The present invention relates to a method and a weaving machine for loom shed formation with a shedding device that is driven by its own shedding motor.
For loom shed formation or shedding in weaving machines it is known in the prior art to provide a shedding device in which several shedding elements, which each respectively guide a warp thread sheet or group, are driven to move upwardly and downwardly via an intermediate transmission from the main drive motor of the weaving machine. In this manner a loom shed, which is formed by the warp thread sheets of different shedding elements, is alternately opened and closed. A weft thread is inserted into the opened loom shed. After the weft insertion, the loom shed is closed and then again opened with the aid of the shedding elements. Simultaneously the weft thread is beat-up against a fabric edge by a weaving reed and the process begins anew. A weave design or pattern is formed by the shed changes of the various different warp thread sheets and the insertion of different weft threads.
When closing and subsequently opening the loom shed it occurs that individual warp threads of neighboring warp thread sheets get caught or tangled or hung-up on one another. No loom shed is formed between these warp threads. In the subsequent weft insertion, these so called sticking or jammed or tangled warp threads cause interferences. In the weft insertion by means of mechanical elements, for example a gripper, the sticking warp threads are destroyed or broken by the weft insertion element, the weaving machine stops automatically due to warp break. In the weft insertion by means of a fluid jet, for example compressed air, the weft thread gets caught or hung up on the sticking warp threads. This leads to an automatic shut-down of the weaving machine due to weft break. Weft break and warp break lead to standstill times or down times of the weaving machine and make interventions by the personnel necessary. Therefore efforts are being made to prevent the sticking or tangling or jamming of warp threads. This is achieved, for example, in that the time points at which the loom shed is closed are prescribed differently for different neighboring warp thread sheets. Thereby it is achieved that all upwardly and downwardly moving warp threads do not encounter one another at the same time point in the closed loom shed, but rather that this encountering or meeting of warp thread sheets that are guided by different shedding elements takes place at different time points in the motion cycle of the weaving machine. However, in the prior art there are shedding devices for which this is not possible, because all shedding elements always simultaneously move through the shed closed position (loom shed closed) due to structural or constructive reasons.
The time point at which the shed closed position is run through can be changed in most shedding devices in that the connection between the main motor of the weaving machine and the shedding device driven from this main motor is released and then again connected after a turning or twisting of one of the two drive shafts. Thereby, the relative shed closure time point for all shedding elements and thus for all warp threads in the loom shed is changed within the motion cycle of the weaving machine. Such an adjustment of the relative shed closure time point for all shedding elements simultaneously can be carried out without mechanical intervention, that is to say also with a running weaving machine, in shedding devices that are driven by their own shedding motor. Such a change of the synchronicity between the main motor of the weaving machine and the shedding motor of the shedding device is carried out with the aid of electronic control signals of a control device of the weaving machine.
A weaving machine with the mentioned devices, which permit the changing of the synchronicity on a running weaving machine, is shown by the WO2003071017 A for example. In this document it is explained that with such a machine it is basically or fundamentally possible to flexibly arrange or establish the tuning or adaptation of the operating relationship of the weaving machine and the shedding device or shedding machine corresponding to the weaving requirements, that is to say to select within broad boundaries the synchronicity of both drive systems with respect to the basic or ground tuning or adaptation (e.g. shed closure at what weaving machine position angle) and with respect to the permissible tolerances. Furthermore, the WO2003071017 A discloses that the drive of the weaving and shedding machine is driven synchronously at a prescribed point, weaving cycle for weaving cycle. This point can be different weaving cycle for weaving cycle.
When working with such a weaving machine it has been determined in a surprising manner, that the problems described above in the introduction due to sticking or jamming warp threads can be reduced by certain or particular changes of the synchronicity on a running weaving machine.
It is an object of an embodiment of the present invention to provide a method and a weaving machine with which the above improvement can be achieved.
The above object can be achieved by at least one embodiment of a method and a weaving machine as set forth herein. The method according to an embodiment of the invention provides the loom shed formation by means of a shedding device that is driven by a shedding motor and that is mounted or arranged on a weaving machine that is driven by a main motor. A loom shed formed from plural warp threads or plural warp thread sheets of the weaving machine is opened and closed dependent on a binding or weave pattern in each motion cycle of the weaving machine with a running shedding device. In that regard, the binding or weave pattern can be prescribed, for example, in the form of drive means, by means of hole-punched cards or alternatively electronically by data stored in the control arrangement. In that regard, the drive means can be embodied, for example, as an intermediate transmission with plural different cam discs or as an intermediate transmission with plural electromechanical switching elements which are actuated during each motion cycle in such a manner so that shedding elements connected thereto raise or lower the warp threads according to the desired binding or weave pattern. In that regard, the binding or weave pattern contains informations about which warp threads or warp thread sheets are positioned, by the shedding device, in the upper shed or in the lower shed, that is to say above or below the weft thread to be inserted, during a motion cycle of the weaving machine.
The two motors for the drive of the weaving machine and the shedding device are synchronized with one another via the electronic control arrangement of the weaving machine in such a manner so that the loom shed is opened at the time point of the weft insertion of the weaving machine. However, the synchronicity of the two motors can be changed by control signals of a control device on the running weaving machine. Thereby it is achieved that during different motion cycles of the weaving machine, the relative shed closure time points, at which the loom shed is closed in the respective motion cycles, are different from one another.
The term of the relative shed closure time point here represents or sets forth the time point as of the beginning of a motion cycle of the weaving machine. Because a motion cycle is typically defined by a complete rotation of the weaving machine main shaft, one can also specify the shed closure time point in relation to this rotation of the weaving machine main shaft running through 360°. Then one speaks of a shed closure angle instead of a relative shed closure time point. This shed closure angle is a value that can be input on the operating console of the weaving machine into the electronic weaving machine control arrangement or can be read-in via a data carrier with pattern data. Beginning and end of a motion cycle or of a 360° rotation of the weaving machine main shaft is typically measured beginning from a weaving reed beat-up. Between two weaving reed beat-ups, that is to say within one motion cycle, respectively one weft insertion takes place. The use of the shed closure angles, which refer or relate to a rotation (=360°) of the weaving machine main shaft and which are thus independent of the rotational speed, leads to a better oversight and is therefore preferred here.
The method according to an embodiment of the invention is characterized in that the shed closure angles form an increasing or decreasing sequence of shed closure angles over a prescribed partial number of motion cycles of the weaving machine. This occurs by correspondingly changing the synchronicity of the two motors. As mentioned above, methods for changing this synchronicity by control signals are known to a skilled worker in the art. For carrying out the method according to an embodiment of the invention, a control program that is adapted to carrying out the method is needed in the control arrangement, with the aid of which the synchronicity of the motors is changed so that the increasing and decreasing sequences of shed closure angles according to the invention arise. The successive relative shed closure angles according to the invention form either increasing sequences, in which during the prescribed partial number of successive motion cycles in several of these motion cycles the shed closure angle lies after the shed closure angle of all previous motion cycles within this partial number, or they form decreasing sequences, in which during the prescribed partial number of successive motion cycles in several of these motion cycles the shed closure angle lies before the shed closure angle of all previous motion cycles within this partial number.
It is advantageous when these increasing and decreasing sequences of shed closure angles follow one another in a short time on a running weaving machine, so that a second partial number with a decreasing sequence within a total number of motion cycles directly follows a first partial number with increasing sequence, or vice versa.
In tests it has been shown that the tendency of the warp threads to become stuck can be reduced by this continuous increasing and decreasing change of the shed closure angle in the steady or static weaving process. Processes during the run-up and during the braking slow-down of weaving machines and shedding devices are not taken into consideration in an embodiment of the present invention. By the method according to an embodiment of the invention it is prevented, that during the weaving process over a long time, all warp threads become stuck or tangled in a parallel shedding motion that is uniformly repeated. Thus, the position of the warp thread sheets in the weaving machine is different in each shed closing process, that is to say in each approaching or meeting of the upwardly and downwardly moving neighboring warp thread sheets. Moreover, the shed opening at the time point of the weaving reed beat-up is constantly changed. That means, that at this time point in different motion cycles, the warp thread sheets take up different paths within the weaving machine from the warp beam to the fabric edge. During the weaving read beat-up, a tension increase takes place in the warp threads, which is constantly a different one with a constantly changing shed closure angle.
In this method in principle it is of no consequence whether the shedding device is slowed down or the weaving machine is accelerated for advancing the relative shed closure time point or shed closure angle from one motion cycle to the next. For a later shed closure angle, thus an increasing sequence, the reverse pertains. A combination of accelerating or respectively retarding or slowing-down both machines is also conceivable.
In practice in carrying out the method according to an embodiment of the invention it has been found that on fast-running weaving machines, even a slow increase or decrease of the sequences of the shed closure angles over more than 100 motion cycles leads to the desired result. It is especially advantageous, however, if the total number of motion cycles within which the increasing or decreasing sequences of shed closure angles lie, does not amount to more than 100. On slower running machines, however, a total number of not more than 50 motion cycles is also usable, within which the two partial sequences with the respective first and second partial numbers of motion cycles follow one another. The correct magnitude or value of the total number and the respective partial numbers are dependent on the type of the woven fabric, the number of the shedding elements and the rotational speed at which the weaving machine and the shedding device are driven. At higher rotational speeds and larger masses to be accelerated in the machines driven by the two motors, a greater number of motion cycles will be necessary for such an increasing and decreasing sequence of shed closure angles. That is due to the fact that the additional energy that is necessary for accelerating one of the two machines during the change of the synchronicity shall not take on too large values. In any case it is sensible or applicable to store, in an intermediate circuit of the control device, the energy that is released during the retarding or slowing-down of one of the two machines, and to again use this energy for the subsequent acceleration.
In carrying out the method according to an embodiment of the invention it is possible in principle, that in each motion cycle the shed closure angle is different from the shed closure angle of the previous motion cycle. However, it can also already be sufficient for the intended effect, if the shed closure angles increase or decrease in the manner of a ramp over a certain number of motion cycles that do not all need to be directly successive after one another. It has been determined that it is advantageous if, within the partial number, the number of the motion cycles in which the ramp for the shed closure angle increases or decreases, includes more than two motion cycles. In most cases three to fifteen motion cycles are provided, in which the shed closure angle is changed relative to the preceding one. Between motion cycles in which the shed closure angle is changed relative to the preceding one, there can also be such motion cycles in which the shed closure angle is not changed relative to the preceding one.
In weaving machines it is known in the prior art to select the relative shed closure time points or shed closure angles of a shedding device that is driven by its own shedding motor, in such a manner so that a changed shed closure angle is adjustedly set by control signals in connection with changes of the binding or weave pattern. The change of the shed closure angle occurs at the transition from a first binding sequence formed by several successive binding or weave patterns to a second binding sequence formed by other binding or weave patterns. Before and after the change of the shed closure angle, the respective binding sequences have different binding or weave patterns.
The method according to an embodiment of the invention is set up so that defined changes of the shed closure angle are predominantly determined by mechanical parameters of the weaving machine and of the shedding machine. In one embodiment of the method according to the invention it is therefore provided to prescribe increasing and decreasing sequences of shed closure angles independently of the binding or weave pattern and independently of the binding sequence formed by several binding or weave patterns. That means that the binding sequence can have or include the same binding or weave patterns before the increasing or decreasing sequence of shed closure angles as after the increasing or decreasing sequence of shed closure angles. For weave designs in which the binding patterns of several successive motion cycles form a binding sequence, which define a pattern repeat that repeats over short distances, the partial number of motion cycles in which several shed closure angles form an increasing or decreasing sequence can even be greater than the number of the motion cycles that define a pattern repeat.
It has also be found to be sensible or applicable in terms of the weaving technology, to provide an adaptation of the shed closure angle to the respective weft yarn or thread to be inserted. However, the method according to an embodiment of the invention can also be carried out without consideration of the weft sequence of various different weft yarns or threads.
In a weaving machine according to an embodiment of the invention, a control program is provided, that is adapted for carrying out the method according to an embodiment of the invention; and if applicable special control devices are still additionally necessary in order to convert the commands of the control program into signals to the motors. Also advantageous is a suitably adapted input device, for example with a display screen and keyboards or keypads, or with menu fields, which can be selected via touch contact with the screen. Therewith, in an advantageous embodiment, one or more values for specifying the increasing or decreasing sequences of shed closure angles according to an embodiment of the invention can be prescribed. Those can be values for a partial number of motion cycles, in which several shed closure angles form an increasing or decreasing sequence; if applicable a first and a second partial number can be input independently from one another. Also possible is the input of an initial value and/or an end value of the shed closure angle of the increasing or decreasing sequence of shed closure angles together with a step width that defines the difference of the shed closure angles between two successive motion cycles.
The operator of a weaving machine is accustomed to prescribing the time points at which the loom shed is closed within a motion cycle, as the shed closure angles. Therefore, it is advantageous if devices or input means are provided, with which the starting is and/or end value for an increasing or decreasing sequence of relative shed closure time points can be prescribed in that the shed closure angle of the weaving machine main shaft associated with the respective value of the relative shed closure time point can be prescribed. Also possible are embodiments in which, within the prescribed partial number, the number of the motion cycles in which the shed closure angle relative to the respective previous motion cycle is changed, is prescribed by the operator via the input device. Prescribing the total number of motion cycles, which includes both a partial number of shed closure angles in increasing sequence as well as a partial number of shed closure angles in decreasing sequence, is also carried out if applicable via the suitably adapted input device.
Values for partial or total numbers of motion cycles or for beginning and end values and/or step widths of the increasing or decreasing sequences can either be prescribed completely by the operator, or can also be permanently programmed into the control arrangement. It is also advantageous that the increasing and decreasing sequences of shed closure angles or relative shed closure time points are calculated by a suitably adapted control program dependent on a nominal rated value or average value for a shed closure angle that is best suited for the respective woven fabric. In that regard, the nominal rated value or average value is prescribed by the operator or is loaded or read into the control arrangement together with other data that are necessary for the production of the current woven fabric. In an advantageous embodiment of the weaving machine according to the invention, the suitably adapted control program includes functions by which the control program calculates the values that are not prescribed by the operator and that are necessary for carrying out the method according to this embodiment of the invention. In that regard, both values of the already mentioned type that are desired for carrying out the method and that are already input by the operator, as well as values that are input or stored in the control arrangement and that are dependent on mechanical or weaving-technical parameters, e.g. rotational speed, machine width/mass, number of shedding elements, type and number of the warp threads, can be taken into consideration.
It is also conceivable that the data necessary for carrying out the method according to an embodiment of the invention are read or loaded into the control device either partially or completely via a data carrier. Individual or several ones of the data for carrying out the method according to an embodiment of the invention, which have been input, calculated or read-in, can be displayed on the input device as needed and again changed manually by the operator.
Such ramps or sequences of increasing or decreasing shed closure angles can also be used in a targeted manner in order to achieve certain optical effects in the woven fabric. In woven fabrics of which the optical fabric or weave appearance is clearly visibly changed by changes of the shed closure angle, structures with stripes or bands that extend in the weft direction can be achieved in a targeted manner with the method according to an embodiment of the invention.
In the following an example embodiment of the invention will be explained in detail in connection with the Figures.
The
In the example embodiment it is provided that the following values are prescribeable or inputable by the operator of the weaving machine 2 on the input device 11 of the control device 9:
The values that are not input by the operator but that are nonetheless necessary for carrying out the method are replaced by standard values calculated in the control device 9, or the control device 9 suggests such values to the operator. The control program also determines the maximum permissible limit value for the slope of the increasing and decreasing sequences of shed closure angles FSW. In that regard, mechanical parameters of the weaving machine 2 are taken into account. For that, the control device 9 contains a value for the rotational speed of the running weaving machine 2, which is prescribed by the operator. Dependent on the rotational speed, the slope of the increasing or decreasing sequences of shed closure angles FSWn (see
In
In the illustrated example embodiment, the starting value of the shed closure angle FSW prescribed by the operator amounts to FSW3=300°, and the prescribed end value amounts to FSW12=345°. In the present case the control program is designed and embodied so that the shed closure angle FSW changes within the partial numbers Tn1 and Tn2 in each motion cycle N, and that the partial numbers Tn1 and Tn2 have the same size. Thus, the changes uniformly form increasing and decreasing sequences with the prescribed step width of 5° between two successive motion cycles. From that, calculated partial numbers of Tn1=9=Tn2 arise. Consequently, in the present example embodiment, the total number Ng of the motion cycles, which contains an increasing and a decreasing sequence of shed closure angles FSW, amounts to Ng=18. The control arrangement starts the method sequence illustrated in
When using the method according to the invention with sequences of shed closure angles FSW according to
Number | Date | Country | Kind |
---|---|---|---|
10 2011 006 368 | Mar 2011 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/052529 | 2/14/2012 | WO | 00 | 9/5/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/130519 | 10/4/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4572247 | Speich | Feb 1986 | A |
5617901 | Adriaen et al. | Apr 1997 | A |
5642757 | Froment et al. | Jul 1997 | A |
5743305 | Tamura et al. | Apr 1998 | A |
6307340 | Wagner et al. | Oct 2001 | B1 |
6532996 | Tamura | Mar 2003 | B2 |
6953063 | Krumm et al. | Oct 2005 | B2 |
6962171 | Krumm et al. | Nov 2005 | B2 |
7114527 | Von Zwehl et al. | Oct 2006 | B2 |
7341077 | Sampers | Mar 2008 | B2 |
20040031533 | Krumm et al. | Feb 2004 | A1 |
Number | Date | Country |
---|---|---|
1636088 | Jul 2005 | CN |
1675420 | Sep 2005 | CN |
101072906 | Nov 2007 | CN |
200 21 049 | May 2001 | DE |
100 53 079 | May 2002 | DE |
101 61 789 | Jul 2003 | DE |
0 010 267 | Apr 1980 | EP |
0 107 099 | May 1984 | EP |
1 065 306 | Jan 2001 | EP |
1 541 728 | Jun 2005 | EP |
09-078388 | Mar 1997 | JP |
WO 03071017 | Aug 2003 | WO |
WO 2004092467 | Oct 2004 | WO |
WO 2006039912 | Apr 2006 | WO |
Entry |
---|
International Search Report of the International Searching Authority for International Application PCT/EP2012/052529, mailed Apr. 17, 2013, 2 pages, European Patent Office, HV Rijswijk, Netherlands. |
PCT International Preliminary Report on Patentability including English Translation of PCT Written Opinion of the International Searching Authority for International Application PCT/EP2012/052529, issued Oct. 2, 2013, 9 pages, International Bureau of WIPO, Geneva, Switzerland. |
Chinese Search Report dated May 12, 2014, in Chinese Patent Application No. 201280016194.3, 2 pages; with partial English (and partial German) translation, 2 pages. |
Chinese Office Action issued May 20, 2014 in Chinese Patent Application No. 201280016194.3, 5 pages; with partial English (and partial German) translation, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20130340881 A1 | Dec 2013 | US |