The present invention relates to a method and systems for securely accessing private networks from remote locations.
Organizations have a general problem of providing remote access to private networks for employees and partner organizations. Establishing a remote access link with a mobile worker or a remote business partner allows enterprises to attain productivity gains while reducing cost. Further, such links can facilitate and accelerate business-to-business (B2B) transactions.
However, employees and business partners wishing to access information remotely from another private or public network are potentially behind other security and firewall equipment, which ordinarily prevents access to the organization's network. Without a specific solution to address this issue, employees and partner organizations are not able to access information without being physically connected to the organization's private network, for example, by obtaining a network address on the organization's network to physically connect to it.
Organizations would like to solve this problem for providing remote access to trusted persons and organizations, and would like a mechanism to authenticate such users before allowing them access to the organization's network. Furthermore, since information is transmitted from the organization's private, secure, and trusted network into a public or third-party network, organizations providing such access would benefit from having this information encrypted to prevent disclosure valuable information to others.
One approach to solving this problem is to create a VPN (Virtual Private Network), such as an IPSec, PPTP, or L2TP network (referred to generally as “IPSec VPNs”). IPSec VPNs provide network-to-network communication, a “desk-like” work experience for the remote user, and are protocol independent, that is, they function at the network level rather than at the transport level. Unfortunately, VPNs do not work typically through firewalls. Traveling users, therefore, cannot connect back to their corporate resources while behind a firewall at a customer or partner site. Further, IPSec VPNs are difficult to deploy, maintain, and manage because they require intensive support and configuration, primarily due to installation and update of VPN clients on multiple machines. Typically, when deploying VPN client applications on client computers, administrators install the software interfaces on each client computer. Installation of these software interfaces usually requires administrative privileges on the client computer and may require physical access to the client computer. Such installations may be cumbersome for an information technology administrative staff to manage and deploy. A further drawback associated with IPSec VPNs is the exposure of client-side IP addresses to the accessed network, which has contributed to IPSec VPNs becoming a prime traversal route for the spread of worms, since secured clients obtain a routable IP address on the private network.
Another approach to solving this problem, which was developed attempting to solve the issues associated with IPSec VPNs while providing secure access to remote workers and business partners, is an SSL VPN. SSL VPNs primarily operate with web applications over an HTTPS connection. SSL VPNs parse web pages at runtime to ensure that every web navigation path is routable from the client computer. Since SSL VPNs provide a clientless way to access applications that are internal to an enterprise or organization network, they are easier to deploy and reduce the support issues of IPSec VPNs. Further, SSL VPNs do not expose client-side IP addresses to the accessed network.
However, there are many drawbacks associated with using SSL VPNs, including lack of client-server application support without custom connectors, the inability to work with business applications that use binary object technology such as Java applets and ActiveX, and the inability to work with peer-to-peer applications such as soft-phones.
Attempting to deploy both types of solutions and use each type for different circumstances has met with limited success because the inherent problems of each technology remain present in the combined solution. What is needed is a solution that has the combined advantages of both IPSec VPNs and SSL VPNs, but none of the shortcomings.
The present invention provides the combined advantages of IPSec VPNs (network layer access control) and SSL VPNs (application layer access control), drastically improving end-user experience while significantly reducing the IT security administrator's support overhead and security risks. The present invention is appropriate for (i) employees remotely accessing an organization's network, (ii) B2B access and transactions, and (iii) intranet access from restricted LANs, such as wireless networks because remote network-level access to an organization's network and applications is provided securely over SSL/TLS. The present invention also relieves enterprises and organizations from the burden of maintaining two separate VPN infrastructures.
The gateway device of the present invention performs authentication, termination of encrypted sessions, permission-based access control, and data traffic relaying. In one aspect, the present invention exposes a secure web URL, which is accessible after a user has authenticated to system. A per-session remote process is transmitted to the user's computing service. The remote process resides in the memory of the user's computing device until the session ends. The remote process is launched, and function as a lightweight packet concentrator, i.e., the remote process maps application connections using a reverse network address translation (NAT) table. During the session, the remote process operates at network layer 2 (between Ethernet and IP), encrypting all network traffic destined for the organization's network and forwards packets over an HTTPS session to the gateway, together with user credentials. All data traffic, therefore, is encrypted independent of port, i.e., potentially any port may be used to transmit encrypted data, not just port 443. The gateway can also handle real-time traffic, such as voice (RTP/SIP) with minimal loss in performance.
The gateway may reside in an organization's DMZ with access to both the external network and internal network. Alternatively, the gateway can partition local area networks internally in the organization for access control and security between wired/wireless and data/voice networks.
In one aspect, the invention relates to a device for routing packets including a receiver, a filter, and a transmitter. The receiver intercepts from a data link layer a packet in a first plurality of packets destined for a first system on a private network. The filter intercepts from the data link layer a packet in a second plurality of packets transmitted from a second system on the private network, destined for a system on a second network. The transmitter in communication with the receiver and the filter performs a network address translation on at least one intercepted packet and transmits the at least one intercepted packet to a destination.
In one embodiment, the device includes an addressing element associating a private IP address with a system having a public IP address. In another embodiment, the device includes a policy engine, in communication with the filter and the receiver, applying policy to an intercepted packet. In still another embodiment, the transmitter transmits the at least one intercepted packet across a communications tunnel to the system on the second network. In yet another embodiment, the transmitter performs a reverse network address translation on the at least one intercepted packet. In some embodiments, the transmitter transmits a remote process to the system on the second network.
In another aspect, the invention relates to a method of routing packets, including the step of intercepting from a data link layer a packet in a first plurality of packets destined for a first system on a private network. A packet in a second plurality of packets transmitted from a second system on the private network and destined for a system on a second network is intercepted from the data link layer. A network address translation (NAT) is performed on at least one intercepted packet. The at least one intercepted packet is transmitted to a destination.
In one embodiment, the method includes the step of associating a private IP address with a system having a public IP address. In another embodiment, the method includes the step of applying policy to an intercepted packet. In still another embodiment, the method includes the step of transmitting the at least one intercepted packet across a communications tunnel to the system on the second network. In yet another embodiment, the method includes the step of performing a reverse network address translation on the at least one intercepted packet. In some embodiments, the method includes the step of transmitting a remote process to the system on the second network.
These and other aspects of this invention will be readily apparent from the detailed description below and the appended drawings, which are meant to illustrate and not to limit the invention, and in which:
Referring now to
As shown in
The central processing unit 202 is any logic circuitry that responds to and processes instructions fetched from the main memory unit 204. In many embodiments, the central processing unit is provided by a microprocessor unit, such as: the 8088, the 80286, the 80386, the 80486, the Pentium, Pentium Pro, the Pentium II, the Celeron, or the Xeon processor, all of which are manufactured by Intel Corporation of Mountain View, Calif.; the 68000, the 68010, the 68020, the 68030, the 68040, the PowerPC 601, the PowerPC604, the PowerPC604e, the MPC603e, the MPC603ei, the MPC603ev, the MPC603r, the MPC603p, the MPC740, the MPC745, the MPC750, the MPC755, the MPC7400, the MPC7410, the MPC7441, the MPC7445, the MPC7447, the MPC7450, the MPC7451, the MPC7455, the MPC7457 processor, all of which are manufactured by Motorola Corporation of Schaumburg, Ill.; the Crusoe TM5800, the Crusoe TM5600, the Crusoe TM5500, the Crusoe TM5400, the Efficeon TM8600, the Efficeon TM8300, or the Efficeon TM8620 processor, manufactured by Transmeta Corporation of Santa Clara, Calif.; the RS/6000 processor, the RS64, the RS 64 II, the P2SC, the POWER3, the RS64 III, the POWER3-II, the RS 64 IV, the POWER4, the POWER4+, the POWER5, or the POWER6 processor, all of which are manufactured by International Business Machines of White Plains, N.Y.; or the AMD Opteron, the AMD Athlon 64 FX, the AMD Athlon, or the AMD Duron processor, manufactured by Advanced Micro Devices of Sunnyvale, Calif.
Main memory unit 204 may be one or more memory chips capable of storing data and allowing any storage location to be directly accessed by the microprocessor 202, such as Static random access memory (SRAM), Burst SRAM or SynchBurst SRAM (BSRAM), Dynamic random access memory (DRAM), Fast Page Mode DRAM (FPM DRAM), Enhanced DRAM (EDRAM), Extended Data Output RAM (EDO RAM), Extended Data Output DRAM (EDO DRAM), Burst Extended Data Output DRAM (BEDO DRAM), Enhanced DRAM (EDRAM), synchronous DRAM (SDRAM), JEDEC SRAM, PC100 SDRAM, Double Data Rate SDRAM (DDR SDRAM), Enhanced SDRAM (ESDRAM), SyncLink DRAM (SLDRAM), Direct Rambus DRAM (DRDRAM), or Ferroelectric RAM (FRAM).
In the embodiment shown in
In the embodiment shown in
A wide variety of I/O devices 230 may be present in the computer 200. Input devices include keyboards, mice, trackpads, trackballs, microphones, and drawing tablets. Output devices include video displays, speakers, inkjet printers, laser printers, and dye-sublimation printers.
In further embodiments, an I/O device 230 may be a bridge between the system bus 120 and an external communication bus, such as a USB bus, an Apple Desktop Bus, an RS-232 serial connection, a SCSI bus, a FireWire bus, a FireWire 800 bus, an Ethernet bus, an AppleTalk bus, a Gigabit Ethernet bus, an Asynchronous Transfer Mode bus, a HIPPI bus, a Super HIPPI bus, a SerialPlus bus, a SCI/LAMP bus, a FibreChannel bus, or a Serial Attached small computer system interface bus.
General-purpose desktop computers of the sort depicted in
A computer 200 may also be any personal computer (e.g., 286-based, 386-based, 486-based, Pentium-based, Pentium II-based, Pentium III-based, Pentium 4-based, Pentium M-based, or Macintosh computer), Windows-based terminal, Network Computer, wireless device, information appliance, RISC Power PC, X-device, workstation, mini computer, main frame computer, personal digital assistant, or other computing device. Windows-oriented platforms supported by the computer 200 can include, without limitation, WINDOWS 3.x, WINDOWS 95, WINDOWS 98, WINDOWS NT 3.51, WINDOWS NT 4.0, WINDOWS 2000, WINDOWS CE, WINDOWS ME, WINDOWS XP, WINDOWS Longhorn, MAC/OS, Java, and UNIX. The computer 200 can include a visual display device (e.g., a computer monitor), a data entry device (e.g., a keyboard), persistent or volatile storage (e.g., computer memory) for storing downloaded application programs, a processor, and a mouse. Execution of a communication program allows the system 200 to participate in a distributed computer system model.
For embodiments in which the client computing device 110 is a mobile device, the device may be a JAVA-enabled cellular telephone, such as the i55sr, i58sr, i85s, or the i88s, all of which are manufactured by Motorola Corp. of Schaumburg, Ill.; the 6035 or the 7135, manufactured by Kyocera of Kyoto, Japan; or the i300 or i330, manufactured by Samsung Electronics Co., Ltd., of Seoul, Korea. A typical mobile device may comprise many of the elements described in
In other embodiments in which the client computing device 110 is mobile, it may be a personal digital assistant (PDA) operating under control of the PalmOS operating system, such as the Tungsten W, the VII, the VIIx, the i705, all of which are manufactured by palmOne, Inc. of Milpitas, Calif. In further embodiments, the computer 100 may be a personal digital assistant (PDA) operating under control of the PocketPC operating system, such as the iPAQ 4155, iPAQ 5555, iPAQ 1945, iPAQ 2215, and iPAQ 4255, all of which manufactured by Hewlett-Packard Corporation of Palo Alto, Calif.; the ViewSonic V36, manufactured by ViewSonic of Walnut, Calif.; or the Toshiba PocketPC e405, manufactured by Toshiba America, Inc. of New York, N.Y. In still other embodiments, the computer 100 is a combination PDA/telephone device such as the Treo 180, Treo 270, Treo 600, or the Treo 650, all of which are manufactured by palmOne, Inc. of Milpitas, Calif. In still further embodiments, the client computing device 110 is a cellular telephone that operates under control of the PocketPC operating system, such as the MPx200, manufactured by Motorola Corp. A typical combination PDA/telephone device may comprise many of the elements described in
Referring back to
Client computing devices 110 communicate with the gateway computing device 120 over a first network 150. In some embodiments, client computing devices 110 communicate over a network connection. The network can be a local area network (LAN), a metropolitan area network (MAN), or a wide area network (WAN) such as the Internet. The client computing devices 110 and the gateway computing device 120 may connect to a network through a variety of connections including standard telephone lines, LAN or WAN links (e.g., T1, T3, 56 kb, X.25), broadband connections (ISDN, Frame Relay, ATM), and wireless connections. Connections between the client computing devices 110 and the gateway computing device 120 may use a variety of data-link layer communication protocols (e.g., TCP/IP, IPX, SPX, NetBIOS, NetBEUI, SMB, Ethernet, ARCNET, Fiber Distributed Data Interface (FDDI), RS232, IEEE 802.11, IEEE 802.11a, IEE 802.11b, IEEE 802.11g and direct asynchronous connections).
Still referring to
Referring now to
Still referring to
The gateway computing device 120 authenticates the user of the client computing device 110 (step 304). In some embodiments, the gateway computing device 120 prompts the user for authentication credentials using HTTP 401 Basic, Digest, or NTLM. Once credentials are received from the user, authentication may occur using LDAP, RADIUS, two-factor authentication techniques, authentication certificates, or biometric techniques. For example, the user may authenticate using token-based, two-factor authentication techniques such SecurID tokens, manufactured and sold by RSA Security Inc. of Bedford, Mass. or SafeWord tokens manufactured by Secure Computing of San Jose, Calif.
The gateway computing device 120 transmits a portal page to the client computing device 110 for display to the user (step 306). In some embodiments, the portal page requests additional information from the user, such as the user's location, the capabilities of the client computing device 110, or whether the user owns the client computing device 110. In other embodiments, the portal page allows the user to specify particular network resources to which the user wants access. In still other embodiments, the portal page provides a button for the user to select to establish the connection.
The client computing device 110 transmits a request to connect to the gateway device 120 (step 308). In one embodiment, the client computing device 110 automatically transmits the request upon selection by a user of a network resource to access. In other embodiments, the client computing device 110 automatically transmits the request after the user submits information requested by the portal page.
The gateway computing device 120 transmits remote process to the client computing device 110 (step 310). In one embodiment, the remote process comprises a client application. The client application may comprise functionality for receiving a packet, applying a policy to the packet, and determining to transmit the packet to the gateway computing device 110.
In some embodiments, the remote process comprises a driver. The driver may comprise functionality for capturing a packet and determining to forward the packet to the client application, responsive to a filter table received from the client application. In one of these embodiments, the remote process comprises a driver constructed in compliance with the Network Driver Interface Specification (NDIS). In another of these embodiments, the driver comprises a mini-filter. In still another of these embodiments, the driver executes in kernel space on the client computing device 110. In yet another of these embodiments, the driver executes in application space on the client computing device 110. In still another of these embodiments, the driver is transmitted to the client computing device 120 separately from the remote process. In yet another of these embodiments, the gateway computing device 120 determines that the client computing device 110 already comprises an NDIS driver and that transmission of an NDIS driver to the client computing device 110 is not required.
The client computing device 110 launches the remote process (step 312). The client computing device 110 may launch the remote process automatically, at the time of installation. In other embodiments, the client computing device 110 may launch the remote process automatically, at a time when the user of the client computing device 110 requests access to a target computing device 140. In still other embodiments, a user of the client computing device 110 may launch the remote process automatically prior to requesting access to a target computing device 140.
Once launched, the remote process establishes a secure communication tunnel to the gateway computing device 120 (step 314). In embodiments where the remote process is a client application executing in application space, the client application establishes the secure communication tunnel to the gateway computing device 120. In one embodiment, the secure communication tunnel is established over an HTTPS port, such as port 442, or any other configured port on the gateway computing device 120, using TLS or SSL encryption. In another embodiment, the secure communications tunnel may be established using industry standard connection establishment techniques, such as HTTPS, Proxy HTTPS, and SOCKS. Use of these techniques may enable use of the present invention in embodiments where a firewall 130 is implemented. In some embodiments, a connection is made via an intermediate proxy. In one of these embodiments, the client computing device 110 obtains from the user of the client computing device 110 credentials requested by the intermediate proxy.
In some embodiments, the secure communication tunnel is encrypted using industry standard technology, such as SSL and TLS. Upon establishment of the secure communication tunnel, session payload is encrypted and captured IP packets may be securely transmitted to the gateway computing device 120. Packets and packet header information transmitted across the secure communication tunnel are encrypted. The secure communication tunnel may support 196-bit encryption as well as higher or lower bit values. In one embodiment, the secure communication tunnel supports all OpenSSL ciphers, including CAST, CAST5, DES, Triple-DES, IDEA, RC2, RC4, and RC5.
In some embodiments, the gateway computing device 120 transmits configuration information to the remote process. The configuration information may provide the remote process with descriptive information regarding a network being secured, such as the network 180. The configuration information may also include IP addresses required to enable visibility of the client computing device 110 on one or more networks. The configuration information may further include information needed to validate that the remote process successfully established the communication tunnel. This information may enable the remote process to test and validate client-side certificates, directly or by configuring the client computing device 110 to do so. The information may also comprise authentication information enabling the remote process to validate that the tunnel is established.
In some embodiments, upon the launch of the remote process, the remote process captures all network traffic destined for a private, secured network, such as the network 180. In one of these embodiments, the remote process redirects captured network traffic over the established secure communications tunnel to the gateway computing device 120. In an embodiment where all network traffic is captured and transmitted over a secure link, the present invention provides functionality equivalent to that provided by an IPSec solution.
In one of these embodiments, a TCP connection is initiated by an application executing on the client computing device 110, for transmission of IP packets to a target computing device 140. The remote process captures the IP packets generated by the application. The remote process may send a TCP acknowledgement packet to the application and terminate the TCP connection initiated by the application. The remote process then creates a second TCP connection to the gateway computing device 120 and transmits the captured IP packets to the gateway computing device 120 across the secure communications tunnel. In some embodiments, the remote process may store a captured IP packet in a buffer. In these embodiments, the remote process may transmit the stored IP packet to the gateway computing device 120. Storing the captured IP packets in a buffer enables preservation of the packets in the event of a disruption in the secure communications tunnel between the gateway computing device 120 and the client computing device 110.
In another of these embodiments, upon receipt of the captured IP packets, the gateway computing device 120 may create a third TCP connection between the gateway computing device 120 to the target computing device 140. The gateway computing device 120 may maintain a port-mapped Network Address Translation (NAT) table, enabling the gateway computing device 120 to transmit response packets from the target computing device 140 to the port monitored by the application that originally generated the IP packet on the client computing device 110.
Because the client computing device 110 communicates only with a public network address of the gateway computing device 120, the client computing device 110 is unaware of the network address of the target computing device 140, increasing security to the network on which the target computing device 140 resides. Similarly, since the gateway computing device 120 originates the TCP connection to the target computing device 140, the target computing device 140 does not receive the address information of the client computing device 110, protecting the client computing device and the network on which it resides. Additionally, since the gateway computing device 120 receives the IP packets, the gateway computing device 120 may make a determination responsive to a policy or security check as to whether or not to transmit the IP packets to the target computing device 140, further increasing protection to the network on which the target computing device 140 resides.
In some embodiments, functionality is required that enables the gateway computing device 120 to create a connection to the client computing device 110. The functionality may be required to enable the client computing device 110 to use protocols such as those required by real-time voice applications. In one of these embodiments, the remote process associates the client computing device 110 with a network address on the network 180. In another of these embodiments, a remote process execution on the gateway computing device 120 associates the client computing device 110 with the network address on the network 180. In other embodiments, a remote process execution on the gateway computing device 120 maintains a reverse NAT table.
In one embodiment, the present invention provides a method for securing a packet transmitted from a private, secured network 180 behind a gateway 120 to a client computing device 110 on an external network 150. The invention enables separation of the client computing device from the private network by providing network address translation (NAT) functionality on the gateway. A VPN gateway that uses NAT provides masquerading of IP addresses of a client computing device to shield the private network from direct layer-2 access by the client computing device.
Referring now to
A filtering table is received (step 402). In some embodiments, the filtering table includes information about a private network. In other embodiments, a filter on a client computing device receives the filtering table. In one of these embodiments, the filter receives the filtering table from a client application on the client computing device. In another of these embodiments, the filter receives configuration settings from the client application and stores the configuration settings in a filtering table.
An outbound packet is intercepted (step 404). In some embodiments, a filter on a client computing device intercepts the outbound packet. In one of these embodiments, the filter intercepts all outbound packets. In another of these embodiments, the filter inspects an intercepted outbound packet. In still another of these embodiments, the filter inspects an intercepted outbound packet prior to the outbound packet being routed. In another embodiment, the filter inspects an intercepted outbound packet prior to the outbound packet reaching the data link layer in which the outbound packet would be prepared for routing.
The outbound packet is transmitted to a client application responsive to the filtering table (step 406). In some embodiments, a filter transmits the outbound packet to the client application, responsive to the filtering table. In one of these embodiments, when the filter inspects an outbound packet, the filter compares data in the outbound packet to data in the filtering table. In one embodiment, the filtering table indicates that an outbound packet should be transmitted to the client application if the outbound packet is addressed to a particular destination, such as a private network behind a gateway computing device. In another embodiment, the filtering table indicates that an outbound packet should be transmitted to the client application if the outbound packet is a particular type of packet, for example, a packet containing real-time data, such as voice or video data. In still another embodiment, the filtering table indicates that a packet should be transmitted to the client application if transmission of the outbound packet requires a particular protocol type. In one embodiment, the filter transmits the outbound packet to the client application responsive to a routing table. In another embodiment, the filter transmits the outbound packet to a port monitored by the client application. In some embodiments, the filter rewrites a destination address and a destination port of the packet. In one of these embodiments, the filter transmits the rewritten packet back up the network stack of the operating system for delivery to the client application. In another of these embodiments, the filter transmits information about the outbound packet to the client application prior to rewriting the destination address and destination port. The transmitted information may include the original destination address and destination port.
The client application determines to transmit the outbound packet to a gateway computing device, responsive to an application of a policy to the outbound packet (step 408). In one embodiment, the filtering table indicates to the filter that the outbound packet should be transmitted to the client application. In some embodiments, upon receipt of the outbound packet from the filter, the client application applies a policy to the outbound packet. In one of these embodiments, the client application determines whether to transmit the outbound packet to the gateway computing device responsive to the application of the policy. In one embodiment, the determination to transmit the outbound packet to the gateway computing device is based upon the type of application that generated the outbound packet. In another embodiment, the determination to transmit the outbound packet to the gateway computing device is based upon the type of data within the outbound packet. In still another embodiment, the determination to transmit the outbound packet to the gateway computing device is based upon a characteristic of a destination network to which the outbound packet is addressed.
In one embodiment, the client application authenticates the client computing device to a gateway computing device prior to transmission of the outbound packet. In another embodiment, the client application encrypts the outbound packet prior to transmitting the outbound packet to the gateway computing device. In still another embodiment, the client application establishes a secure sockets layer (SSL) tunnel to the gateway computing device. In yet another embodiment, the client application transmits an encrypted outbound packet to the gateway computing device via an SSL tunnel to the gateway computing device.
Referring now to
The kernel 534 may include a filter 522 and an outbound packet 528. The filter 522 may include a packet capture module 565. The packet capture module 565 may comply with the Network Driver Interface Specification (NDIS). The packet capture module 565 may operate in kernel mode. The packet capture module 565 may intercept outbound packet traffic. The packet capture module 565 may forward the packets to a frame monitor in an application 526.
In some embodiments, the filter 522 communicates with the client application 526 via asynchronous I/O control messages. In one of these embodiments, the packet capture module 565 may forward packets addressed to a private network behind a gateway computing device 540 via asynchronous I/O control messages. In other embodiments, the filter 522 communicates with the client application 526 running in the application space 534 via UDP packets. In one embodiment, the filter 522 receives configuration settings from the client application 526 driver via asynchronous I/O control messages. The configuration settings may include information regarding which networks, protocols, or types of packets to filter. In one embodiment, the filter 522 stores the configuration settings in a filtering table. In another embodiment, the filter 522 receives a filtering table including the configuration settings.
In one embodiment, the filter 522 intercepts all outbound packets 528 for inspection. If the packet 528 satisfies a condition listed in the filtering table, the filter 522 may transmit the packet 528 to the client application 526 and not to the original destination of the packet 528. The filter 522 may use an asynchronous I/O control message to forward the packet 528 to the client application 526. The filter 522 may transmit the packet 528 to the client application 526 responsive to a routing table.
The kernel 534 in the client computing device 520 may include an NDIS interface. In some embodiments, the NDIS interface includes a plurality of intermediate filters. In one embodiment, a packet 528 passes through the NDIS interface and may be inspected by the plurality of intermediate filters. The filter 522 may be provided as an NDIS driver. The filter 522 may also be a process executing on the kernel 534.
The application space 532 includes a client application 526. In one embodiment, the application space 532 may include an application 538, which may generate the packet 528. In some embodiments, an application 538 executing in application space 532 generates a packet 528 for transmission by the client computing device 520. The application 538 can be any type and/or form of application such as any type and/or form of web browser, web-based client, client-server application, a thin-client computing client, an ActiveX control, or a Java applet, or any other type and/or form of executable instructions capable of executing on client computing device 110 or communicating via a network. The application 538 can use any type of protocol and it can be, for example, an HTTP client, an FTP client, an Oscar client, or a Telnet client. In some embodiments, the application 538 uses a remote display or presentation level protocol. In one embodiment, the application 538 is an ICA client, developed by Citrix Systems, Inc. of Fort Lauderdale, Fla. In other embodiments, the application 538 includes a Remote Desktop (RDP) client, developed by Microsoft Corporation of Redmond, Wash. In other embodiments, the application 538 comprises any type of software related to Voice over IP (VoIP) communications, such as a soft IP telephone. In further embodiments, the application 538 comprises any application related to real-time data communications, such as applications for streaming video and/or audio.
The client application 526 may reside in application space 532 on a client computing device 520. In some embodiments, the client application 526 provides functionality for receiving packets from the filter 522. In other embodiments, the client application 526 provides functionality for applying a policy to a received packet 528. In still other embodiments, the client application 526 provides functionality for managing an SSL tunnel to the gateway computing device 540. In yet other embodiments, the client application 526 provides functionality for encrypting and transmitting a packet 528 to the gateway computing device 540.
The client application 526 may include frame monitor 560. The frame monitor 560 may include policies and logic for applying a policy to a received packet. The frame monitor 560 may apply a policy to a received packet 528. The client application 526 may transmit a packet to a gateway computing device 540 responsive to a policy-based determination made by the frame monitor 560.
In some embodiments, the frame monitor 560 may apply a policy to determine a state of the client computing device 520 at the time of transmission of the packet. In some embodiments, the policy applied may require satisfaction of a condition. In one of these embodiments, the policy may require that the client computing device 520 execute a particular operating system to satisfy the condition. In some embodiments, a policy may require that the client computing device 520 execute a particular operating system patch to satisfy the condition. In still other embodiments, a policy may require that the client computing device 520 provide a MAC address for each installed network card to satisfy the condition. In some embodiments, a policy may require that the client computing device 520 indicate membership in a particular Active Directory to satisfy the condition. In another embodiment, a policy may require that the client computing device 520 execute a virus scanner to satisfy the condition. In other embodiments, a policy may require that the client computing device 520 execute a personal firewall to satisfy the condition. In some embodiments, a policy may require that the client computing device 520 comprise a particular device type to satisfy the condition. In other embodiments, a policy may require that the client computing device 520 establish a particular type of network connection to satisfy the condition.
In other embodiments, the frame monitor 560 may identify an application 538 that generated the packet 528. In one of these embodiments, the frame monitor 560 may make a policy-based determination to transmit the packet 528 to the gateway computing device 540 responsive to the identified application 538. In another of these embodiments, the frame monitor 560 may perform a checksum on the packet to verify that the identified application actually generated the packet 528.
In one embodiment, the gateway computing device 540 is a remote access server. The gateway computing device 540 may decrypt packets received from the client computing device 520. The gateway computing device 540 may protect a private network. In some embodiments, the gateway computing device 540 associates a client computing device 520 with a private IP address. In one of these embodiments, when the gateway computing device 540 receives a packet from the client computing device 520, the gateway computing device 540 transforms the IP address of the packet to the IP address associated with the client computing device 520. The gateway computing device 540 may apply access control policies to a received packet prior to routing the packet to a final destination. The gateway computing device 540 is described in further detail below, in
Once a frame enters the gateway computing device 540 via an SSL tunnel, the packet and its payload are dispatched via callbacks into a handlers executing in user mode, which provide functionality for SSL decryption. In one embodiment, OpenSSL is used. In another embodiment, a hardware accelerator is used. Once the packet is decrypted, it is injected into the HTTP stack where headers are assembled and passed on to the remote access blade.
In a remote access blade, a packet is classified by the type of data contained within the packet. In one embodiment, the packet contains an HTTP header requesting login and registration. In another embodiment, the packet seeks TCP/UDP/RAW/OTHER connection establishment. In still another embodiment, the packet contains connection-specific data. In yet another embodiment, the packet contains a special feature request such as collaboration with other users, fetching of user directory and presence or requesting telephony functionality such as conferencing and web cast. The remote access module dispatches the packet appropriately to the corresponding sub handler. For example, the client computing device may request that a connection be set up to a specific machine on the private network behind the gateway computing device. The remote access module may consult with the access control module and if a positive response is returned, the remote access module may grant the request. In some embodiments, the remote access module may grant the request by injecting subsequent frames on the private network using a frame forwarding module utilizing NAT/PAT to correlate incoming frames to corresponding SSL tunnels to the client computing device.
Referring now to
The client application 526 in application space 532 receives a packet. In one embodiment, the client application 526 receives the packet from the filter 522. In some embodiments, an interface 602 on the client application 526 receives the packet. In one of these embodiments, the interface 602 is a full-duplex direct I/O-based IRP-handling interface with an I/O Control Windows Management Interface (WMI).
The client application 526 inspects the packet. In one embodiment, a policy and host security engine API 620 on the client application 526 inspects the packet. In one embodiment, the policy and host security engine API 620 applies a policy to the packet. The policy may include requirements for hosts and processes accessing a corporate network.
In some embodiments, the policy and host security engine API 620 identifies an application 538 that generated the packet. An application 538 may be continuously check-summed to ensure that malicious applications with the same name did not generate the packet. If the policy and host security engine API 620 determines that the current condition and history of the machine satisfies the applied policies, the client application 526 may transmit the packet to the gateway computing device 540.
In some embodiments, a packet/frame forwarding and SSL tunnel management API 610 on the client application 326 transmits the packet to a gateway computing device 540. The API 610 may transmit the packet across an SSL tunnel to the gateway computing device 540.
In one embodiment, the client application 526 establishes an asynchronous maintenance tunnel to communicate with a policy module on the gateway computing device 540. The client application 526 may use the tunnel to communicate with the gateway computing device 540 regarding client events (such as status of firewalls and anti-virus programs). The client application 526 may also use the tunnel to receive new policies from the gateway computing device.
In some embodiments, the client application 526 includes an Application Hook and TDI analysis API 630. The API 530 may use Windows menu hooking and tray pop hooking to inject GUI messages to an end user of the client computing device 520. In one embodiment, the GUI messages alert the end user of various system events, system administrator announcements and gather user credentials.
In other embodiments, the client application 526 includes an audio/video and messaging integration API 640. The API 640 may use audio, video and IM messaging hooks to interconnect with existing user applications (such as MSN messenger or an installed softphone).
Referring now to
Packets entering the protocol edge driver 710 on the receive path are arriving from other client computing devices that are using the client computing device 520 as a gateway computing device.
Packets entering the miniport edge 720 are arriving from applications 538 running on the client computing device 520 that are transmitting outbound packets to a private network behind a gateway computing device 540. The I/O filter 712 applies filtering logic on each packet and compares it against its filter table. If the I/O filter 712 filters the packet, the I/O filter 712 passes the packet to the IOCTL dispatch engine 714 with a request to forward the packet to the client application 526. Otherwise, the I/O filter 712 sends the packet to its original direction, either up or down the network stack as appropriate.
In some embodiments, the client application 326 is not located on the client computing device 320. In one of these embodiments, a peripheral device contains the client application 326.
Referring now to
Referring now to
In one embodiment, the peripheral device stores a VPN application. Upon connection to a computer system, the peripheral device identifies itself to the client computing device as a mass storage device and executes the VPN application on the client computing device. In some embodiments, the VPN application authenticates the peripheral device to a VPN gateway computing device. In one of these embodiments, after authentication, the VPN application retrieves routing table changes from the VPN gateway computing device. In another of these embodiments, the VPN application creates a file on the peripheral device storing retrieved routing table changes. In still another of these embodiments, the VPN application retrieves data for use by the peripheral device. The data may include a destination address of the VPN gateway computing device, an IP address for the client computing device, and at least one port address for the VPN application to monitor.
In some embodiments, upon creation of a file on the peripheral device, the peripheral device identifies itself to the client computing device as a network device. In one of these embodiments, the peripheral device transfers to the client computing device a plurality of routing table changes stored in the created file. In another of these embodiments, the peripheral device instructs a computer through the transmitted routing table changes to transmit an outbound packet to the peripheral device. In still another of these embodiments, the change to the routing table indicates to the client computing device that all outbound packets not destined for the VPN application should be transmitted to the peripheral device. In some embodiments, an outbound packet is transmitted by the client computing device to the peripheral device, responsive to the change to the routing table.
The peripheral device receives an outbound packet (step 804). In one embodiment, the peripheral device receives the outbound packet responsive to the change made to the routing table. In one embodiment, the peripheral device receives the outbound packet by interacting with the peripheral side of R-NDIS, accepts the outbound packet, and indicates to R-NDIS that the packet has been delivered.
In one embodiment, when the peripheral device receives the outbound packet, the outbound packet includes an IP header storing a set of address information. In some embodiments, the peripheral device determines that the set of address information is unique. In one of these embodiments, when the peripheral device receives a unique set of address information, the peripheral device maps the unique set of address information to a unique source port. The peripheral device may generate a random number to create the unique source port. The peripheral device may store, in memory, the mapping from the unique set of address information to the unique source port.
In some embodiments, the peripheral device generates a second packet. In one of these embodiments, the peripheral device creates a data structure inside a control frame in a data section of the second packet. In another of these embodiments, the data structure includes the unique source port. In still another of these embodiments, the data structure stores an IP address of the client computing device. In yet another of these embodiments, the data structure stores one of a plurality of well-known destination ports monitored by the VPN application. In some embodiments, the data structure stores well-known destination ports and destination address retrieved from the VPN Gateway computing device.
The peripheral device transmits information about the outbound packet to a client application (step 806). In some embodiments, the peripheral device transmits the generated second packet to a VPN application. In one of these embodiments, the generated second packet includes the IP address of the client computing device and a destination port monitored by the VPN application. Including this information in the generated second packet enables the peripheral device to transmit the generated second packet and have the generated second packet delivered to the VPN application on a port monitored by the VPN application. In another of these embodiments, the generated second packet includes the unique source port generated by the peripheral device. In still another of these embodiments, the peripheral device indicates to the client computing device that the generated second packet is a new received packet and transmits the second packet to the client computing device. The client computing device receives the second packet and delivers it to the VPN application.
The peripheral device replaces address information on the outbound packet with a destination address and a destination port associated with the client application (step 808). Rewriting the address information enables the peripheral device to forward the outbound packet to a VPN application. In one embodiment, the peripheral device replaces the destination address on the outbound packet with the IP address of the client computing device on which the VPN application executes. In another embodiment, the peripheral device replaces the destination port on the outbound packet with a destination port monitored by the VPN application. In still another embodiment, the peripheral device replaces the source port on the outbound packet with the generated unique source port described above.
The peripheral device transmits the modified outbound packet to the VPN application (step 810). In some embodiments, the peripheral device indicates to the client computing device that the modified outbound packet is a newly received packet. In one of these embodiments, the client computing device receives the modified outbound packet, identifies the destination port as a port monitored by the VPN application, and transmits the modified outbound packet to the VPN application.
The peripheral device generates the second packet to provide the VPN application with the unique source port. Once the VPN application receives the unique source port, the VPN application may use the unique source port to identify an original destination address associated with other packets. In one embodiment, when the VPN application receives a new, modified outbound packet containing a source port, the VPN application uses the unique source port to retrieve the original destination address of the outbound packet from a mapping stored on the peripheral device.
In some embodiments, the VPN application transmits the outbound packet to the VPN gateway computing device. In one of these embodiments, the VPN application encrypts the modified outbound packet. In another of these embodiments, the VPN application transmits the outbound packet to the VPN gateway computing device, responsive to the information received about the outbound packet from the peripheral device. In still another of these embodiments, the VPN application employs a received unique source port to retrieve from the peripheral device a destination port and destination address associated with the unmodified outbound packet. The VPN application may then transmit the retrieved address information with the modified outbound packet to the VPN gateway computing device. In some embodiments, the VPN application makes a connection to the original destination address and then transmits the packet to the destination.
In one embodiment, the VPN application establishes an SSL tunnel to the VPN gateway computing device. The VPN application may transmit the outbound packet to the VPN gateway computing device across the SSL tunnel. In this embodiment, the VPN application may establish the SSL tunnel responsive to a destination address associated with the outbound packet received from the peripheral device.
In some embodiments, the firmware on the device enables several types of functionality. In one of these embodiments, the firmware reports the type of device as a composite USB mass storage and network device combination device. In another of these embodiments, the firmware stores and launches applications. These applications may include, without limitation, encryption and tunnel management logic, end user applications (such as email or soft phones), end user identity (such as certificates or tokens), autorun.inf files so applications are automatically launched, and end user application data (such as email pst files). In yet another of these embodiments, the firmware implements an R-NDIS loop back such that outbound IP packets that are sent to the peripheral device are identified to the client computing device as inbound IP packets and sent back to the host operating system to a different port. By marking an outbound packet as an inbound packet, the peripheral device can send the packet to the VPN application and prevent the packet from leaving the computer unencrypted. Forcing a packet to the VPN application, which sends the packet to a VPN gateway computing device for transmission to the original destination of the packet, also ensures that the packet is transmitted to the original destination in a secure manner.
In other embodiments, the firmware on the peripheral device implements token software such that unique tokens are generated on a timely basis in synchronization with the authenticating VPN gateway computing device. The peripheral device may establish an authentication tunnel with the VPN gateway computing device. The VPN gateway computing device can read tokens from a file stored in mass storage on the peripheral device. The host VPN tunnel logic may fetch the token and sent the token to the VPN gateway computing device as an authentication factor.
Referring now to
The client computing device 920 comprises a routing table 930, a packet 928, a physical NIC 936, and a remote-NDIS driver 938. In some embodiments, the client computing device 920 further comprises a device driver that enables communication between the client computing device 920 and the device 900. In one of these embodiments, the device driver may comprise a Remote-NDIS driver for Universal Serial Bus (USB) device.
In one embodiment, the device 900 connects to the physical NIC 936 on the client computing device 920. The physical NIC 936 may be a USB card. In other embodiments, the physical NIC 936 is an external bus supporting high data transfer rates and complying with the IEEE 1394 standard, such as a Firewire card. In other embodiments, the physical NIC 936 is a small computer system interface (SCSI) card.
Still referring to
In one embodiment of the present invention, the device 900, which may be a USB peripheral device, operates as a composite USB device declaring itself as a device capable of mass storage. A reporting element 916, shown in shadow in
In an embodiment where the device 900 has a composite nature, the device 900 may initially appear as a mass storage capable of removable media and use autostart.inf to launch a port forwarder application 912 on a VPN application 910. The port forwarder application 912 may show a login dialog to a user of the client computing device 920 and collect user credentials. In one embodiment, the port forward application 912 may establish an SSL tunnel with the VPN gateway computing device 940 and present the VPN gateway computing device 940 with authentication credentials, certificates, or tokens, each of which may be read from the mass storage section on the device 900.
For packets that are destined for a network on which the VPN gateway computing device 940 resides, the device 900 generates a unique source port number and maps the unique source port number to a destination address on the packet 928. The device 900 may then rewrite the packet 928, addressing the packet 928 to the destination address of the client computing device 920 and to a port on the client computing device 920 monitored by the port forwarder application 912, and including the unique source port number in the rewritten packet 928. The device 900 may transmit the rewritten packet 928 to the client computing device 920. The client computing device 920 transmits the rewritten packet 928 to the port monitored by the VPN application 910.
The device 900 may store applications, such as electronic mail applications, in the storage element 914, for execution on the client computing device 920. In some embodiments, the present invention enables sandboxing. In one of these embodiments, the device 900 hosts application data if the device 900 determines that mass storage on the client computing device 920 is not a safe asset for the storage of data generated and used during a VPN session. In another of these embodiments, the invention provides a mechanism enabling plugging a device 900 into any client computing device 920 and automatically having session data readily available. Additionally, storage of an application and execution data on a device 900 may prevent a user from leaving sensitive data on insecure client computing devices 920.
In other embodiments, if the device 900 determines that the client computing device 920 is insecure and should not receive access to the network on which the VPN gateway computing device 940 resides, the device 900 may serve as a platform for launching a remote frame buffer (or thin client) mode of operation to gain remote access. In one of these embodiments, the session state for the remote access can be saved on the device 900 and resumed from other locations. In still other embodiments, the device 900 may also serve as an audio device and provide soft phone functionality to the client computing device, where the telephony logic runs in the port forwarder application and the device simply serves as an I/O mechanism.
The routing element 902 implements a change to the routing table 930 on the client computing device 920. In one embodiment, the routing element 902 changes the routing table so that the client computing device 920 reroutes all outbound packets to the device 900. In another embodiment, the routing element 902 implements the change by transmitting a retrieved change to the client computing device after a reporting element 916, shown in shadow in
In some embodiments, the routing element 902 retrieves a plurality of changes to make to the routing table 930. In one of these embodiments, the routing element 902 may retrieve the changes from a VPN gateway computing device 940. In another of these embodiments, the VPN application 910 may retrieve the changes from the VPN gateway computing device 940. In still another of these embodiments, the VPN gateway computing device 940 may require authentication of the device 900 prior to the retrieval of routing table changes.
In some embodiments, the routing element 902 retrieves the change from the storage element 914. In one of these embodiments, the routing element 902 retrieves the change after the VPN application 910 has stored the change on the storage element 914.
In an embodiment where the device 900 includes a reporting element 916, the reporting element 916 may communicate with the client computing device 920 to identify the device 900 to the client computing device 920. In some embodiments, the reporting element 916 communicates with an R-NDIS driver 938. In one embodiment, the reporting element 916 identifies the device 900 as a mass storage device. The reporting element 916 may make this identification when the device 900 is initially connected to the client computing device.
In some embodiments, the reporting element 916 identifies the device 900 as a network device. In one of these embodiments, the reporting element 916 makes the identification after changes to the routing table 930 are retrieved and stored in the storage element 914. In another of these embodiments, the routing element 902 transfers to the client computing device 920 the retrieved routing table changes after the reporting element 916 identifies the device 900 to the client computing device 920 as a network device. In still another of these embodiments, the client computing device 920 implements the routing table changes as if the device 900 were a conventional network device.
The receiver 904 receives a packet from the client computing device 920. In one embodiment, the receiver 904 receives the outbound packet responsive to the change made to the routing table 930 by the routing element 902.
The transmitter 906, in communication with the receiver 904 and the packet rewriter 908, transmits information about the outbound packet to the VPN application 910. In one embodiment, the information comprises a unique source port generated by the packet rewriter 908 and associated with the outbound packet 920. In another embodiment, the information comprises a mapping between the unique source port of the outbound packet and the destination address of the outbound packet. In still another embodiment, the transmitter 906 transmits a rewritten outbound packet to the VPN application 910. In yet another embodiment, the transmitter 906 transmits a second packet generated by the peripheral device to the client computing device 920 for delivery to a port monitored by the VPN application 910.
The packet rewriter 908, in communication with the receiver 904 and the transmitter 906, rewrites address information on the outbound packet 928. In some embodiments, the packet rewriter 908 rewrites a destination address on the outbound packet 928 with a destination address and a destination port associated with the VPN application 910. In one embodiment, rewriting the destination address and the destination port enables transmission of the outbound packet to the VPN application 910. In some embodiments, the packet rewriter 908 generates a mapping table associating information in the outbound packet 928 with information in the modified outbound packet 928. In one embodiment, the mapping table associates a destination address and a destination port in the outbound packet 928 with the unique source port stored in the modified outbound packet 928. In another of these embodiments, the mapping table may contain information including an original source address, an original source port, an original destination address, an original destination port, and a unique mapping key used as the source port on rewritten packets.
In one embodiment, the packet rewriter 908, in communication with the receiver 904 and the transmitter 906, generates a second packet as described above in
The packet rewriter 908 replaces a destination address and a destination port on the outbound packet 920 with a destination address and destination port associated with the VPN application 910. In one embodiment, the packet rewriter 908 rewrites the destination address on the outbound packet 928 with an IP address of the client computing device 920 on which the VPN application 910 executes. In another embodiment, the packet rewriter 908 rewrites the destination port on the outbound packet 928 with a port monitored by the VPN application 910.
In some embodiments, the device 900 includes a VPN application 910, which may include a port forwarder application 912. In one of these embodiments, the VPN application 910 is stored in the storage element 914. In another of these embodiments, although the VPN application 410 is stored on the device 900, it executes on the client computing device 920. In this embodiment, the VPN application 910 provides secure transmission of a packet 928 without requiring a software installation on the client computing device 920.
In some embodiments, the VPN application 910 receives the rewritten outbound packet 928 from the client computing device 920. In one of these embodiments, the VPN application 910 uses a unique source address on the rewritten outbound packet 928 to obtain an original destination address. The VPN application 910 may consult a mapping table stored on the storage element 914 on the device 900 to correlate the unique source address on the outbound packet 928 with the original destination address. In another of these embodiments, the VPN application 910 transmits the outbound packet 928 and the original destination address to the VPN gateway computing device 940. In still another of these embodiments, the VPN gateway computing device 940 receives the outbound packet 928 and the original destination address from the VPN application 910 and forwards the outbound packet 920 to the original destination address.
In some embodiments, a port forwarder application 912 provides the functionality of the VPN application 910. In one of these embodiments, the port forwarder application 912 retrieves the changes to the routing table 930 from the VPN gateway computing device 940. In another of these embodiments, the port forwarder application 912 authenticates the device 900 to the VPN gateway computing device 940. In still another of these embodiments, the port forwarder application 912 stores the changes to the routing table 930 in the storage element 914. In yet another of these embodiments, the port forwarder application 912 uses a unique source port to determine the original destination address of the outbound packet 928 and forward the original destination address and the rewritten outbound packet 928 to the VPN gateway computing device 940.
In one embodiment, the port forwarder application 912 obtains routing rules after presenting the VPN gateway computing device 940 with authentication credentials. The device 900 obtains routing rules from the port forwarder application 912. In some embodiments, the port forwarder application 912 stores the routing rules on the storage element 914.
Once the VPN tunnel is established and routing information for the network on which the VPN gateway computing device 940 resides is retrieved from the VPN gateway computing device 940, the VPN application 910 may create a file on the storage element 914 of the mass media device. In one embodiment, the file contains the retrieved routing information. Creation of the file may indicate to the reporting element 916 that it should identify the device 900 to the client computing device 920 as an R-NDIS-capable USB device connected to the client computing device 920. At this point, the operating system on the client computing device 920 will negotiate (via R-NDIS) a DHCP IP address from the device 900 and adjust its routing tables based on information given to it from the device 900, which may be derived from the file created by the port forwarder application 912.
The device 900 may communicate with the port forwarder application 912 on the VPN application 910 using IP packets encapsulated in R-NDIS. The device 900 may also send status packets to the port forwarder application 912. These status packets may convey information regarding state and data structures stored by the device 900.
In some embodiments, to communicate with the port forwarder application 912, the device 900 transmits packets to a control port and unique IP address associated with the port forwarder application 912. In one of these embodiments, the device 900 transmits a packet including a unique source port, indicating to the port forwarder application 912 that the device 900 has received a packet with a unique destination address and that the device 900 generated the unique source port to map to the unique destination address. In another of these embodiments, the device 900 transmits a packet indicating to the port forwarder application 912 that the device 900 has removed a mapping between a unique source port and a unique destination address. In still another of these embodiments, the device 900 transmits a packet requesting from the port forward application 912 instructions for responding to a request, such as an Address Resolution Protocol request.
In other embodiments, the port forwarder application 912 transmits a communications packet to the device 900. In one of these embodiments, the port forwarder application 912 transmits to the device 900 a packet indicating that the port forwarder application 912 has successfully opened a connection to the VPN gateway computing device 940. In another of these embodiments, the port forwarder application 912 transmits to the device 900 a packet indicating that the port forwarder application 912 failed to open a connection to the VPN gateway computing device 940.
In some embodiments, the port forwarder application 912 listens for packets on a plurality of ports, including the following: UDP Traffic Port, TCP Traffic Port, ICMP Traffic Port, and the Control Port. When the port forwarder application 912 receives a packet from a traffic port, such as the UDP traffic port or the TCP traffic port, the port forwarder application 912 uses the unique source port number in the rewritten packet 928 to identify an original destination address. The port forwarder application 912 may then transmit the rewritten packet 928 with the original destination to the VPN gateway computing device 940. In one embodiment, the port forwarder application 912 transmits the rewritten packet 928 with the original destination to the VPN gateway computing device 940 across an SSL VPN tunnel. In another embodiment, the port forwarder application 912 encrypts the rewritten packet 928 prior to transmission.
In some embodiments, the port forwarder application 912 receives a packet from the VPN gateway computing device 940. In one of these embodiments, the port forwarder application transmits the packet to a port monitored by the device 900. The device 900 may transmit the received packet to the client computing device 920 for routing the packet to a user application.
In some embodiments, a gateway computing device protects a private network by securing a packet transmitted from the private network to a client computing device remotely accessing the private network. To minimize security threats to the private network, the gateway computing device may intercept, inspect, and secure packet traffic sent from a protected system on the private network to the client computing device. In one of these embodiments, the gateway computing device is a virtual VPN gateway computing device using NAT to masquerade the IP addresses of the protected system and of the private network. A NAT-enabled VPN gateway computing device may monitor and secure packet traffic permitting more secure transmission of traffic to dynamic ports on a client computing device from the private network. The VPN gateway computing device may monitor network traffic for packet traffic originating from secured resources and addressed to the client computing device. When this VPN gateway computing device identifies this traffic, the VPN gateway computing device may secure the packets for transmission to the client computing device.
Referring now to
A private IP address is associated with a client computing device having a public IP address (step 1002). In some embodiments, each connecting client computing device is assigned a private IP address. In one of these embodiments, the private IP address is not available to the client computing device, for security purposes. Since the client computing device does not have the private IP address, if the client computing device is compromised, the private network is still protected. In another of these embodiments, the private IP address is an address in a private network behind the gateway computing device. In some embodiments, associating a private IP address with a client computing device minimizes security risks to the private network behind the gateway computing device.
A packet addressed to the private IP address of the client computing device is captured (step 1004). In one embodiment, an application generates a packet for transmission to the client computing device. In some embodiments, the application executes on the gateway computing device. In other embodiments, the application executes on a machine residing on a private network behind the gateway computing device. In one embodiment, before the packet is routed to the client computing device, the packet is captured.
In some embodiments, a packet on a client computing device is captured by an application executing in kernel mode, such as an NDIS driver or filter. In one of these embodiments, the application executing in kernel mode forwards the packet to an application executing in user mode. Capturing a packet at kernel level, but transmitting the packet from user mode provides the ability to apply higher-level access control on the traffic to ensure that the application that created the packet satisfies security policies of the network to which the packet is transmitted.
In some embodiments, a filter on the gateway computing device captures a layer-2 Ethernet MAC frame transmitted to the gateway computing device from a client computing device. In one of these embodiments, a client computing device client application executing in user mode does not modify a routing table on the client computing device. Instead, a filter driver on the client computing device captures traffic below the network level, at the media access control (MAC) layer. The client computing device filter driver may capture and transmit a layer-2 Ethernet MAC frame intact to the gateway computing device, over a secure SSL VPN tunnel. In these embodiments, the filter on the gateway computing device provides functionality for capturing the Ethernet MAC frames in addition to capturing packets.
In some embodiments, the packet is inspected after it is captured. In one of these embodiments, the destination address of the packet is inspected. If the destination address is a private IP address associated with the client computing device, the packet may be redirected to a gateway computing device application executing in user mode on the gateway computing device.
A policy is applied to the packet (step 1006). In one embodiment, a management process applies the policy to the packet. In another embodiment, a policy engine applies the policy to the packet. The policy applied may require performance of a series of security checks, such as Access Control List matching and Deep Packet Inspection, on the received packet.
The packet is transmitted to the public IP address of the client computing device, responsive to the application of the policy to the packet (step 1008). After a packet has satisfied a policy, the gateway computing device may determine to transmit the packet to the client computing device. In one embodiment, the packet is re-associated with the original source address of the application generating the packet. The packet is forwarded to the client computing device. In some embodiments, the packets are transmitted over a secure SSL socket to the client computing device.
Referring now to
The gateway computing device 1140 includes a capture driver 1144 executing in the kernel 1142. In some embodiments, an operating system on the gateway computing device 1140 does not readily allow the interception of incoming RAW IP Layer packets. In one of these embodiments, the capture driver 1144, operating in kernel mode on the gateway computing device 1140, captures all Ethernet packets destined for remote client computing devices and forwards the packets back to the management process 1160 operating in user mode on the gateway computing device 1140.
In some embodiments, a protected server 1180, residing on the private network behind the gateway computing device 1140, generates a packet for transmission to the client computing device 1120. In one of these embodiments, the protected server 1180 transmits the packet to the gateway computing device for the gateway computing device for transmission to the client computing device. In another of these embodiments, the generated packet is transmitted as an Ethernet frame. In this embodiment, the capture driver 1144 may capture the Ethernet frame when the Ethernet frame arrives at the gateway computing device 1140. In an embodiment where the capture driver 1144 captures an Ethernet frame, the capture driver 1144 forwards the Ethernet frame to the gateway computing device application 1152 as a frame, not as a packet.
In some embodiments, the capture driver 1144 receives a request from the gateway computing device application 1152 for notification of any packet received with a destination address of the private IP address associated with the client computing device 1120. In one of these embodiments, the capture driver 1144 forwards any Ethernet frame that arrives to the gateway computing device application 1152 over an appropriate raw IP socket. Any reply packets arriving from the client computing device 1120 (even if for a port chosen dynamically by the client computing device 1120, which is typical of active protocols such as active FTP and SIP), are captured by the capture driver 1144 and forwarded to the management process 1160 in the gateway computing device application 1152, which manages the SSL tunnel between the gateway computing device 1140 and that particular client computing device 1120.
In some embodiments, the capture driver 1144 inspects all outbound network frames prior to routing. In one of these embodiments, an outbound network frame is a frame transmitted to the gateway computing device 1140 by a protected server 1180 for forwarding to the client computing device 1120. In another of these embodiments, an application 1158 on the gateway computing device 1140 generates an outbound network frame for transmission to the client computing device 1120. By inspecting all packets prior to routing, the capture driver 1144 increases security and performance, and minimizes the risk of conflicting entries in an operating system routing table. Inspecting packets prior to routing also increases the ability to control packet flow, without the intervention of the underlying network operating system. Since the capture driver 1144 inspects, and potentially filters, all packets prior to routing, a forwarding decision can be made without use of the routing table.
The gateway computing device 1140 includes application space 1150, on which applications execute, and a gateway computing device application 1152. In one embodiment, the gateway computing device application 1152 operates in user mode on the application space 1150. In some embodiments, the gateway computing device application 1152 includes a policy engine 1154, an addressing element 1156 and a management process 1160.
In one embodiment, the management process 1160 manages the capture driver 1144. In another embodiment, the management process 1160 receives a captured frame or a captured packet from the capture driver 1144. In some embodiments, the management process 1160 applies a policy to the packet. In other embodiments, the management process 1160 forwards the captured packet or frame to the policy engine 1154 for packet inspection and policy application.
In one embodiment, when a client computing device 1120 connects to the gateway computing device 1140 the gateway computing device 1140 creates a plurality of raw IP sockets for UDP, IP and other protocols such as ICMP. The management process 1160 may request notification from a capture driver 1144 when a packet arrives on the gateway computing device 1140 from a protected server 1180 addressed to a client computing device 1120. When the capture driver 1144 captures the packet, the capture driver 1144 may transmit the packet to one of the plurality of sockets.
In one embodiment, the policy engine 1154 inspects a captured packet or captured frame. In another embodiment, the policy engine 1154 applies a policy to the captured packet or captured frame. In some embodiments, the policy is an access control policy. In other embodiments, application of the policy determines whether the packet originated from a trusted source, such as a protected server 1180. In some embodiments, the policy engine 1154 transmits a configuration setting to the capture driver 1144.
In one embodiment, the gateway computing device application 1152 includes an addressing element 1156. The addressing element 1156 may associate a private IP address with a client computing device 1120. In one embodiment, the private IP address provides the client computing device 1120 with an address on a private network behind the gateway computing device 1140.
In some embodiments, the addressing element 1156 provides functionality for network address translation. In one of these embodiments, the addressing element 1156 transforms a private IP address to a public IP address. This type of transformation may occur on a packet prior to transmission of the packet from a protected server 1180 to a client computing device 1120, after the policy engine 1154 has approved the packet for transmission to the client computing device 1120.
In other embodiments, when a client computing device 1120 transmits a packet to the gateway computing device 1140, the addressing element 1156 enables transformation of the source address on the packet from the public IP address associated with the client computing device 1120 to the private IP address associated with the client computing device 1120. In one of these embodiments, the transformation occurs because the client computing device is not aware of its associated private IP address.
After the policy engine 1154 has applied a policy to a captured packet, the policy engine 1154 may determine that the packet may be transmitted to its original destination. In one embodiment, the policy engine 1154 forwards the packet to the transmitter 1148 for transmission to the client computing device 1120. In another embodiment, the transmitter 1148 first performs a network address translation on the packet. In some embodiments, the transmitter 1148 performs the network address translation. In one of these embodiments, the transmitter 1148 forwards the packet to the addressing element 1156 for transformation of the private IP address to the public IP address of the client computing device. In another of these embodiments, the transmitter 1148 completes the network address translation.
In one embodiment, the capture driver 1144 provides the functionality of the transmitter 1148. In another embodiment, the network address translation occurs in the gateway computing device application 1152 first and then the packet is forwarded to the capture driver 1144 for transmission to the client computing device 1120.
After the transmitter 1148 transmits the packet to the client computing device 1120, the client application 326 receives the packet from the gateway computing device 1140 and forwards the packet to the filter 322, using an I/O control message. The filter 322 then marks the packet as an incoming packet and forwards the packet to the destination application via the network stack.
The present invention may be provided as one or more computer-readable programs embodied on or in one or more articles of manufacture. The article of manufacture may be a floppy disk, a hard disk, a compact disc, a digital versatile disc, a flash memory card, a PROM, a RAM, a ROM, or a magnetic tape. In general, the computer-readable programs may be implemented in any programming language. Some examples of languages that can be used include C, C++, C#, or JAVA. The software programs may be stored on or in one or more articles of manufacture as object code.
While the invention has been shown and described with reference to specific preferred embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the following claims.
This present application claims priority to and is a continuation of U.S. patent application Ser. No. 11/161,093, entitled “Method And Systems For Securing Remote Access To Private Networks,” filed Jul. 22, 2005, and issued as U.S. Pat. No. 8,291,119, which claims priority to U.S. Provisional Patent Application No. 60/590,837, entitled “Ad Hoc Distributed Networks And Remote Access Architecture,” filed Jul. 23, 2004, and U.S. Provisional Patent Application No. 60/601,431, entitled “System And Method For Assuring Redundancy In Remote Access Solutions,” filed Aug. 13, 2004, and U.S. Provisional Patent Application No. 60/607,420, entitled “Virtual Network Bridging”, filed Sep. 3, 2004, and U.S. Provisional Patent Application No. 60/634,379, entitled “Securing Access to Private Networks from End Points Based on Encryption and Authentication Technology Built into the USB or Other Peripheral Devices Without the Need for Additional Software on the Host Operating System”, filed Dec. 7, 2004, all of which are incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4479195 | Herr et al. | Oct 1984 | A |
4701844 | Thompson et al. | Oct 1987 | A |
4885680 | Anthony et al. | Dec 1989 | A |
4935870 | Burk et al. | Jun 1990 | A |
5301270 | Steinberg et al. | Apr 1994 | A |
5307413 | Denzer | Apr 1994 | A |
5329619 | Page et al. | Jul 1994 | A |
5359712 | Cohen et al. | Oct 1994 | A |
5511208 | Boyles et al. | Apr 1996 | A |
5519699 | Ohsawa | May 1996 | A |
5521940 | Lane et al. | May 1996 | A |
5561769 | Kumar et al. | Oct 1996 | A |
5623492 | Teraslinna | Apr 1997 | A |
5625793 | Mirza | Apr 1997 | A |
5657390 | Elgamal et al. | Aug 1997 | A |
5671226 | Murakami et al. | Sep 1997 | A |
5708656 | Noneman et al. | Jan 1998 | A |
5742829 | Davis et al. | Apr 1998 | A |
5758085 | Kouoheris et al. | May 1998 | A |
5758110 | Boss et al. | May 1998 | A |
5761431 | Gross et al. | Jun 1998 | A |
5787470 | DeSimone et al. | Jul 1998 | A |
5812668 | Weber | Sep 1998 | A |
5815462 | Konishi et al. | Sep 1998 | A |
5819020 | Beeler, Jr. | Oct 1998 | A |
5822524 | Chen et al. | Oct 1998 | A |
5828840 | Cowan et al. | Oct 1998 | A |
5835726 | Shwed et al. | Nov 1998 | A |
5838920 | Rosborough | Nov 1998 | A |
5850446 | Berger et al. | Dec 1998 | A |
5852717 | Bhide et al. | Dec 1998 | A |
5864837 | Maimone | Jan 1999 | A |
5881229 | Singh et al. | Mar 1999 | A |
5889863 | Weber | Mar 1999 | A |
5893150 | Hagersten et al. | Apr 1999 | A |
5911051 | Carson et al. | Jun 1999 | A |
5918244 | Percival | Jun 1999 | A |
5925100 | Drewry et al. | Jul 1999 | A |
5931917 | Nguyen et al. | Aug 1999 | A |
5931961 | Ranganathan et al. | Aug 1999 | A |
5933605 | Kawano et al. | Aug 1999 | A |
5940074 | Britt et al. | Aug 1999 | A |
5943424 | Berger et al. | Aug 1999 | A |
5956483 | Grate et al. | Sep 1999 | A |
5958016 | Chang et al. | Sep 1999 | A |
5978840 | Nguyen et al. | Nov 1999 | A |
5983208 | Haller et al. | Nov 1999 | A |
5987132 | Rowney | Nov 1999 | A |
5987482 | Bates et al. | Nov 1999 | A |
5987611 | Freund | Nov 1999 | A |
5995999 | Bharadhwaj | Nov 1999 | A |
5996076 | Rowney et al. | Nov 1999 | A |
5999179 | Kekic et al. | Dec 1999 | A |
5999525 | Krishnaswamy et al. | Dec 1999 | A |
6002767 | Kramer | Dec 1999 | A |
6021470 | Frank et al. | Feb 2000 | A |
6023724 | Bhatia et al. | Feb 2000 | A |
6026379 | Haller et al. | Feb 2000 | A |
6026413 | Challenger et al. | Feb 2000 | A |
6026440 | Shrader et al. | Feb 2000 | A |
6029175 | Chow et al. | Feb 2000 | A |
6058250 | Harwood et al. | May 2000 | A |
6061715 | Hawes | May 2000 | A |
6061769 | Kapulka et al. | May 2000 | A |
6061796 | Chen et al. | May 2000 | A |
6067569 | Khaki et al. | May 2000 | A |
6072870 | Nguyen et al. | Jun 2000 | A |
6092155 | Olnowich | Jul 2000 | A |
6101543 | Alden et al. | Aug 2000 | A |
6112085 | Garner et al. | Aug 2000 | A |
6119105 | Williams | Sep 2000 | A |
6119151 | Cantrell et al. | Sep 2000 | A |
6122403 | Rhoads | Sep 2000 | A |
6128627 | Mattis et al. | Oct 2000 | A |
6131120 | Reid | Oct 2000 | A |
6141686 | Jackowski et al. | Oct 2000 | A |
6144775 | Williams et al. | Nov 2000 | A |
6157955 | Narad et al. | Dec 2000 | A |
6161123 | Renouard et al. | Dec 2000 | A |
6163772 | Kramer et al. | Dec 2000 | A |
6170017 | Dias et al. | Jan 2001 | B1 |
6173325 | Kukreja | Jan 2001 | B1 |
6175869 | Ahuja et al. | Jan 2001 | B1 |
6178409 | Weber et al. | Jan 2001 | B1 |
6182139 | Brendel | Jan 2001 | B1 |
6192408 | Vahalia et al. | Feb 2001 | B1 |
6219669 | Haff et al. | Apr 2001 | B1 |
6233249 | Katseff et al. | May 2001 | B1 |
6233606 | Dujari | May 2001 | B1 |
6233619 | Narisi et al. | May 2001 | B1 |
6236652 | Preston et al. | May 2001 | B1 |
6252851 | Siu et al. | Jun 2001 | B1 |
6253027 | Weber et al. | Jun 2001 | B1 |
6253188 | Witek et al. | Jun 2001 | B1 |
6253327 | Zhang et al. | Jun 2001 | B1 |
6256773 | Bowman-Amuah | Jul 2001 | B1 |
6272146 | Bowater et al. | Aug 2001 | B1 |
6272148 | Takagi et al. | Aug 2001 | B1 |
6272556 | Gish | Aug 2001 | B1 |
6282172 | Robles et al. | Aug 2001 | B1 |
6289382 | Bowman-Amuah | Sep 2001 | B1 |
6289450 | Pensak et al. | Sep 2001 | B1 |
6301249 | Mansfield et al. | Oct 2001 | B1 |
6304915 | Nguyen et al. | Oct 2001 | B1 |
6308273 | Goertzel et al. | Oct 2001 | B1 |
6321235 | Bird | Nov 2001 | B1 |
6321337 | Reshef et al. | Nov 2001 | B1 |
6324525 | Kramer et al. | Nov 2001 | B1 |
6324582 | Sridhar et al. | Nov 2001 | B1 |
6324647 | Bowman-Amuah | Nov 2001 | B1 |
6324648 | Grantges, Jr. | Nov 2001 | B1 |
6327242 | Amicangioli et al. | Dec 2001 | B1 |
6332163 | Bowman-Amuah | Dec 2001 | B1 |
6333931 | LaPier et al. | Dec 2001 | B1 |
6334664 | Silverbrook | Jan 2002 | B1 |
6339832 | Bowman-Amuah | Jan 2002 | B1 |
6345239 | Bowman-Amuah | Feb 2002 | B1 |
6360265 | Falck et al. | Mar 2002 | B1 |
6363363 | Haller et al. | Mar 2002 | B1 |
6363478 | Lambert et al. | Mar 2002 | B1 |
6370573 | Bowman-Amuah | Apr 2002 | B1 |
6370599 | Anand et al. | Apr 2002 | B1 |
6373950 | Rowney | Apr 2002 | B1 |
6383478 | Prokop et al. | May 2002 | B1 |
6389462 | Cohen et al. | May 2002 | B1 |
6389505 | Emma et al. | May 2002 | B1 |
6398359 | Silverbrook et al. | Jun 2002 | B1 |
6405364 | Bowman-Amuah | Jun 2002 | B1 |
6412000 | Riddle et al. | Jun 2002 | B1 |
6415329 | Gelman et al. | Jul 2002 | B1 |
6425057 | Cherkasova et al. | Jul 2002 | B1 |
6427132 | Bowman-Amuah | Jul 2002 | B1 |
6427187 | Malcolm | Jul 2002 | B2 |
6431777 | Silverbrook | Aug 2002 | B1 |
6434568 | Bowman-Amuah | Aug 2002 | B1 |
6434618 | Cohen et al. | Aug 2002 | B1 |
6434628 | Bowman-Amuah | Aug 2002 | B1 |
6438127 | Le Goff et al. | Aug 2002 | B1 |
6438594 | Bowman-Amuah | Aug 2002 | B1 |
6442571 | Haff et al. | Aug 2002 | B1 |
6442682 | Pothapragada et al. | Aug 2002 | B1 |
6442748 | Bowman-Amuah | Aug 2002 | B1 |
6447113 | Silverbrook et al. | Sep 2002 | B1 |
6449658 | Lafe et al. | Sep 2002 | B1 |
6449695 | Bereznyi et al. | Sep 2002 | B1 |
6452915 | Jorgensen | Sep 2002 | B1 |
6452923 | Gerszberg et al. | Sep 2002 | B1 |
6457103 | Challenger et al. | Sep 2002 | B1 |
6473794 | Guheen et al. | Oct 2002 | B1 |
6473802 | Masters | Oct 2002 | B2 |
6477580 | Bowman-Amuah | Nov 2002 | B1 |
6477665 | Bowman-Amuah | Nov 2002 | B1 |
6484143 | Swildens et al. | Nov 2002 | B1 |
6484206 | Crump et al. | Nov 2002 | B2 |
6487641 | Cusson et al. | Nov 2002 | B1 |
6496481 | Wu et al. | Dec 2002 | B1 |
6496776 | Blumberg et al. | Dec 2002 | B1 |
6496850 | Bowman-Amuah | Dec 2002 | B1 |
6496935 | Fink et al. | Dec 2002 | B1 |
6502102 | Haswell et al. | Dec 2002 | B1 |
6502192 | Nguyen | Dec 2002 | B1 |
6502213 | Bowman-Amuah | Dec 2002 | B1 |
6507891 | Challenger et al. | Jan 2003 | B1 |
6519571 | Guheen et al. | Feb 2003 | B1 |
6523027 | Underwood | Feb 2003 | B1 |
6529909 | Bowman-Amuah | Mar 2003 | B1 |
6529948 | Bowman-Amuah | Mar 2003 | B1 |
6536037 | Guheen et al. | Mar 2003 | B1 |
6539396 | Bowman-Amuah | Mar 2003 | B1 |
6549949 | Bowman-Amuah | Apr 2003 | B1 |
6550012 | Villa et al. | Apr 2003 | B1 |
6550057 | Bowman-Amuah | Apr 2003 | B1 |
6553129 | Rhoads | Apr 2003 | B1 |
6553377 | Eschelbeck et al. | Apr 2003 | B1 |
6553409 | Zhang et al. | Apr 2003 | B1 |
6567806 | Tsuchida et al. | May 2003 | B1 |
6571282 | Bowman-Amuah | May 2003 | B1 |
6574668 | Gubbi et al. | Jun 2003 | B1 |
6574688 | Dale et al. | Jun 2003 | B1 |
6578068 | Bowman-Amuah | Jun 2003 | B1 |
6578073 | Starnes et al. | Jun 2003 | B1 |
6584569 | Reshef et al. | Jun 2003 | B2 |
6587806 | Mangiameli et al. | Jul 2003 | B2 |
6590588 | Lincke et al. | Jul 2003 | B2 |
6591266 | Li et al. | Jul 2003 | B1 |
6594690 | Cantwell | Jul 2003 | B2 |
6598075 | Ogdon et al. | Jul 2003 | B1 |
6601057 | Underwood et al. | Jul 2003 | B1 |
6601192 | Bowman-Amuah | Jul 2003 | B1 |
6601233 | Underwood | Jul 2003 | B1 |
6601234 | Bowman-Amuah | Jul 2003 | B1 |
6603738 | Kari et al. | Aug 2003 | B1 |
6606660 | Bowman-Amuah | Aug 2003 | B1 |
6606663 | Liao et al. | Aug 2003 | B1 |
6606744 | Mikurak | Aug 2003 | B1 |
6609128 | Underwood | Aug 2003 | B1 |
6611262 | Suzuki | Aug 2003 | B1 |
6611522 | Zheng et al. | Aug 2003 | B1 |
6611822 | Beams et al. | Aug 2003 | B1 |
6611867 | Bowman-Amuah | Aug 2003 | B1 |
6614800 | Genty et al. | Sep 2003 | B1 |
6615166 | Guheen et al. | Sep 2003 | B1 |
6615199 | Bowman-Amuah | Sep 2003 | B1 |
6615253 | Bowman-Amuah | Sep 2003 | B1 |
6618359 | Chen et al. | Sep 2003 | B1 |
6629081 | Cornelius et al. | Sep 2003 | B1 |
6631986 | Silverbrook | Oct 2003 | B2 |
6633574 | Koch et al. | Oct 2003 | B1 |
6633878 | Underwood | Oct 2003 | B1 |
6636242 | Bowman-Amuah | Oct 2003 | B2 |
6640238 | Bowman-Amuah | Oct 2003 | B1 |
6640240 | Hoffman et al. | Oct 2003 | B1 |
6640244 | Bowman-Amuah | Oct 2003 | B1 |
6640248 | Jorgensen | Oct 2003 | B1 |
6640249 | Bowman-Amuah | Oct 2003 | B1 |
6647130 | Rhoads | Nov 2003 | B2 |
6650640 | Muller et al. | Nov 2003 | B1 |
6652089 | Silverbrook | Nov 2003 | B2 |
6652090 | Silverbrook | Nov 2003 | B2 |
6662221 | Gonda et al. | Dec 2003 | B1 |
6662357 | Bowman-Amuah | Dec 2003 | B1 |
6664978 | Kekic et al. | Dec 2003 | B1 |
6671818 | Mikurak | Dec 2003 | B1 |
6678734 | Haatainen et al. | Jan 2004 | B1 |
6681029 | Rhoads | Jan 2004 | B1 |
6687732 | Bector et al. | Feb 2004 | B1 |
6691227 | Neves et al. | Feb 2004 | B1 |
6697824 | Bowman-Amuah | Feb 2004 | B1 |
6697844 | Chan et al. | Feb 2004 | B1 |
6697849 | Carlson | Feb 2004 | B1 |
6700902 | Meyer | Mar 2004 | B1 |
6701345 | Carley et al. | Mar 2004 | B1 |
6701514 | Haswell et al. | Mar 2004 | B1 |
6704873 | Underwood | Mar 2004 | B1 |
6715037 | Malcolm | Mar 2004 | B2 |
6715145 | Bowman-Amuah | Mar 2004 | B1 |
6718535 | Underwood | Apr 2004 | B1 |
6721713 | Guheen et al. | Apr 2004 | B1 |
6728787 | Leigh | Apr 2004 | B1 |
6732237 | Jacobs et al. | May 2004 | B1 |
6732269 | Baskey et al. | May 2004 | B1 |
6732314 | Borella et al. | May 2004 | B1 |
6735601 | Subrahmanyam | May 2004 | B1 |
6735691 | Capps et al. | May 2004 | B1 |
6742015 | Bowman-Amuah | May 2004 | B1 |
6744774 | Sharma | Jun 2004 | B2 |
6754699 | Swildens et al. | Jun 2004 | B2 |
6760748 | Hakim | Jul 2004 | B1 |
6766373 | Beadle et al. | Jul 2004 | B1 |
6772203 | Feiertag et al. | Aug 2004 | B1 |
6775392 | Rhoads | Aug 2004 | B1 |
6785719 | Jacobson et al. | Aug 2004 | B1 |
6788315 | Kekic et al. | Sep 2004 | B1 |
6789170 | Jacobs et al. | Sep 2004 | B1 |
6792615 | Rowe et al. | Sep 2004 | B1 |
6801927 | Smith et al. | Oct 2004 | B1 |
6802020 | Smith | Oct 2004 | B1 |
6807607 | Lamparter | Oct 2004 | B1 |
6820125 | Dias et al. | Nov 2004 | B1 |
6820133 | Grove et al. | Nov 2004 | B1 |
6820974 | Silverbrook | Nov 2004 | B2 |
6823374 | Kausik et al. | Nov 2004 | B2 |
6826626 | McManus | Nov 2004 | B1 |
6826627 | Sjollema et al. | Nov 2004 | B2 |
6831898 | Edsall et al. | Dec 2004 | B1 |
6842906 | Bowman-Amuah | Jan 2005 | B1 |
6847892 | Zhou et al. | Jan 2005 | B2 |
6850252 | Hoffberg | Feb 2005 | B1 |
6870921 | Elsey et al. | Mar 2005 | B1 |
6873988 | Herrmann et al. | Mar 2005 | B2 |
6880086 | Kidder et al. | Apr 2005 | B2 |
6883068 | Tsirigotis et al. | Apr 2005 | B2 |
6888927 | Cruickshank et al. | May 2005 | B1 |
6894981 | Coile et al. | May 2005 | B1 |
6899420 | Silverbrook | May 2005 | B2 |
6901072 | Wong | May 2005 | B1 |
6904449 | Quinones | Jun 2005 | B1 |
6904519 | Anand et al. | Jun 2005 | B2 |
6907546 | Haswell et al. | Jun 2005 | B1 |
6910074 | Amin et al. | Jun 2005 | B1 |
6912522 | Edgar | Jun 2005 | B2 |
6918113 | Patel et al. | Jul 2005 | B2 |
6918665 | Silverbrook | Jul 2005 | B2 |
6920502 | Araujo et al. | Jul 2005 | B2 |
6925495 | Hegde et al. | Aug 2005 | B2 |
6934288 | Dempo | Aug 2005 | B2 |
6935736 | Silverbrook | Aug 2005 | B2 |
6944279 | Elsey et al. | Sep 2005 | B2 |
6950848 | Yousefi'zadeh | Sep 2005 | B1 |
6954736 | Menninger et al. | Oct 2005 | B2 |
6954877 | Earl et al. | Oct 2005 | B2 |
6957186 | Guheen et al. | Oct 2005 | B1 |
6959320 | Shah et al. | Oct 2005 | B2 |
6974928 | Bloom | Dec 2005 | B2 |
6976090 | Ben-Shaul et al. | Dec 2005 | B2 |
6980962 | Arganbright et al. | Dec 2005 | B1 |
6981029 | Menditto et al. | Dec 2005 | B1 |
6990070 | Aweya et al. | Jan 2006 | B1 |
6990480 | Burt | Jan 2006 | B1 |
6993016 | Liva et al. | Jan 2006 | B1 |
6996628 | Keane et al. | Feb 2006 | B2 |
6996631 | Aiken et al. | Feb 2006 | B1 |
7000012 | Moore et al. | Feb 2006 | B2 |
7007092 | Peiffer | Feb 2006 | B2 |
7007103 | Pinkerton et al. | Feb 2006 | B2 |
7010300 | Jones et al. | Mar 2006 | B1 |
7013290 | Ananian | Mar 2006 | B2 |
7016055 | Dodge et al. | Mar 2006 | B2 |
7020719 | Grove et al. | Mar 2006 | B1 |
7023979 | Wu et al. | Apr 2006 | B1 |
7024452 | O'Connell et al. | Apr 2006 | B1 |
7026954 | Slemmer et al. | Apr 2006 | B2 |
7027055 | Anderson et al. | Apr 2006 | B2 |
7028083 | Levine et al. | Apr 2006 | B2 |
7028333 | Tuomenoksa et al. | Apr 2006 | B2 |
7028334 | Tuomenoksa | Apr 2006 | B2 |
7031314 | Craig et al. | Apr 2006 | B2 |
7034691 | Rapaport et al. | Apr 2006 | B1 |
7035427 | Rhoads | Apr 2006 | B2 |
7036142 | Zhang et al. | Apr 2006 | B1 |
7039606 | Hoffman et al. | May 2006 | B2 |
7039708 | Knobl et al. | May 2006 | B1 |
7042879 | Eschbach et al. | May 2006 | B2 |
7043529 | Simonoff | May 2006 | B1 |
7047279 | Beams et al. | May 2006 | B1 |
7047424 | Bendinelli et al. | May 2006 | B2 |
7051161 | Dixit et al. | May 2006 | B2 |
7051316 | Charisius et al. | May 2006 | B2 |
7054837 | Hoffman et al. | May 2006 | B2 |
7054944 | Tang et al. | May 2006 | B2 |
7055028 | Peiffer et al. | May 2006 | B2 |
7055169 | Delpuch et al. | May 2006 | B2 |
7055947 | Silverbrook | Jun 2006 | B2 |
7057759 | Lapstun et al. | Jun 2006 | B2 |
7069234 | Cornelius et al. | Jun 2006 | B1 |
7070110 | Lapstun et al. | Jul 2006 | B2 |
7072665 | Blumberg et al. | Jul 2006 | B1 |
7072843 | Menninger et al. | Jul 2006 | B2 |
7072965 | Ryuutou et al. | Jul 2006 | B2 |
7080041 | Nagel | Jul 2006 | B2 |
7082409 | Cherry | Jul 2006 | B1 |
7085683 | Anderson et al. | Aug 2006 | B2 |
7085834 | Delany et al. | Aug 2006 | B2 |
7085854 | Keane et al. | Aug 2006 | B2 |
7086728 | Silverbrook | Aug 2006 | B2 |
7092370 | Jiang et al. | Aug 2006 | B2 |
7096009 | Mousseau et al. | Aug 2006 | B2 |
7096418 | Singhal et al. | Aug 2006 | B1 |
7096495 | Warrier et al. | Aug 2006 | B1 |
7097106 | Silverbrook et al. | Aug 2006 | B2 |
7100195 | Underwood | Aug 2006 | B1 |
7103068 | Gardner et al. | Sep 2006 | B1 |
7107285 | Von Kaenel et al. | Sep 2006 | B2 |
7113779 | Fujisaki | Sep 2006 | B1 |
7113962 | Kee et al. | Sep 2006 | B1 |
7114180 | DeCaprio | Sep 2006 | B1 |
7117504 | Smith et al. | Oct 2006 | B2 |
7117530 | Lin | Oct 2006 | B1 |
7120596 | Hoffman et al. | Oct 2006 | B2 |
7120666 | McCanne et al. | Oct 2006 | B2 |
7120690 | Krishnan et al. | Oct 2006 | B1 |
7120852 | Terry et al. | Oct 2006 | B2 |
7124101 | Mikurak | Oct 2006 | B1 |
7124442 | Nash-Putnam | Oct 2006 | B2 |
7126955 | Nabhan et al. | Oct 2006 | B2 |
7128265 | Silverbrook et al. | Oct 2006 | B2 |
7128270 | Silverbrook et al. | Oct 2006 | B2 |
7130792 | Tokieda et al. | Oct 2006 | B2 |
7130807 | Mikurak | Oct 2006 | B1 |
7131596 | Lapstun et al. | Nov 2006 | B2 |
7134131 | Hendricks et al. | Nov 2006 | B1 |
7135991 | Slemmer et al. | Nov 2006 | B2 |
7136645 | Hanson et al. | Nov 2006 | B2 |
7137566 | Silverbrook et al. | Nov 2006 | B2 |
7139999 | Bowman-Amuah | Nov 2006 | B2 |
7140044 | Redlich et al. | Nov 2006 | B2 |
7143153 | Black et al. | Nov 2006 | B1 |
7144095 | Silverbrook | Dec 2006 | B2 |
7146384 | Sawafta | Dec 2006 | B2 |
7146644 | Redlich et al. | Dec 2006 | B2 |
7149698 | Guheen et al. | Dec 2006 | B2 |
7149897 | Chincheck et al. | Dec 2006 | B2 |
7149959 | Jones et al. | Dec 2006 | B1 |
7150398 | Silverbrook et al. | Dec 2006 | B2 |
7152047 | Nagel | Dec 2006 | B1 |
7152092 | Beams et al. | Dec 2006 | B2 |
7152207 | Underwood et al. | Dec 2006 | B1 |
7155518 | Forslow | Dec 2006 | B2 |
7155676 | Land et al. | Dec 2006 | B2 |
7159014 | Kausik et al. | Jan 2007 | B2 |
7159777 | Silverbrook et al. | Jan 2007 | B2 |
7162540 | Jasen et al. | Jan 2007 | B2 |
7164680 | Loguinov | Jan 2007 | B2 |
7165041 | Guheen et al. | Jan 2007 | B1 |
7167844 | Leong et al. | Jan 2007 | B1 |
7171379 | Menninger et al. | Jan 2007 | B2 |
7175089 | Silverbrook et al. | Feb 2007 | B2 |
7178106 | Lamkin et al. | Feb 2007 | B2 |
7178719 | Silverbrook et al. | Feb 2007 | B2 |
7181766 | Bendinelli et al. | Feb 2007 | B2 |
7184445 | Gupta et al. | Feb 2007 | B2 |
7187470 | Lapstun et al. | Mar 2007 | B2 |
7188273 | Allen et al. | Mar 2007 | B2 |
7188769 | Silverbrook et al. | Mar 2007 | B2 |
7191252 | Redlich et al. | Mar 2007 | B2 |
7194761 | Champagne | Mar 2007 | B1 |
7197374 | Silverbrook et al. | Mar 2007 | B2 |
7197502 | Feinsmith | Mar 2007 | B2 |
7197570 | Eylon et al. | Mar 2007 | B2 |
7197602 | Malcolm | Mar 2007 | B2 |
7197751 | Fedotov et al. | Mar 2007 | B2 |
7199885 | Dodge | Apr 2007 | B2 |
7200804 | Khavari et al. | Apr 2007 | B1 |
7206811 | Skurikhin et al. | Apr 2007 | B2 |
7207483 | Silverbrook et al. | Apr 2007 | B2 |
7207485 | Silverbrook et al. | Apr 2007 | B2 |
7212296 | Dodge et al. | May 2007 | B2 |
7216173 | Clayton et al. | May 2007 | B2 |
7219127 | Huck et al. | May 2007 | B2 |
7221660 | Simonson et al. | May 2007 | B1 |
7222152 | Thompson et al. | May 2007 | B1 |
7222305 | Teplov et al. | May 2007 | B2 |
7225040 | Eller et al. | May 2007 | B2 |
7225244 | Reynolds et al. | May 2007 | B2 |
7225382 | Ramech et al. | May 2007 | B2 |
7228459 | Jiang et al. | Jun 2007 | B2 |
7246233 | Brabson et al. | Jul 2007 | B2 |
7260617 | Bazinet et al. | Aug 2007 | B2 |
7260840 | Swander et al. | Aug 2007 | B2 |
7263071 | Yim | Aug 2007 | B2 |
7272853 | Goodman et al. | Sep 2007 | B2 |
7284044 | Teraoaka et al. | Oct 2007 | B2 |
7318100 | Demmer et al. | Jan 2008 | B2 |
7321906 | Green | Jan 2008 | B2 |
7328267 | Bashyam et al. | Feb 2008 | B1 |
7340772 | Panasyuk et al. | Mar 2008 | B2 |
7353533 | Wright et al. | Apr 2008 | B2 |
7363347 | Thomas | Apr 2008 | B2 |
7363378 | Holmes et al. | Apr 2008 | B2 |
7370353 | Yang | May 2008 | B2 |
7386631 | Sibal et al. | Jun 2008 | B1 |
7389462 | Wang et al. | Jun 2008 | B1 |
7392348 | Dumont | Jun 2008 | B2 |
7398320 | Minakuchi et al. | Jul 2008 | B1 |
7398552 | Pardee et al. | Jul 2008 | B2 |
7401116 | Chalfin et al. | Jul 2008 | B1 |
7401158 | Beauchamp et al. | Jul 2008 | B2 |
7404003 | Noble | Jul 2008 | B1 |
7406533 | Li et al. | Jul 2008 | B2 |
7409708 | Goodman et al. | Aug 2008 | B2 |
7415723 | Pandya | Aug 2008 | B2 |
7420992 | Fang et al. | Sep 2008 | B1 |
7433314 | Sharma et al. | Oct 2008 | B2 |
7441119 | Brabson et al. | Oct 2008 | B2 |
7458095 | Forsberg | Nov 2008 | B2 |
7464264 | Goodman et al. | Dec 2008 | B2 |
7480312 | Ossman | Jan 2009 | B2 |
7496659 | Coverdill et al. | Feb 2009 | B1 |
7505455 | Goodwin et al. | Mar 2009 | B1 |
7512702 | Srivastava et al. | Mar 2009 | B1 |
7522581 | Acharya et al. | Apr 2009 | B2 |
7536715 | Markham | May 2009 | B2 |
7606902 | Rao et al. | Oct 2009 | B2 |
7609721 | Rao et al. | Oct 2009 | B2 |
7644188 | Vlodavsky et al. | Jan 2010 | B2 |
7673048 | O'Toole et al. | Mar 2010 | B1 |
7676048 | Tsutsui | Mar 2010 | B2 |
7757074 | Sundarrajan et al. | Jul 2010 | B2 |
7774499 | Popek et al. | Aug 2010 | B1 |
7775074 | Tobias et al. | Aug 2010 | B1 |
7810089 | Sundarrajan et al. | Oct 2010 | B2 |
7921184 | Sundarrajan et al. | Apr 2011 | B2 |
7929442 | Connor et al. | Apr 2011 | B2 |
7945678 | Skene | May 2011 | B1 |
7979694 | Touitou et al. | Jul 2011 | B2 |
8205000 | Chang et al. | Jun 2012 | B2 |
8223647 | Kakani et al. | Jul 2012 | B2 |
8250214 | Susai et al. | Aug 2012 | B2 |
8255456 | Sundarrajan et al. | Aug 2012 | B2 |
8261057 | Sundarrajan et al. | Sep 2012 | B2 |
8291119 | Rao et al. | Oct 2012 | B2 |
8351327 | Binns | Jan 2013 | B1 |
8495305 | Sundarrajan et al. | Jul 2013 | B2 |
8499057 | Sundarrajan | Jul 2013 | B2 |
20010030970 | Wiryaman et al. | Oct 2001 | A1 |
20010037387 | Gilde et al. | Nov 2001 | A1 |
20010043600 | Chatterjee et al. | Nov 2001 | A1 |
20010046212 | Nakajima | Nov 2001 | A1 |
20010047406 | Araujo et al. | Nov 2001 | A1 |
20010049717 | Freeman | Dec 2001 | A1 |
20010049741 | Skene et al. | Dec 2001 | A1 |
20010052016 | Skene et al. | Dec 2001 | A1 |
20010052065 | Alexander, III et al. | Dec 2001 | A1 |
20020004834 | Guenther et al. | Jan 2002 | A1 |
20020004902 | Toh et al. | Jan 2002 | A1 |
20020007402 | Huston et al. | Jan 2002 | A1 |
20020007404 | Vange et al. | Jan 2002 | A1 |
20020016827 | McCabe et al. | Feb 2002 | A1 |
20020023210 | Tuomenoksa et al. | Feb 2002 | A1 |
20020026478 | Rodgers et al. | Feb 2002 | A1 |
20020026531 | Keane et al. | Feb 2002 | A1 |
20020029285 | Collins | Mar 2002 | A1 |
20020032725 | Araujo et al. | Mar 2002 | A1 |
20020032798 | Xu | Mar 2002 | A1 |
20020035451 | Rothermel | Mar 2002 | A1 |
20020035596 | Yang et al. | Mar 2002 | A1 |
20020038339 | Xu | Mar 2002 | A1 |
20020042875 | Shukla | Apr 2002 | A1 |
20020049608 | Hartsell et al. | Apr 2002 | A1 |
20020049841 | Johnson et al. | Apr 2002 | A1 |
20020055966 | Border et al. | May 2002 | A1 |
20020057717 | Mallory | May 2002 | A1 |
20020059274 | Hartsell et al. | May 2002 | A1 |
20020059429 | Carpenter et al. | May 2002 | A1 |
20020059435 | Border et al. | May 2002 | A1 |
20020065864 | Hartsell et al. | May 2002 | A1 |
20020065919 | Taylor et al. | May 2002 | A1 |
20020069278 | Forslow | Jun 2002 | A1 |
20020071438 | Singh | Jun 2002 | A1 |
20020073061 | Collins | Jun 2002 | A1 |
20020073298 | Geiger et al. | Jun 2002 | A1 |
20020081971 | Travostino | Jun 2002 | A1 |
20020083175 | Afek et al. | Jun 2002 | A1 |
20020083183 | Pujare et al. | Jun 2002 | A1 |
20020087729 | Edgar | Jul 2002 | A1 |
20020091788 | Chlan et al. | Jul 2002 | A1 |
20020095400 | Johnson et al. | Jul 2002 | A1 |
20020095498 | Chanda et al. | Jul 2002 | A1 |
20020098840 | Hanson et al. | Jul 2002 | A1 |
20020099940 | Wang | Jul 2002 | A1 |
20020101848 | Lee et al. | Aug 2002 | A1 |
20020101860 | Thornton et al. | Aug 2002 | A1 |
20020105972 | Richter et al. | Aug 2002 | A1 |
20020107903 | Richter et al. | Aug 2002 | A1 |
20020107962 | Richter et al. | Aug 2002 | A1 |
20020107971 | Bailey et al. | Aug 2002 | A1 |
20020107989 | Johnson et al. | Aug 2002 | A1 |
20020107990 | Johnson et al. | Aug 2002 | A1 |
20020108059 | Canion et al. | Aug 2002 | A1 |
20020116452 | Johnson et al. | Aug 2002 | A1 |
20020116582 | Copeland et al. | Aug 2002 | A1 |
20020120743 | Shabtay et al. | Aug 2002 | A1 |
20020126675 | Yoshimura et al. | Sep 2002 | A1 |
20020133593 | Johnson et al. | Sep 2002 | A1 |
20020138511 | Psounis et al. | Sep 2002 | A1 |
20020138572 | Delany et al. | Sep 2002 | A1 |
20020138618 | Szabo | Sep 2002 | A1 |
20020138640 | Raz et al. | Sep 2002 | A1 |
20020147795 | Cantwell | Oct 2002 | A1 |
20020147822 | Susai et al. | Oct 2002 | A1 |
20020150064 | Lucidarme | Oct 2002 | A1 |
20020152373 | Sun et al. | Oct 2002 | A1 |
20020152423 | McCabe | Oct 2002 | A1 |
20020156927 | Boucher et al. | Oct 2002 | A1 |
20020161908 | Benitez et al. | Oct 2002 | A1 |
20020163882 | Bornstein et al. | Nov 2002 | A1 |
20020174227 | Hartsell et al. | Nov 2002 | A1 |
20020174255 | Hayter et al. | Nov 2002 | A1 |
20020176532 | McClelland et al. | Nov 2002 | A1 |
20020184224 | Haff et al. | Dec 2002 | A1 |
20020194382 | Kausik et al. | Dec 2002 | A1 |
20020196279 | Bloomfield et al. | Dec 2002 | A1 |
20020199007 | Clayton et al. | Dec 2002 | A1 |
20030009538 | Shah et al. | Jan 2003 | A1 |
20030014623 | Freed et al. | Jan 2003 | A1 |
20030014624 | Maturana et al. | Jan 2003 | A1 |
20030014625 | Freed et al. | Jan 2003 | A1 |
20030014628 | Freed et al. | Jan 2003 | A1 |
20030014650 | Freed et al. | Jan 2003 | A1 |
20030018891 | Hall et al. | Jan 2003 | A1 |
20030023767 | Brabson et al. | Jan 2003 | A1 |
20030026241 | Ono et al. | Feb 2003 | A1 |
20030033520 | Peiffer et al. | Feb 2003 | A1 |
20030037108 | Peiffer et al. | Feb 2003 | A1 |
20030039354 | Kimble et al. | Feb 2003 | A1 |
20030046586 | Bheemarasetti et al. | Mar 2003 | A1 |
20030046587 | Bheemarasetti et al. | Mar 2003 | A1 |
20030051100 | Patel | Mar 2003 | A1 |
20030051102 | Jacobs et al. | Mar 2003 | A1 |
20030055883 | Wiles, Jr. | Mar 2003 | A1 |
20030055962 | Freund et al. | Mar 2003 | A1 |
20030061505 | Sperry et al. | Mar 2003 | A1 |
20030065646 | Joseph et al. | Apr 2003 | A1 |
20030065763 | Swildens et al. | Apr 2003 | A1 |
20030067874 | See et al. | Apr 2003 | A1 |
20030069941 | Peiffer | Apr 2003 | A1 |
20030079031 | Nagano | Apr 2003 | A1 |
20030084162 | Johnson et al. | May 2003 | A1 |
20030084165 | Kjellberg et al. | May 2003 | A1 |
20030088698 | Singh et al. | May 2003 | A1 |
20030088788 | Yang | May 2003 | A1 |
20030093566 | Jardin | May 2003 | A1 |
20030105604 | Ash et al. | Jun 2003 | A1 |
20030105977 | Brabson et al. | Jun 2003 | A1 |
20030110296 | Kirsch et al. | Jun 2003 | A1 |
20030110379 | Ylonen et al. | Jun 2003 | A1 |
20030112809 | Bharali et al. | Jun 2003 | A1 |
20030112823 | Collins et al. | Jun 2003 | A1 |
20030115421 | McHenry et al. | Jun 2003 | A1 |
20030123394 | Neale et al. | Jul 2003 | A1 |
20030123481 | Neale et al. | Jul 2003 | A1 |
20030131079 | Neale et al. | Jul 2003 | A1 |
20030131263 | Keane et al. | Jul 2003 | A1 |
20030135505 | Hind et al. | Jul 2003 | A1 |
20030140121 | Adams | Jul 2003 | A1 |
20030152028 | Raisanen et al. | Aug 2003 | A1 |
20030154110 | Walter et al. | Aug 2003 | A1 |
20030154239 | Davis et al. | Aug 2003 | A1 |
20030165138 | Swonk et al. | Sep 2003 | A1 |
20030167403 | McCurley et al. | Sep 2003 | A1 |
20030174718 | Sampath et al. | Sep 2003 | A1 |
20030177389 | Albert et al. | Sep 2003 | A1 |
20030177395 | Pardee et al. | Sep 2003 | A1 |
20030182423 | Shafir et al. | Sep 2003 | A1 |
20030182431 | Sturniolo et al. | Sep 2003 | A1 |
20030182437 | Kobayashi et al. | Sep 2003 | A1 |
20030188001 | Eisenberg et al. | Oct 2003 | A1 |
20030191799 | Araujo et al. | Oct 2003 | A1 |
20030191812 | Agarwalla et al. | Oct 2003 | A1 |
20030198189 | Roberts et al. | Oct 2003 | A1 |
20030200295 | Roberts et al. | Oct 2003 | A1 |
20030200353 | Dogra et al. | Oct 2003 | A1 |
20030208602 | Bhalla et al. | Nov 2003 | A1 |
20030212760 | Chen et al. | Nov 2003 | A1 |
20030212776 | Roberts et al. | Nov 2003 | A1 |
20030217105 | Zircher et al. | Nov 2003 | A1 |
20030217126 | Polcha et al. | Nov 2003 | A1 |
20030217149 | Crichton et al. | Nov 2003 | A1 |
20030223361 | Hussain et al. | Dec 2003 | A1 |
20030223418 | Desai et al. | Dec 2003 | A1 |
20030223433 | Lee et al. | Dec 2003 | A1 |
20030226018 | Tardo et al. | Dec 2003 | A1 |
20030229718 | Tock et al. | Dec 2003 | A1 |
20030229761 | Basu et al. | Dec 2003 | A1 |
20030233423 | Dilley et al. | Dec 2003 | A1 |
20030236831 | Ortiz et al. | Dec 2003 | A1 |
20030236837 | Johnson et al. | Dec 2003 | A1 |
20030236861 | Johnson et al. | Dec 2003 | A1 |
20030236919 | Johnson et al. | Dec 2003 | A1 |
20040003101 | Roth et al. | Jan 2004 | A1 |
20040003137 | Callender et al. | Jan 2004 | A1 |
20040006708 | Mukherjee et al. | Jan 2004 | A1 |
20040008693 | Grove et al. | Jan 2004 | A1 |
20040010601 | Afergan et al. | Jan 2004 | A1 |
20040010604 | Tanaka et al. | Jan 2004 | A1 |
20040010621 | Afergan et al. | Jan 2004 | A1 |
20040026971 | McClellan-Derrickson | Feb 2004 | A1 |
20040031058 | Reisman | Feb 2004 | A1 |
20040034744 | Karlsson et al. | Feb 2004 | A1 |
20040034794 | Mayer et al. | Feb 2004 | A1 |
20040039827 | Thomas et al. | Feb 2004 | A1 |
20040042487 | Ossman | Mar 2004 | A1 |
20040044521 | Chen et al. | Mar 2004 | A1 |
20040044731 | Chen et al. | Mar 2004 | A1 |
20040049515 | Haff et al. | Mar 2004 | A1 |
20040073716 | Boom et al. | Apr 2004 | A1 |
20040078621 | Talaugon et al. | Apr 2004 | A1 |
20040078772 | Balay et al. | Apr 2004 | A1 |
20040087304 | Buddhikot et al. | May 2004 | A1 |
20040098486 | Gu et al. | May 2004 | A1 |
20040100976 | Chang et al. | May 2004 | A1 |
20040103150 | Ogdon et al. | May 2004 | A1 |
20040103225 | McAlpine et al. | May 2004 | A1 |
20040103438 | Yan et al. | May 2004 | A1 |
20040107360 | Herrmann et al. | Jun 2004 | A1 |
20040111519 | Fu et al. | Jun 2004 | A1 |
20040128252 | Shirai et al. | Jul 2004 | A1 |
20040128346 | Melamed et al. | Jul 2004 | A1 |
20040141525 | Bhushan et al. | Jul 2004 | A1 |
20040143655 | Narad et al. | Jul 2004 | A1 |
20040143734 | Buer et al. | Jul 2004 | A1 |
20040146053 | Nabhan et al. | Jul 2004 | A1 |
20040162876 | Kohavi | Aug 2004 | A1 |
20040177158 | Bauch et al. | Sep 2004 | A1 |
20040177359 | Bauch et al. | Sep 2004 | A1 |
20040190092 | Silverbrook et al. | Sep 2004 | A1 |
20040202160 | Westphal | Oct 2004 | A1 |
20040202171 | Hama | Oct 2004 | A1 |
20040203296 | Moreton et al. | Oct 2004 | A1 |
20040205439 | Carmeli et al. | Oct 2004 | A1 |
20040210320 | Pandya | Oct 2004 | A1 |
20040213248 | Okuda et al. | Oct 2004 | A1 |
20040215665 | Edgar et al. | Oct 2004 | A1 |
20040215746 | McCanne et al. | Oct 2004 | A1 |
20040221031 | Desai | Nov 2004 | A1 |
20040225898 | Frost et al. | Nov 2004 | A1 |
20040225911 | Smith | Nov 2004 | A1 |
20040246971 | Banerjee et al. | Dec 2004 | A1 |
20040249911 | Alkhatib et al. | Dec 2004 | A1 |
20040249975 | Tuck et al. | Dec 2004 | A1 |
20040258003 | Kokot et al. | Dec 2004 | A1 |
20040260922 | Goodman et al. | Dec 2004 | A1 |
20040268175 | Koch et al. | Dec 2004 | A1 |
20040268357 | Joy et al. | Dec 2004 | A1 |
20040268358 | Darling et al. | Dec 2004 | A1 |
20050005014 | Holmes et al. | Jan 2005 | A1 |
20050005107 | Touboul | Jan 2005 | A1 |
20050013280 | Buddhikot et al. | Jan 2005 | A1 |
20050021511 | Zarom | Jan 2005 | A1 |
20050021761 | Thomas | Jan 2005 | A1 |
20050021762 | Gbadegesin | Jan 2005 | A1 |
20050022011 | Swander et al. | Jan 2005 | A1 |
20050022012 | Bluestone et al. | Jan 2005 | A1 |
20050022031 | Goodman et al. | Jan 2005 | A1 |
20050025150 | Helmy et al. | Feb 2005 | A1 |
20050027788 | Koopmans et al. | Feb 2005 | A1 |
20050031058 | Soong et al. | Feb 2005 | A1 |
20050033858 | Swildens et al. | Feb 2005 | A1 |
20050033926 | Dumont | Feb 2005 | A1 |
20050044350 | White et al. | Feb 2005 | A1 |
20050050317 | Kramer et al. | Mar 2005 | A1 |
20050055690 | Cornillon et al. | Mar 2005 | A1 |
20050058112 | Lahey et al. | Mar 2005 | A1 |
20050080850 | Salesky et al. | Apr 2005 | A1 |
20050080907 | Panasyuk et al. | Apr 2005 | A1 |
20050088410 | Chaudhri | Apr 2005 | A1 |
20050094582 | Forissier et al. | May 2005 | A1 |
20050102529 | Buddhikot et al. | May 2005 | A1 |
20050108412 | Sjollema et al. | May 2005 | A1 |
20050108517 | Dillon et al. | May 2005 | A1 |
20050122980 | Anand et al. | Jun 2005 | A1 |
20050125663 | Funk | Jun 2005 | A1 |
20050132030 | Hopen et al. | Jun 2005 | A1 |
20050132060 | Mo et al. | Jun 2005 | A1 |
20050135250 | Singh et al. | Jun 2005 | A1 |
20050144186 | Hesselink et al. | Jun 2005 | A1 |
20050144481 | Hopen et al. | Jun 2005 | A1 |
20050144614 | Moslander et al. | Jun 2005 | A1 |
20050147126 | Qiu et al. | Jul 2005 | A1 |
20050149481 | Hesselink et al. | Jul 2005 | A1 |
20050149726 | Joshi et al. | Jul 2005 | A1 |
20050165928 | Shu et al. | Jul 2005 | A1 |
20050177866 | Kirsch | Aug 2005 | A1 |
20050185647 | Rao et al. | Aug 2005 | A1 |
20050193075 | Haff et al. | Sep 2005 | A1 |
20050195780 | Haverinen et al. | Sep 2005 | A1 |
20050198380 | Panasyuk et al. | Sep 2005 | A1 |
20050198532 | Comlekoglu et al. | Sep 2005 | A1 |
20050210150 | Bahl | Sep 2005 | A1 |
20050223084 | Cheng | Oct 2005 | A1 |
20050223412 | Nadalin et al. | Oct 2005 | A1 |
20050232161 | Maufer et al. | Oct 2005 | A1 |
20050232298 | Beverly et al. | Oct 2005 | A1 |
20050246346 | Gerdes et al. | Nov 2005 | A1 |
20050246445 | Panasyuk et al. | Nov 2005 | A1 |
20050256923 | Adachi | Nov 2005 | A1 |
20050259634 | Ross | Nov 2005 | A1 |
20050262357 | Araujo et al. | Nov 2005 | A1 |
20050265315 | Edgar | Dec 2005 | A1 |
20050265353 | Sengupta et al. | Dec 2005 | A1 |
20050267974 | Panasyuk et al. | Dec 2005 | A1 |
20050286466 | Tagg et al. | Dec 2005 | A1 |
20060005240 | Sundarrajan et al. | Jan 2006 | A1 |
20060015570 | Khemani et al. | Jan 2006 | A1 |
20060018332 | Kakani et al. | Jan 2006 | A1 |
20060031547 | Tsui et al. | Feb 2006 | A1 |
20060034283 | Ko et al. | Feb 2006 | A1 |
20060041635 | Alexander et al. | Feb 2006 | A1 |
20060053164 | Ewing et al. | Mar 2006 | A1 |
20060053253 | Roth et al. | Mar 2006 | A1 |
20060059370 | Asnis et al. | Mar 2006 | A1 |
20060064500 | Roth et al. | Mar 2006 | A1 |
20060067257 | Bonta | Mar 2006 | A1 |
20060069719 | McCanne et al. | Mar 2006 | A1 |
20060080441 | Chen et al. | Apr 2006 | A1 |
20060089996 | Peiffer | Apr 2006 | A1 |
20060106943 | Akisada et al. | May 2006 | A1 |
20060112185 | Van Bemmel | May 2006 | A1 |
20060123477 | Raghavan et al. | Jun 2006 | A1 |
20060129528 | Miyamoto et al. | Jun 2006 | A1 |
20060129689 | Ho et al. | Jun 2006 | A1 |
20060133405 | Fee | Jun 2006 | A1 |
20060142878 | Banik et al. | Jun 2006 | A1 |
20060146877 | Srivastava | Jul 2006 | A1 |
20060156023 | Luo et al. | Jul 2006 | A1 |
20060161680 | Balsevich | Jul 2006 | A1 |
20060167883 | Boukobza | Jul 2006 | A1 |
20060185010 | Sultan | Aug 2006 | A1 |
20060190719 | Rao et al. | Aug 2006 | A1 |
20060225130 | Chen et al. | Oct 2006 | A1 |
20060245414 | Susai et al. | Nov 2006 | A1 |
20060271652 | Stavrakos et al. | Nov 2006 | A1 |
20060274761 | Error et al. | Dec 2006 | A1 |
20060274828 | Siemens et al. | Dec 2006 | A1 |
20070008883 | Kobayashi | Jan 2007 | A1 |
20070061067 | Zeinstra et al. | Mar 2007 | A1 |
20070067366 | Landis | Mar 2007 | A1 |
20070073703 | Quin | Mar 2007 | A1 |
20070110046 | Farrell et al. | May 2007 | A1 |
20070130324 | Wang | Jun 2007 | A1 |
20070130334 | Carley | Jun 2007 | A1 |
20070156852 | Sundarrajan et al. | Jul 2007 | A1 |
20070169179 | Narad | Jul 2007 | A1 |
20070179955 | Croft et al. | Aug 2007 | A1 |
20070192827 | Maxted et al. | Aug 2007 | A1 |
20070198684 | Mizushima | Aug 2007 | A1 |
20070203910 | Ferguson et al. | Aug 2007 | A1 |
20070206621 | Plamondon et al. | Sep 2007 | A1 |
20070233910 | Paley et al. | Oct 2007 | A1 |
20070245409 | Harris et al. | Oct 2007 | A1 |
20070271570 | Brown et al. | Nov 2007 | A1 |
20080034416 | Kumar et al. | Feb 2008 | A1 |
20080046616 | Verzunov et al. | Feb 2008 | A1 |
20080049786 | Ram et al. | Feb 2008 | A1 |
20080071915 | Gbadegesin | Mar 2008 | A1 |
20080104089 | Pragada et al. | May 2008 | A1 |
20080225720 | Khemani et al. | Sep 2008 | A1 |
20080225748 | Khemani et al. | Sep 2008 | A1 |
20080225753 | Khemani et al. | Sep 2008 | A1 |
20080229381 | Sikka et al. | Sep 2008 | A1 |
20080320007 | Hind et al. | Dec 2008 | A1 |
20080320151 | McCanne et al. | Dec 2008 | A1 |
20090034537 | Colrain et al. | Feb 2009 | A1 |
20090133015 | Nagashima | May 2009 | A1 |
20090234957 | Li et al. | Sep 2009 | A1 |
20090271385 | Krishnamoorthy et al. | Oct 2009 | A1 |
20100005180 | Tyukasz et al. | Jan 2010 | A1 |
20100241846 | Sundarrajan et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
1394042 | Jan 2003 | CN |
1410905 | Apr 2003 | CN |
0 436 365 | Jul 1991 | EP |
0 618 708 | Oct 1994 | EP |
0 838 930 | Apr 1998 | EP |
1 134 942 | Sep 2001 | EP |
1 427 133 | Jun 2004 | EP |
1 432 209 | Jun 2004 | EP |
07-302237 | Nov 1995 | JP |
08-006910 | Jan 1996 | JP |
10-178450 | Jun 1998 | JP |
2002-532784 | Feb 2002 | JP |
2002-084289 | Mar 2002 | JP |
2004-078783 | Mar 2004 | JP |
WO-9904343 | Jan 1999 | WO |
WO-0034885 | Jun 2000 | WO |
WO-0147185 | Jun 2001 | WO |
WO-0213037 | Feb 2002 | WO |
WO-0223362 | Mar 2002 | WO |
WO-023930 | May 2002 | WO |
WO-02069604 | Sep 2002 | WO |
WO-03019876 | Mar 2003 | WO |
WO-03026244 | Mar 2003 | WO |
WO-03048936 | Jun 2003 | WO |
WO-03083692 | Oct 2003 | WO |
WO-2004088933 | Oct 2004 | WO |
WO-2004114529 | Dec 2004 | WO |
WO-2005013534 | Feb 2005 | WO |
WO-2005024567 | Mar 2005 | WO |
WO-2005048106 | May 2005 | WO |
WO-2005088476 | Sep 2005 | WO |
WO-2006005078 | Jan 2006 | WO |
WO-2006012612 | Feb 2006 | WO |
WO-2006020823 | Feb 2006 | WO |
WO-2006074072 | Jul 2006 | WO |
WO-2006075219 | Jul 2006 | WO |
WO-2008112691 | Sep 2008 | WO |
WO-2008112698 | Sep 2008 | WO |
Entry |
---|
“Cisco Distributed Director,” Posted Feb. 21, 1997, 16 pages, [Online] [Retrieved on Dec. 4, 1997] Retrieved from the Internet<URL:http://www.cisco.com/wart/public/751/distdir/dd—wp.htm>. |
US Advisory Action for U.S. Appl. No. 11/039,946 dated Mar. 24, 2009. |
US Advisory Action for U.S. Appl. No. 11/161,091 dated May 6, 2009. |
US Advisory Action for U.S. Appl. No. 11/161,092 dated Apr. 24, 2009. |
US Advisory Action for U.S. Appl. No. 11/161,656 dated Jul. 29, 2009. |
US Advisory Action for U.S. Appl. No. 11/187,508 dated Nov. 23, 2010. |
US Advisory Action for U.S. Appl. No. 11/187,512 dated Mar. 16, 2011. |
Biagioni et al., Signature for a network Protocol Stack: A System Application of Standard ML, Jul. 1994. |
CA Office Action for Application No. 2545496 dated Feb. 15, 2011. |
CN Office Action for Application No. 200580028535.9 dated Dec. 13, 2011. |
CN Office Action for Application No. 201110267244.2 dated Aug. 14, 2013. |
CN Decision on Rejection for Application No. 201110075213.7 dated Jun. 3, 2013. |
Dictionary service [online], [retrieved on Jul. 23, 2009]. Retrieved from the Internet <URL: http://dictionary.reference.com/browse/discard>. |
Doug Allen, Layer-7 Load Balancers Pack New Punch, CMP Media LLC Network Magazine, Sep. 2003. |
Dutta D. et al., An Active Proxy Based Architecture for TCP in Heterogeneous Variable Bandwidth Networks, Proceedings of IEEE Globecom 2001, vol. 4, p. 2316-2320, Nov. 2001. |
EP Communication for Application No. 07007414.1 dated Jun. 5, 2008. |
EP Communication for Application No. 05776653.7 Oct. 5, 2007. |
EP Communication for Application No. 05785297.2, dated May 18, 2007. |
EP Search Report for Application No. 10184310.0 dated Dec. 9, 2010. |
EP Search Report for Application No. 04810901.1 dated Jul. 28, 2011. |
EP Summons to Oral Proceedings for Application No. 05776653.7 dated Jan. 14, 2011. |
EP Communication for Application No. 05763688.8 dated Dec. 20, 2011. |
EP Communication for Application No. 05776653.7 dated Jun. 24, 2011. |
EP Examination Report for Application No. 07007414.1 dated Aug. 11, 2011. |
EP Examination Report for Application No. 10184310.0 dated Aug. 11, 2011. |
EP Examination Report for Application No. 05774886.5 dated Nov. 24, 2011. |
EP Search Report for Application No. 07007414 dated Jul. 16, 2007. |
EP Supplemental Search Report for Application No. 05763688.8 dated Dec. 1, 2011. |
AU Examination Report for Application No. 2005266945 dated Jul. 21, 2009. |
AU Examination Report for Application No. 2005272779 dated Apr. 23, 2009. |
AU Examination Report for Application No. 2005266943 dated May 14, 2009. |
AU Examination Report for Application No. 2005272779 dated May 14, 2009. |
EP Examination Report for Application No. 05776653.7 dated Apr. 20, 2009. |
EP Examination Report for Application No. 05785297.2 dated Jun. 19, 2009. |
EP Examination Report for Application No. 070074141 dated Nov. 17, 2009. |
IN Examination Report for Application No. 648/KOLNP/2007 dated May 17, 2013. |
IN Examination Report for Application No. 3929/KOLNP/2006 dated Nov. 30, 2012. |
US Office Action for U.S. Appl. No. 11/188,279. dated Dec. 23, 2008. |
IN Examination Report for Application No. 2626/KOLNP/2007 dated Jul. 29, 2013. |
Hasegawa et al., “A Mechanism for TCP Performance Enhancement over Asymmetrical Environment,” Proceedings 8th IEEE ISCC'03, 1530-1346/03, 2003. |
Hu, et al., Adaptive Fast Path Architecture, IBM J. Res & Dev, vol. 45, No. 2; Mar. 1, 2001, pp. 191-206. Retrieved from the internet at: http://gec.di.uminho.pt/discip/minf/ac0203/ICCAO3IBM—WebCachArch.pdf, 15 pages. |
IN Examination Report for Application No. 531/KOLNP/2007 dated Feb. 8, 2013. |
International Search Report for PCT/US2004/037918 dated Apr. 27, 2008. |
International Search Report for PCT/US2005/022884 dated Jul. 8, 2008. |
International Search Report for PCT/US2005/026296 dated Jan. 31, 2006. |
International Search Report for PCT/US2005/028663 dated Nov. 16, 2005. |
J. C. Mogul, “The Case for Persistent-Connection HTTP,” 8282 Computer Communication Review Oct. 25, 1995. |
JP Office Action for Application No. 2007-519353 dated Jul. 16, 2010. |
JP Office Action for Application No. 2007-48001 dated Oct. 29, 2010. |
JP Office Action for Application No. 2007-48003 dated Nov. 8, 2010. |
JP Office Action for Application No. 2007-522843 dated Dec. 20, 2010. |
Kong, et al; “Pseudo-serving: a user-responsible paradigm for internet access”; Apr. 7-11, 1997; SO Computer Networks and ISDN Systems; vol. 29; pp. 1053-1064. |
KR Office Action for Application No. 2006-7009144 dated Jan. 14, 2011. |
Krishnamurthy B.C. et al., “Key differences between HTTP/1.0 and HTTP/1.1,” Computer Networks, Elsevier Science Publishers B.V., vol. 31, No. 11-16, pp. 1737-1751, May 1999. |
Lazenka, M. “The Evolution of Software Distribution: Where Did We Come From and Where Are We Heading?”, Nov. 6-9, 2005, ACM, p. 179-183. |
Ipswitch Inc., WSFTP User's Guide, Chapter 8: Security, Jun. 25, 2003, 8 pages. |
Mogul, Jeffrey C. “The Case for Persistent-Connection HTTP”, ACM Sigcomm Computer Communication Review, vol. 25, Issue 4, Oct. 31, 1995. |
US Office Action for U.S. Appl. No. 11/161,090 dated Aug. 15, 2008. |
US Office Action for U.S. Appl. No. 11/039,946 dated Jun. 23, 2008. |
US Office Action for U.S. Appl. No. 11/187,508 dated Apr. 30, 2010. |
US Office Action for U.S. Appl. No. 12/871,246 dated Feb. 24, 2011. |
Noriaki Kobayashi, “Internet VPN”, N+1 Network Guide, vol. 3, No. 9, Oct. 1, 2003, pp. 44-49. (9 pages) (English Abstract). |
AU Notice of Acceptance for Application No. 2010214746 dated Nov. 2, 2010. |
AU Notice of Acceptance for Application No. 2005266943 dated May 28, 2010. |
AU Notice of Acceptance for Application No. 2005272779 dated May 26, 2010. |
IL Notice of Allowance for Application No. 180404 dated Jan. 9, 2011. |
JP Notice of Allowance for Application No. 2007-048001 dated Mar. 2, 2011. |
US Notice of Allowance for U.S. Appl. No. 11/161,090 dated Mar. 4, 2011. |
US Notice of Allowance for U.S. Appl. No. 12/336,795 dated Mar. 2, 2011. |
US Notice of Allowance for U.S. Appl. No. 11/161,092 dated Jun. 11, 2009. |
US Notice of Allowance for U.S. Appl. No. 11/187,512 dated Jun. 23, 2011. |
US Notice of Allowance for U.S. Appl. No. 10/988,004 dated Sep. 18, 2008. |
US Notice of Allowance for U.S. Appl. No. 11/039,946 dated Mar. 5, 2010. |
US Notice of Allowance for U.S. Appl. No. 11/161,656 dated Sep. 18, 2009. |
US Notice of Allowance for U.S. Appl. No. 11/188,279 dated Jun. 29, 2009. |
US Notice of Allowance for U.S. Appl. No. 11/188,279 dated Jun. 17, 2009. |
US Notice of Allowance for U.S. Appl. No. 12/557,497 dated May 6, 2011. |
EP Notice of Intent to Grant for Application No. 05785297.2 dated Jul. 6, 2012. |
US Notice of Allowance for U.S. Appl. No. 11/161,091 dated Sep. 28, 2012. |
US Notice of Allowance for U.S. Appl. No. 11/161,093 dated Jun. 18, 2012. |
US Notice of Allowance for U.S. Appl. No. 12/560,154 dated May 2, 2011. |
US Notice of Allowance for U.S. Appl. No. 12/794,446 dated May 7, 2012. |
US Notice of Allowance for U.S. Appl. No. 12/871,246 dated Sep. 17, 2012. |
US Office Action for U.S. Appl. No. 11/188,274 dated Sep. 8, 2010. |
US Office Action for U.S. Appl. No. 11/161,091 dated Dec. 7, 2010. |
US Office Action for U.S. Appl. No. 10/683,881 dated Dec. 11, 2007. |
CN Office Action for Application No. 200480040249.X dated Jun. 19, 2009. |
CN Office Action for Application No. 200480040249.X dated Sep. 26, 2008. |
CN Office Action for Application No. 200580028535 dated Jan. 15, 2010. |
CN Office Action for Application No. 200580034849.X dated Sep. 25, 2009. |
CN Office Action for Application No. 200580034849X dated Apr. 7, 2010. |
CN Office Action for Application No. 200580034849X dated Aug. 3, 2010. |
CN Office Action for Application No. 200580030928.3 dated Apr. 23, 2010. |
IL Office Action for Application No. 180405 dated Jan. 2, 2011. |
IL Office Action for Application No. 180891 dated Jan. 4, 2011. |
IL Office Action for Application No. 181269 dated Jan. 2, 2011. |
IN Office Action for Application No. 1514KOLNP2006 dated Sep. 7, 2010. |
JP Office Action for Application No. 2006-539930 dated Feb. 12, 2010. |
JP Office Action for Application No. 2007-048001 dated Oct. 29, 2010. |
JP Office Action for Application No. 2007-522843 dated Dec. 1, 2010. |
JP Office Action for Application No. 2007-048002 dated Nov. 8, 2010. |
JP Office Action for Application No. 2007-522841 dated Sep. 10, 2010. |
JP Office Action for Application No. 2007-525810 dated Aug. 4, 2010. |
US Office Action for U.S. Appl. No. 11/161,091 dated Apr. 5, 2011. |
US Office Action for U.S. Appl. No. 11/187,508 dated Sep. 15, 2010. |
US Office Action for U.S. Appl. No. 11/187,512 dated Jun. 22, 2010. |
US Office Action for U.S. Appl. No. 11/188,274 dated Mar. 29, 2010. |
US Office Action for U.S. Appl. No. 12/560,154 dated Feb. 4, 2011. |
US Office Action for U.S. Appl. No. 12/560,154 dated Sep. 1, 2010. |
US Office Action for U.S. Appl. No. 11/161,093 dated Nov. 3, 2011. |
US Office Action for U.S. Appl. No. 11/323,354 dated Aug. 4, 2009. |
US Office Action for U.S. Appl. No. 11/039,946 dated Jun. 23, 2009. |
US Office Action for U.S. Appl. No. 10/583,578 dated Feb. 11, 2011. |
US Office Action for U.S. Appl. No. 10/988,004 dated Jan. 24, 2008. |
US Office Action for U.S. Appl. No. 11/039,946 dated Jan. 23, 2009. |
US Office Action for U.S. Appl. No. 11/161,090 dated Jan. 6, 2010. |
US Office Action for U.S. Appl. No. 11/161,090 dated Feb. 4, 2009. |
US Office Action for U.S. Appl. No. 11/161,090 dated May 28, 2009. |
US Office Action for U.S. Appl. No. 11/161,090 dated Jun. 10, 2010. |
US Office Action for U.S. Appl. No. 11/161,090 dated Oct. 15, 2010. |
US Office Action for U.S. Appl. No. 11/161,091 dated Aug. 3, 2009. |
US Office Action for U.S. Appl. No. 11/161,091 dated Aug. 5, 2008. |
US Office Action for U.S. Appl. No. 11/161,091 dated Feb. 18, 2009. |
US Office Action for U.S. Appl. No. 11/161,091 dated Feb. 24, 2010. |
US Office Action for U.S. Appl. No. 11/161,092 dated Aug. 20, 2008. |
US Office Action for U.S. Appl. No. 11/161,092 dated Feb. 12, 2009. |
US Office Action for U.S. Appl. No. 11/161,093 dated Jun. 19, 2009. |
US Office Action for U.S. Appl. No. 11/161,093 dated Jan. 2, 2009. |
US Office Action for U.S. Appl. No. 11/161,093 dated Oct. 1, 2010. |
US Office Action for U.S. Appl. No. 11/161,093 dated Feb. 3, 2011. |
US Office Action for U.S. Appl. No. 11/161,656 dated Oct. 28, 2008. |
US Office Action for U.S. Appl. No. 11/187,508 dated Jul. 6, 2011. |
US Office Action for U.S. Appl. No. 11/187,512 dated Nov. 30, 2010. |
US Office Action for U.S. Appl. No. 11/187,512 dated Dec. 23, 2009. |
US Office Action for U.S. Appl. No. 11/187,512 dated Mar. 3, 2009. |
US Office Action for U.S. Appl. No. 11/187,512 dated Sep. 15, 2009. |
US Office Action for U.S. Appl. No. 11/187,562 dated Apr. 27, 2009. |
US Office Action for U.S. Appl. No. 11/187,562 dated Jun. 10, 2008. |
US Office Action for U.S. Appl. No. 11/187,562 dated Dec. 9, 2008. |
US Office Action for U.S. Appl. No. 11/187508 dated Nov. 3, 2009. |
US Office Action for U.S. Appl. No. 11/188,274 dated Jun. 27, 2011. |
US Office Action for U.S. Appl. No. 11/188,279 dated Jun. 26, 2008. |
US Office Action for U.S. Appl. No. 11/323,196 dated Apr. 19, 2010. |
US Office Action for U.S. Appl. No. 11/323,352 dated Mar. 9, 2009. |
US Office Action for U.S. Appl. No. 11/323,829 dated Mar. 30, 2011. |
US Office Action for U.S. Appl. No. 12/336,795 dated Dec. 16, 2010. |
US Office Action for U.S. Appl. No. 12/557,497 dated Nov. 18, 2010. |
US Office Action for U.S. Appl. No. 11/161,656 dated May 13, 2009. |
EP Communication for Application No. 04810901.1 dated Apr. 8, 2013. |
IL Office Action for Application No. 180402 dated Dec. 15, 2010. |
IN Office Action for Application No. 648/KOLNP/2007 dated Mar. 13, 2014. |
IN Office Action for Application No. 2898/KOLNP/2007 dated Nov. 22, 2013. |
US Office Action for U.S. Appl. No. 11/161,091 dated Oct. 5, 2011. |
US Office Action for U.S. Appl. No. 11/187,508 dated Dec. 20, 2011. |
US Office Action for U.S. Appl. No. 11/188,274 dated Oct. 18, 2011. |
US Office Action for U.S. Appl. No. 12/557,497 dated Nov. 19, 2010. |
US Office Action for U.S. Appl. No. 12/787,231 dated Apr. 11, 2013. |
US Office Action for U.S. Appl. No. 12/794,446 dated Nov. 23, 2011. |
US Office Action for U.S. Appl. No. 12/871,246 dated May 15, 2012. |
US Office Action for U.S. Appl. No. 12/871,246 dated Sep. 27, 2011. |
US Office Action for U.S. Appl. No. 13/590,630 dated Apr. 30, 2013. |
US Office Action for U.S. Appl. No. 13/739,895 dated Mar. 13, 2013. |
Pedro Hernandez, “Tacit Adds to Softricity's Spark”, Nov. 18, 2005. Available online at: www.enterpriseitplant.com/networking/news/article.php/3565401. |
R. Briscoe, “The Implications of Pervasive Computing on Network Design,” BT Technology Journal, pp. 170-190, Jul. 2004. |
Ranzau et al., “Softricity/Tacit, An Innovative Approach to Virtual Computing,” http://www.daboc.com/downloadnow.aspx?file=211&is=617, Oct. 20, 2005. |
US Restriction Requirement for U.S. Appl. No. 11/161,093 dated Jun. 28, 2011. |
Reynolds et al., “Aloe Vera Leaf Gel: a Review Update”, Journal of Ethnopharmacology, vol. 68, pp. 3-37, 1999. |
EP Search Report for Application No. 10184317.5 dated Dec. 7, 2010. |
EP Supplementary Search Report for Application No. 4810901 dated Jul. 20, 2011. |
Teruhara Serada, “SSL VPN”, N+1 Network LAN, vol. 21, No. 3, Mar. 1, 2003, pp. 25-40. (19 pages) (English Abstract). |
CN Office Action for Application No. 200580028489.2 dated Feb. 1, 2013. |
US Notice of Allowance for U.S. Appl. No. 11/324,138 dated Oct. 24, 2013. |
US Notice of Allowance for U.S. Appl. No. 12/787,231 dated Sep. 12, 2013. |
US Notice of Allowance for U.S. Appl. No. 13/590,630 dated Jan. 2, 2014. |
US Notice of Allowance for U.S. Appl. No. 13/031,919 dated Mar. 29, 2013. |
US Notice of Allowance for U.S. Appl. No. 13/149,383 dated May 28, 2013. |
US Notice of Allowance for U.S. Appl. No. 13/739,895 dated Mar. 24, 2014. |
US Office Action for U.S. Appl. No. 11/187,508 dated Dec. 17, 2013. |
US Office Action for U.S. Appl. No. 13/739,895 dated Sep. 5, 2013. |
US Office Action for U.S. Appl. No. 11/187,508 dated May 30, 2013. |
US Office Action for U.S. Appl. No. 13/558,001 dated Jan. 13, 2014. |
US Office Action for U.S. Appl. No. 13/149,383 dated Jan. 29, 2013. |
US Office Action for U.S. Appl. No. 11/188,274 dated Nov. 5, 2013. |
US Office Action for U.S. Appl. No. 12/874,927 dated Jul. 22, 2013. |
US Office Action for U.S. Appl. No. 12/874,927 dated Jan. 27, 2014. |
US Office Action for U.S. Appl. No. 13/590,630 dated Oct. 17, 2013. |
US Office Action for U.S. Appl. No. 13/744,614 dated Nov. 8, 2013. |
Wang et al., Shield: Vulnerability-Driven Network Filters for Preventing Known Vulnerability Exploits, Feb. 2004, Microsoft Research, MSR-TR-2003-81, 14 pages. |
Written Opinion for PCT/US2004/037918 dated Apr. 27, 2005. |
Written Opinion for PCT/US2005/022884 dated Jul. 8, 2008. |
Written Opinion for PCT/US2005/026296 dated Jan. 31, 2006. |
Written Opinion for PCT/US2005/028663 dated Nov. 16, 2005. |
Yoshikazu Kobayashi, VPN service introduction, Computer & Network LAN, vol. 21, No. 3, Mar. 1, 2003, pp. 25-40. (19 pages) (English Abstract). |
Number | Date | Country | |
---|---|---|---|
20130014206 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
60590837 | Jul 2004 | US | |
60601431 | Aug 2004 | US | |
60607420 | Sep 2004 | US | |
60634379 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11161093 | Jul 2005 | US |
Child | 13618180 | US |