An example embodiment of the present invention relates generally to device displays, and more particularly, to a method, apparatus and computer program product for displaying user interface objects on a curved display.
The widespread use of technology in everyday life has led to an increased demand for improved visual effects. In some areas, such as gaming, there exists an even larger demand for realistic visual effects. New devices including those with curved displays may make games and virtual environments more realistic. However, improvements in the visual effects that are displayed upon such curved displays cause games and virtual environments to be even more realistic.
A method, apparatus, and computer program product are therefore provided for creating gravitational effects on user interface objects so as to make the user interface objects and the movement of such user interface objects even more realistic. A method is provided including receiving an indication of a movement of a user interface object in a curved area of a display and causing the shape of the user interface object to change based on the position of the object in the curved area of the display. The method of one embodiment also includes causing the speed of the user interface object to change based on the position of the object in the curved area of the display. The user interface object may display an inertial property and a change to the user interface object may be based on a virtual effect of gravity. In some embodiments, the user interface object may be an object in a game or a screen saver. The movement of the user interface object may occur automatically, or may be caused by a user navigation. In some embodiments, a change to the user interface object is intensified as the user interface object moves into a more steeply curved area of the display, relative to a change of the user interface object in a flatter area of the display.
In some embodiments, an apparatus is provided, including at least one processor and at least one memory including computer program code, the at least one memory and the computer program code configured to, with the processor, cause the apparatus to at least receive an indication of a movement of a user interface object in a curved area of a display and cause the shape of the user interface object to change based on the position of the object in the curved area of the display. In some embodiments, the memory and computer program code may be configured to cause the speed of the user interface object to change based on the position of the object in the curved area of the display. The user interface object may display an inertial property and a change to the user interface object may be based on a virtual effect of gravity. In some embodiments, the user interface object may be an object in a game or a screen saver. The movement of the user interface object may occur automatically, or may be caused by a user navigation. In some embodiments, a change to the user interface object is intensified as the user interface object moves into a more steeply curved area of the display, relative to a change of the user interface object in a flatter area of the display.
In some embodiments, a computer program product is provided, including at least one non-transitory computer-readable storage medium having computer-executable program code instructions stored therein, the computer-executable program code instructions comprising program code instructions to cause the apparatus to at least receive an indication of a movement of a user interface object in a curved area of a display and cause the shape of the user interface object to change based on the position of the object in the curved area of the display. In some embodiments, the program code instructions may be configured to cause the speed of the user interface object to change based on the position of the object in the curved area of the display. The user interface object may display an inertial property and a change to the user interface object may be based on a virtual effect of gravity. In some embodiments, the user interface object may be an object in a game or a screen saver. The movement of the user interface object may occur automatically, or may be caused by a user navigation. In some embodiments, a change to the user interface object is intensified as the user interface object moves into a more steeply curved area of the display, relative to a change of the user interface object in a flatter area of the display.
In some embodiments, an apparatus is provided, with means for receiving an indication of a movement of a user interface object in a curved area of a display and causing the shape of the user interface object to change based on the position of the object in the curved area of the display. In some embodiments, the apparatus may include means to cause the speed of the user interface object to change based on the position of the object in the curved area of the display. The user interface object may display an inertial property and a change to the user interface object may be based on a virtual effect of gravity. In some embodiments, the user interface object may be an object in a game or a screen saver. The movement of the user interface object may be caused by a user navigation. In some embodiments, a change to the user interface object is intensified as the user interface object moves into a more steeply curved area of the display, relative to a change of the user interface object in a flatter area of the display.
Having thus described certain example embodiments of the present invention in general terms, reference will hereinafter be made to the accompanying drawings which are not necessarily drawn to scale, and wherein:
Some embodiments of the present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all, embodiments of the invention are shown. Indeed, various embodiments of the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like reference numerals refer to like elements throughout. As used herein, the terms “data,” “content,” “information,” and similar terms may be used interchangeably to refer to data capable of being transmitted, received and/or stored in accordance with embodiments of the present invention. Thus, use of any such terms should not be taken to limit the spirit and scope of embodiments of the present invention.
Additionally, as used herein, the term ‘circuitry’ refers to (a) hardware-only circuit implementations (e.g., implementations in analog circuitry and/or digital circuitry); (b) combinations of circuits and computer program product(s) comprising software and/or firmware instructions stored on one or more computer readable memories that work together to cause an apparatus to perform one or more functions described herein; and (c) circuits, such as, for example, a microprocessor(s) or a portion of a microprocessor(s), that require software or firmware for operation even if the software or firmware is not physically present. This definition of ‘circuitry’ applies to all uses of this term herein, including in any claims. As a further example, as used herein, the term ‘circuitry’ also includes an implementation comprising one or more processors and/or portion(s) thereof and accompanying software and/or firmware. As another example, the term ‘circuitry’ as used herein also includes, for example, a baseband integrated circuit or applications processor integrated circuit for a mobile phone or a similar integrated circuit in a server, a cellular network device, other network device, and/or other computing device.
As defined herein, a “computer-readable storage medium,” which refers to a physical storage medium (e.g., volatile or non-volatile memory device), may be differentiated from a “computer-readable transmission medium,” which refers to an electromagnetic signal.
As described below, a method, apparatus and computer program product are provided for creating gravitation effects on a user interface object. Referring to
In some embodiments, the processor 20 (and/or co-processors or any other processing circuitry assisting or otherwise associated with the processor 20) may be in communication with the memory device 26 via a bus for passing information among components of the gravitational effects apparatus 102. The memory device 26 may be non-transitory, and may include, for example, one or more volatile and/or non-volatile memories. In other words, for example, the memory device 26 may be an electronic storage device (e.g., a computer readable storage medium) comprising gates configured to store data (e.g., bits) that may be retrievable by a machine (e.g., a computing device like the processor 20). The memory device 26 may be configured to store information, data, content, applications, instructions, or the like for enabling the apparatus to carry out various functions in accordance with an example embodiment of the present invention. For example, the memory device 26 could be configured to buffer input data for processing by the processor 20. Additionally or alternatively, the memory device 26 could be configured to store instructions for execution by the processor 20.
The gravitational effects apparatus 102 may, in some embodiments, be embodied in various devices as described above. However, in some embodiments, the gravitational effects apparatus 102 may be embodied as a chip or chip set. In other words, the gravitational effects apparatus 102 may comprise one or more physical packages (e.g., chips) including materials, components and/or wires on a structural assembly (e.g., a baseboard). The structural assembly may provide physical strength, conservation of size, and/or limitation of electrical interaction for component circuitry included thereon. The gravitational effects apparatus 102 may therefore, in some cases, be configured to implement an embodiment of the present invention on a single chip or as a single “system on a chip.” As such, in some cases, a chip or chipset may constitute means for performing one or more operations for providing the functionalities described herein.
The processor 20 may be embodied in a number of different ways. For example, the processor 20 may be embodied as one or more of various hardware processing means such as a coprocessor, a microprocessor, a controller, a digital signal processor (DSP), a processing element with or without an accompanying DSP, or various other processing circuitry including integrated circuits such as, for example, an ASIC (application specific integrated circuit), an FPGA (field programmable gate array), a microcontroller unit (MCU), a hardware accelerator, a special-purpose computer chip, or the like. As such, in some embodiments, the processor 20 may include one or more processing cores configured to perform independently. A multi-core processor may enable multiprocessing within a single physical package. Additionally or alternatively, the processor 20 may include one or more processors configured in tandem via the bus to enable independent execution of instructions, pipelining and/or multithreading.
In an example embodiment, the processor 20 may be configured to execute instructions stored in the memory device 26 or otherwise accessible to the processor 20. Alternatively or additionally, the processor 20 may be configured to execute hard coded functionality. As such, whether configured by hardware or software methods, or by a combination thereof, the processor 20 may represent an entity (e.g., physically embodied in circuitry) capable of performing operations according to an embodiment of the present invention while configured accordingly. Thus, for example, when the processor 20 is embodied as an ASIC, FPGA or the like, the processor 20 may be specifically configured hardware for conducting the operations described herein. Alternatively, as another example, when the processor 20 is embodied as an executor of software instructions, the instructions may specifically configure the processor 20 to perform the algorithms and/or operations described herein when the instructions are executed. However, in some cases, the processor 20 may be a processor of a specific device (e.g., a mobile terminal or network entity) configured to employ an embodiment of the present invention by further configuration of the processor 20 by instructions for performing the algorithms and/or operations described herein. The processor 20 may include, among other things, a clock, an arithmetic logic unit (ALU) and logic gates configured to support operation of the processor 20.
Meanwhile, the communication interface 24 may be any means such as a device or circuitry embodied in either hardware or a combination of hardware and software that is configured to receive and/or transmit data from/to a network and/or any other device or module in communication with the gravitational effects apparatus 102. In this regard, the communication interface 24 may include, for example, an antenna (or multiple antennas) and supporting hardware and/or software for enabling communications with a wireless communication network. Additionally or alternatively, the communication interface 24 may include the circuitry for interacting with the antenna(s) to cause transmission of signals via the antenna(s) or to handle receipt of signals received via the antenna(s). In some environments, the communication interface 24 may alternatively or also support wired communication. As such, for example, the communication interface 24 may include a communication modem and/or other hardware/software for supporting communication via cable, digital subscriber line (DSL), universal serial bus (USB) or other mechanisms.
In some embodiments, such as instances in which the gravitational effects apparatus 102 is embodied by a user device, the gravitational effects apparatus 102 may include a user interface 22 that may, in turn, be in communication with the processor 20 to receive an indication of a user input and/or to cause provision of an audible, visual, mechanical or other output to the user. As such, the user interface 22 may include, for example, a keyboard, a mouse, a joystick, a display, a touch screen(s), touch areas, soft keys, a microphone, a speaker, or other input/output mechanisms. Alternatively or additionally, the processor 20 may comprise user interface circuitry configured to control at least some functions of one or more user interface elements such as, for example, a speaker, ringer, microphone, display, and/or the like. The processor 20 and/or user interface circuitry comprising the processor 20 may be configured to control one or more functions of one or more user interface elements through computer program instructions (e.g., software and/or firmware) stored on a memory accessible to the processor 20 (e.g., memory device 26, and/or the like).
In some example embodiments, processor 20 may be embodied as, include, or otherwise control a gravitational effects controller 28 for providing gravitational effects on user interface objects. As such, the gravitational effects controller 28 may be embodied as various means, such as circuitry, hardware, a computer program product comprising computer readable program instructions stored on a computer readable medium (for example, memory device 26) and executed by a processing device (for example, processor 20), or some combination thereof. Gravitational effects controller 28 may be capable of communication with one or more of the processor 20, memory device 26, user interface 22, and communication interface 24 to access, receive, and/or send data as may be needed to perform one or more of the gravitational effects functionalities as described herein
Any number of user terminal(s) 110 may connect to gravitational effects apparatus 102 via a network 100. User terminal 110 may be embodied as a mobile terminal, such as personal digital assistants (PDAs), pagers, mobile televisions, mobile telephones, gaming devices, laptop computers, tablet computers, cameras, camera phones, video recorders, audio/video players, radios, global positioning system (GPS) devices, navigation devices, or any combination of the aforementioned. The user terminal 110 need not necessarily be embodied by a mobile device and, instead, may be embodied in a fixed device, such as a computer, workstation. User terminal(s) 110 may include a curved display, may be a touch screen, display screen, Liquid Crystal Display (LCD) or a combination, and in some embodiments, the entire user terminal 110 may be curved. In some embodiments, the curved display of user terminal 110 may actually comprise multiple displays, but for simplicity will be referred to as a single display hereinafter.
Network 100 may be embodied in a local area network, the Internet, any other form of a network, or in any combination thereof, including proprietary private and semi-private networks and public networks. The network 100 may comprise a wire line network, wireless network (e.g., a cellular network, wireless local area network, wireless wide area network, some combination thereof, or the like), or a combination thereof, and in some example embodiments comprises at least a portion of the Internet. As another example, a user terminal 110 may be directly coupled to or may include a gravitational effects apparatus 102.
Referring now to
The user interface object may move across a display. For example, continuing to operation 210, an in an instance in which the user interface object is moving, gravitational effects apparatus 102 may include means, such as the gravitational effects controller 28, processor 20, communication interface 24, and/or the like, for causing the speed of the user interface object to change based on the position of the object in the curved area. As such, a user interface object moving downwardly in a downward-curved area of a display may move at a faster speed compared to a movement of the user interface item on a flat portion or upward-curved portion of the display, thereby simulating the effect of gravity. Conversely, a user interface object moving in an upward-curved area of a display may move at slower speed compared to a movement on a flat portion or downward-curved portion of the display.
For example, the display of
Returning to
Returning to
Similarly, the shape of the object mobility may transform less or more drastically based on an inertial property, such as flexibility or deformability, as it moves into a curved area of a display, and the amount of transformation may be proportional to the flexibility or deformability. For example, a user interface object representing a very solid object, such as a rock, may not change shape at all, or not to the extent of another object displaying more flexibility. For example, an image of an individual riding a raft down a waterfall may include loose clothing or hair blowing or trailing behind a center of mass of the object.
Continuing to operation 240, gravitational effects apparatus 102 may include means, such as the gravitational effects controller 28, processor 20, and/or the like, for causing the user interface object to change such that a change to the user interface object is intensified as the user interface object moves into a more steeply curved area of the display, relative to a change of the user interface object in a flatter area of the display. The changes may intensity or decrease proportionally to the steepness of a curve. For example, a user interface object representing a ball rolling down a hill may accelerate as it continues into a steeper area of the curve. A user interface object representing a malleable object or one with loose parts, may transform shape more drastically in a steeper area of a downward curve, compared to a change in shape of the user interface object in a flatter area of or more gradual curve. A user interface object moving into an upward curve may display changes consistent with changes in shape and/or speed to objects moving against gravity.
In the examples described above, a user interface object may be considered an object moving on some virtual environment illustrated on a curved display. Such embodiments may be useful in providing realistic screensavers, games, and/or the like.
Another example embodiment is displayed in
In some example embodiments, any type of content, such as a web browser or other document, may display any of the gravitational effects provided by the gravitation effects apparatus 102 described herein. As described above, a user terminal 110 employing any of the gravitational effects may provide improved and/or realistic images to users. In some embodiments, different shapes of displays may be utilized. For example, on a semi-circle display, movement of a user interface object in any direct may be subject to a gravitation area. Additionally or alternatively, a user may define how the display feels/looks and how gravity affects the display. For example, a user could define that the display is “icy” and the acceleration and/or speed may change accordingly. In other words, a display may have different degrees of friction.
Additionally, pairing the gravitational effects with sound effects may make displayed content even more realistic to a user. In another example embodiment, the changing shape or speed of an object may warn a user that the object is about to fall outside the display area.
As described above,
Accordingly, blocks of the flowchart support combinations of means for performing the specified functions and combinations of operations for performing the specified functions for performing the specified functions. It will also be understood that one or more blocks of the flowchart, and combinations of blocks in the flowchart, may be implemented by special purpose hardware-based computer systems which perform the specified functions, or combinations of special purpose hardware and computer instructions.
In some embodiments, certain ones of the operations above may be modified or further amplified. Furthermore, in some embodiments, additional optional operations may be included as indicated by the dashed outline of some operations in
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Moreover, although the foregoing descriptions and the associated drawings describe example embodiments in the context of certain example combinations of elements and/or functions, it should be appreciated that different combinations of elements and/or functions may be provided by alternative embodiments without departing from the scope of the appended claims. In this regard, for example, different combinations of elements and/or functions than those explicitly described above are also contemplated as may be set forth in some of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.