The present invention relates to frequency synthesis generally and, more particularly, to a method and/or apparatus for stabilizing the frequency of digitally synthesized waveforms.
In a conventional Direct Digital Synthesis (DDS) approaches, a digital waveform is synthesized by accumulating a value equal to a fraction of pi every clock cycle. The value is stored in an accumulator. An output of the accumulator is translated into a digital waveform through a fixed or programmable look up table that contains the desired waveform for all values of pi. With such a conventional architecture, the frequency of a synthesized waveform depends on a programmed value equal to the desired radian change per clock cycle (i.e., DDS seed) and the clock frequency used to accumulate the DDS seed values. With conventional approaches, if either the DDS seed or the clock frequency changes, the frequency of the synthesized waveform of the output also changes. Therefore, if a system clock is phase locked to an external reference source, the stability of the DDS waveform frequency is directly proportional to the stability of the system clock.
It would be desirable to have a system to synthesize a digital waveform to maintain a constant output frequency independently of variations in the system clock frequency.
The present invention concerns an apparatus comprising a first circuit, a second circuit, a third circuit and a fourth circuit. The first circuit may be configured to generate a demodulated signal in response to (i) a modulated signal and (ii) a seed value. The second circuit may be configured to generate a first control signal in response to the demodulated signal. The third circuit may be configured to generate a second control signal in response to (i) the first control signal and (ii) a compensation signal. The fourth circuit may be configured to generate the seed value in response to the second control signal.
The objects, features and advantages of the present invention include providing a method and/or apparatus for stabilizing the frequency of digitally synthesized waveforms that may (i) allow phase lock loop clocks to produce stable carrier signals for applications such as radio frequency (RF) modulators, (ii) compensate for variations in the synthesized waveform, (iii) differentiate between frequency deviations in the quantized signal and deviations in the quantization period, (iv) compensate for the synthesized waveform in amplitude demodulation in video decoders, (v) compensate for the synthesized waveform in coherent spectral translation of intermediate frequencies (IF) down to baseband frequencies and/or (vi) generate a fixed frequency, such as a frequency modulated (FM) or amplitude modulated (AM) carrier.
These and other objects, features and advantages of the present invention will be apparent from the following detailed description and the appended claims and drawings in which:
Referring to
The circuit 102 generally comprises a numerically controlled oscillator (NCO). The circuit 104 generally comprises a sine table. The signal OUT may be a synthesized signal having a target frequency. The frequency of the signal OUT may depend on (i) the magnitude of the signal DDS_SEED (e.g., expressed in radians change per clock period) and (ii) the frequency of the clock signal CLK. The signal DDS_SEED may be calculated using the following formula: DDS_SEED=(desired frequency of synthesized signal/DDS clock frequency)*2^N where N is an integer equal to the number of bits used in the NCO 102.
Referring to
Referring to
In one example, a 10 MHz carrier (e.g., DEMOD) may be generated with the NCO 102′ clocked at 100 MHz (e.g., by the clock signal CLK) using a 32-bit register phase accumulator signal (e.g., PHASE) presented to the sine table 104. One or more bits of the register may be used. The signal DDS_SEED may be: seed—10=(106 /1006)*2^32 or transposing, desired frequency =(seed—10 /2^32)*1006. If the frequency of the clock signal CLK changes by +1% to 101 MHz, the value of the desired frequency of the signal DEMOD may also change by 1% to 10.1 MHz. Hence, it may be difficult to modulate or demodulate a signal at a fixed carrier frequency with any sort of fidelity using a time varying clock.
Referring to
Referring to
Referring to
The phase detector 302 generally comprises a circuit 310 and a circuit 312. The circuit 310 may be implemented as a multiplier circuit. The circuit 312 may be implemented as a low pass filter circuit. The loop filter 304 may be implemented as a multiplier circuit 320, a multiplier circuit 322 and an adder circuit 324. The NCO 306 may be implemented as a register circuit 330, an adder circuit 332, an adder circuit 334 and an adder circuit 336. However, the various components used to implement the phase detector 302, the loop filter 304 and the NCO 306 may be varied to meet the design criteria of a particular implementation. The adder circuit 336 may generate a signal (e.g., A′) in response to the signal A and a compensation signal (e.g., SEED_COMPENSATION). The adder circuit 334 may generate a signal (e.g., A″) in response to the signal A′ and the signal DDS_SEED. The adder circuit 332 may generate a signal (e.g., NCO_PHASE) in response to the signal A″ and the signal A′″. The register circuit 330 generally generates the signal A′″ in response to the signal CLK and the signal NCO_PHASE. The sine table 308 may generate a signal (e.g., DEMOD) in response to the signal NCO_PHASE. The signal DEMOD may be a seed value used by the phase detector 302.
The adder circuit 336 may correct the magnitude of the programmed signal DDS_SEED to compensate for changes in the frequency of the signal CLK. While a demodulator circuit has been described, a modulator circuit may be implemented in a similar manner to produce a stable carrier frequency in the presence of an unstable clock. In one example, the desired frequency may be given by: desired frequency=((seed—10* (100/101))/2^32)*106=106.
The frequency of a Direct Digital Synthesis (DDS) waveform may be directly proportional to the rate of change of a radian value into a lookup table 308. The frequency may be a fixed sub-multiple of the system clock signal CLK. To maintain a constant DDS output frequency when the frequency of the system clock CLK is locked to an external reference, a deviation of the clock signal CLK may be calculated and the magnitude of the signal DDS_SEED may be modified accordingly. The circuit 300 may use a Phase Lock Loop (PLL) error term to generate the signal SEED_COMPENSATION. The PLL error term may be directly proportional to the change in frequency of the signal CLK to scale the nominal value of the signal DDS_SEED. The scaled signal DDS_SEED may then be added to the original DDS seed (e.g., the signal A) so that the sum of the two seed values maintains the desired ratio of the frequency of the signal OUT_DEMOD to nominal clock frequency of the signal IN_MOD.
Referring to
In an alternate approach, for DDS applications using a fixed crystal reference, the number of cycles generated by the circuit 300 over a period of time may be measured against a system reference. The difference between the desired number of cycles and the actual number generated may be used to scale the original value DDS_SEED to compensate for errors in the external crystal frequency. If an output of an MPEG is connected to a digital composite video encoder (DENC), the clock variation due to Program Clock Recovery (PCR) may generate a chrominance subcarrier which deviates more than +/−100 Hz away from nominal. Such a deviation may cause some picture monitors to lose color lock. The degree of clock variation may be calculated directly from the PCR recovery logic, and in a similar way to a PLL, could be used to directly scale the chrominance subcarrier SEED programmed into a DENC.
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4092606 | Lovelace et al. | May 1978 | A |
4694327 | Demmer et al. | Sep 1987 | A |
4736237 | Fling et al. | Apr 1988 | A |
4933890 | Nuytkens et al. | Jun 1990 | A |
4965533 | Gilmore | Oct 1990 | A |
5055801 | Koga et al. | Oct 1991 | A |
5193103 | Singh et al. | Mar 1993 | A |
5425057 | Paff | Jun 1995 | A |
5440268 | Taga et al. | Aug 1995 | A |
5563535 | Corry et al. | Oct 1996 | A |
5734434 | Kettenis | Mar 1998 | A |
5742208 | Blazo | Apr 1998 | A |
5815541 | Fukushi | Sep 1998 | A |
5931891 | Landry | Aug 1999 | A |
5952895 | McCune et al. | Sep 1999 | A |
6118316 | Tamamura et al. | Sep 2000 | A |
6191649 | Sugita et al. | Feb 2001 | B1 |
6240127 | Happonen | May 2001 | B1 |
6249155 | Hartman et al. | Jun 2001 | B1 |
6321075 | Butterfield | Nov 2001 | B1 |
6333649 | Dick et al. | Dec 2001 | B1 |
6381265 | Hessel et al. | Apr 2002 | B1 |
6411658 | Sasaki | Jun 2002 | B1 |
6650187 | Riddle et al. | Nov 2003 | B1 |
6697609 | Wakamatsu et al. | Feb 2004 | B2 |
6738608 | Black et al. | May 2004 | B2 |
6784706 | Van Der Valk et al. | Aug 2004 | B2 |
6825729 | Splett | Nov 2004 | B2 |
7095819 | Bellaouar et al. | Aug 2006 | B2 |
20020150169 | Kishi | Oct 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20040101069 A1 | May 2004 | US |