a position of a restrictive element (e.g., valve) positioned in the radiator main return line to increase the resistance of and restrict flow through the radiator main return line. For example, if the valve is the ball valve shown in
Alternatively at 506, if the engine speed is not less than the threshold speed, the method continues to 510 where the controller adjusts the resistance of the radiator main return line to be less than the resistance of the sub-cooled return line. As a result, increased coolant flow may flow through the radiator main return line. However, since the pump speed is increased with increased engine speed, cooling system backpressure is sufficient to flow coolant through both the return lines and fully flood the components of the sub-cooled return line. As one embodiment, adjusting the resistance of the radiator main return line to be less than the resistance of the sub-cooled return line includes adjusting a position of a restrictive element (e.g., valve) positioned in the radiator main return line to decrease the resistance of and increase flow through the radiator main return line. In one example, increasing flow through the radiator main return line may include allowing unrestricted flow through the radiator main return line. In another example, increasing flow through the radiator main return may include allowing less-restricted flow through the radiator main return line than when the engine speed was less than the threshold speed. For example, if the valve is the ball valve shown in
The adjusting at both 508 and 510 includes adjusting the resistances so that the resistances of the sub-cooled return line and the radiator main return line are both non-zero and flow is not blocked in either of the two parallel flow paths. For example, coolant is always flowing through the sub-cooled return line and the radiator main return line and no position of the restrictive element (e.g., valve) completely blocks flow through either of the radiator main return line or the sub-cooled return line at an engine speed (including engine idle speed). In this way, flow through the two parallel flow paths is adjusted to be more or less restricted, but flow is never fully restricted such that flow is zero through either parallel return flow path. Additionally, the adjusting of the restrictive element may be based on engine speed alone and not based on additional engine operating parameters such as engine and/or coolant temperature.
In another embodiment, the method at 508 may include adjusting the resistance of the radiator main return line to a first level. In this embodiment, the first level may not be greater than a resistance of the sub-cooled return line. However, the first level may be high enough to increase flow through the sub-cooled return line and completely flood all the heat exchangers in the sub-cooled return line. Similarly, in this embodiment, the method at 510 may include adjusting the resistance of the radiator main return line to a second level. The second level is less than the first level and less than the resistance of the sub-cooled return line. The resistance of the radiator main return line at different engine speeds may be based on a required inlet pressure the sub-cooled return line required to completely flood the heat exchange components.
In this way, adjusting the resistances of two parallel radiator return flow paths (e.g., the radiator main return line and the sub-cooled return line) based on engine speed may achieve the technical effect of flooding cooling system components (heat exchangers) at lower engine speeds (e.g., engine idle). Fully flooding the cooling system heat exchangers at all engine operating conditions decreases thermal gradients across the heat exchangers, thereby reducing mechanical stress and degradation of the heat exchangers. Further, maintaining coolant flow through the sub-cooled return line containing one or more cooling system heat exchangers may reduce temperature differentials between the oil and coolant, thereby decreasing unintended engine shut-downs.
Now turning to
Schematic 600 shows an engine cooling system 150, a vaporizing fluid circuit 602, and a gaseous fuel system 604. The flow of vaporizing fluid through the vaporizing fluid circuit and the flow of liquid and gaseous fuel through the gaseous fuel system is at least partially controlled by a controller 606 (in one embodiment, may be the same as controller 110 shown in
The pump pumps the vaporizing fluid through an AC inverter 615, thereby transferring heat from the AC inverter and to the vaporizing fluid. From the AC inverter, the vaporizing fluid flows to a vaporizing fluid heat exchanger 618. The vaporizing fluid heat exchanger transfers heat from engine coolant flowing through the engine cooling circuit to vaporizing fluid in the vaporizing fluid circuit. In one embodiment, the vaporizing fluid heat exchanger may be positioned downstream of the engine 104 and upstream of the radiator (e.g., radiator 152 shown in
The flow of vaporizing fluid through the vaporizing fluid circuit and a temperature of the vaporizing fluid may be controlled by one or more valves, pumps, and a second thermostatic valve 632 positioned in a bypass passage 634 positioned around the vaporizing fluid heat exchanger. The second thermostatic valve is adapted to direct flow of the vaporizing fluid through the vaporizing fluid heat exchanger when a temperature of the vaporizing fluid is below a threshold temperature and to direct the flow of vaporizing fluid through the bypass passage (and not through the heat exchanger) when the temperature of the vaporizing fluid is above the threshold temperature. The temperature of the vaporizing fluid is measured by a temperature sensor 636 positioned downstream from the vaporizing fluid heat exchanger. In one embodiment, the second thermostatic valve may be passive and not controlled by the controller. However, in alternate embodiments, the bypass passage may include an active valve instead of the thermostatic valve, the active valve controlled by the controller.
Additionally, the controller may adjust the flow of vaporizing fluid through the vaporizing fluid circuit and to the vaporizer by adjusting one or more of the pump, a first active shut-off valve 638, and/or a second active shut-off valve 640. For example, the controller may close one or both of the first active shut-off valve and the second active shut-off valve in order to stop vaporizing fluid from flowing to the vaporizer. Alternately, the controller may open both the first active shut-off valve and the second shut-off valve in order to send vaporizing fluid to the vaporizer. Further still, the controller by adjust the first active-shut-off valve to bypass vaporizing fluid around the vaporizer via a second bypass passage 642. In this way, in one embodiment, the vaporizing fluid heat exchanger may be an additional heat exchanger positioned within the engine cooling system of
As one embodiment, a method for an engine comprises adjusting a first resistance of a radiator main return line to be greater than a second resistance of a sub-cooled return line in response to an engine speed below a threshold speed, the sub-cooled return line arranged in parallel with the radiator main return line in an engine cooling system. It should be noted that “arranged in parallel” may mean fluidly parallel such that components in the sub-cooled return line and the radiator main return line are fluidly connected to the same inlet and outlet and not necessarily geometrically parallel. In one example, adjusting the first resistance to be greater than the second resistance includes adjusting a position of a first valve positioned in the radiator main return line to increase the first resistance and restrict flow through the radiator main return line. In another example, adjusting the first resistance to be greater than the second resistance includes adjusting a position of a second valve positioned in the sub-cooled return line to decrease the second resistance and increase flow through the sub-cooled return line. The first resistance and the second resistance are each non-zero. Additionally, the position of the first valve never fully blocks coolant flow in the radiator main return line and the position of the second valve never fully blocks coolant flow in the sub-cooled return line. The method further comprises adjusting the first resistance to be less than the second resistance in response to the engine speed above the threshold speed. In one example, the threshold speed is an engine idle speed. Further, engine coolant is supplied to each of the radiator main return line and the sub-cooled return line by only a single pump in the engine cooling system. The pump is a crankshaft driven pump that rotates proportionally with engine speed. Further still, flow is not blocked in the radiator main return line and the sub-cooled return line while the pump is operating.
An inlet to each of the radiator main return line and the sub-cooled return line is downstream from a radiator of the engine cooling system. The engine cooling system further includes an EGR cooler positioned upstream from the radiator and downstream from the pump. Additionally, the radiator is positioned at a first vertical height above the pump and the EGR cooler is positioned at a second vertical height above the pump, the first vertical height greater than the first vertical height. The sub-cooled return line includes more heat exchangers than the radiator main return line, the sub-cooled return line including one or more of a sub-cooler heat exchanger, an oil heat exchanger, or a water-based intercooler. The method further comprises flowing fluid vertically upward from the pump and to the radiator and flowing fluid vertically downward from the sub-cooler heat exchanger and to the oil heat exchanger.
As another embodiment, a method for an engine comprises during a first condition when engine speed is above a threshold speed, adjusting a resistance of a radiator main return line in parallel with a sub-cooled return line to a first level, the radiator main return line coupled between a radiator and a coolant pump. The method further comprises during a second condition when engine speed is below the threshold speed, adjusting the resistance of the radiator main return line to a second level, the second level higher than the first level. In one example, adjusting the resistance of the radiator main return line includes adjusting a position of a valve positioned in the radiator main return line. Further, adjusting the resistance of the radiator main return line to the first level includes increasing an opening of the valve to decrease the resistance in the radiator main return line and adjusting the resistance of the radiator main return line to the second level includes decreasing an opening of the valve to increase the resistance in the radiator main return line. Additionally, the second level is greater than a resistance of the sub-cooled return line. During both the first condition and the second condition, coolant flows through both the radiator main return line and the sub-cooled return line. Further still, the coolant pump is an only pump fluidly coupled to the radiator main return line and the sub-cooled return line and a speed of the coolant pump increases proportionally with increasing engine speed. In one example, the threshold speed is based on a fluid pressure required to fully flood components in the sub-cooled return line during the second condition.
As yet another embodiment, an engine cooling system comprises a single coolant pump driven by an engine crankshaft, an engine positioned downstream from the single coolant pump, a radiator positioned downstream from the engine, a radiator main return line coupled between the radiator and the single coolant pump, the radiator main return line including a restrictive element, a sub-cooled return line arranged in parallel with the radiator main return line, and a controller with computer readable instructions for adjusting a position of the restrictive element based on engine speed alone, the restrictive element maintaining non-zero flow through the radiator main return line at all positions. The system further comprises an EGR cooler positioned in parallel with the engine. The EGR cooler is positioned vertically above the single coolant pump with respect to a ground on which a vehicle in which the engine cooling system is installed sits and the radiator is positioned vertically above the EGR cooler. Further, the sub-cooled return line includes a sub-cooler heat exchanger, an oil heat exchanger, and a water-based intercooler. The radiator is positioned vertically above the sub-cooler heat exchanger and the sub-cooler heat exchanger is positioned vertically above the oil heat exchanger and the single coolant pump. Additionally, the restrictive element includes a dual-orifice valve movable between a first position restricting flow through the radiator main return line and a second position allowing unrestricted flow through the radiator main return line, where the first position aligns a smaller diameter orifice with a flow path of the radiator main return line and the second position aligns a larger diameter orifice with the flow path of the radiator main return line.
As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural of said elements or steps, unless such exclusion is explicitly stated. Furthermore, references to “one embodiment” of the invention do not exclude the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, embodiments “comprising,” “including,” or “having” an element or a plurality of elements having a particular property may include additional such elements not having that property. The terms “including” and “in which” are used as the plain-language equivalents of the respective terms “comprising” and “wherein.” Moreover, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements or a particular positional order on their objects.
This written description uses examples to disclose the invention, including the best mode, and also to enable a person of ordinary skill in the relevant art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those of ordinary skill in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.