The present invention relates broadly to computer networks. More specifically, the present invention relates to configuring computer networks so that a root node is always assigned a valid identification value during a self-identification process.
Directing attention to
The tree_ID process is executed in a distributed manner among the nodes to configure a tree structure among nodes 10. The tree_ID process executed on each node establishes a hierarchy among nodes 10 such that each connection between two nodes 10 defines one node as the parent of the other node and the other node as the child of the first node. A node 10 may thus be parent to zero or more children, and each node 10 has at most one parent. On each node 10, a flag on each port in PHY 14 indicates the peer node as either a parent or a child. A root node 10-1 eventually is determined to be a node that has only children and no parent. By establishing a hierarchy among nodes 10, the communication protocols of the 1394a standard are able to function properly. The root node has particular responsibilities, such as acting as cycle master and issuing cycle start packets. This function is essential to isochronous operation, which, in turn, is essential to the use of the 1394 standard in consumer digital audio-visual applications among others. When a node has identified all connections to its PHY 14 as being connections to children with the exception of one connection, it is assumed that the remaining, unidentified connection points to a potential parent node.
Once all of nodes 10 have completed the tree_ID process, and every node has set its flags on all its ports to either parent or child, the network configuration state moves to the self_ID process. The self_ID process takes place in a distributed manner. The 1394a standard specifies that each child node must wait for a signal from its parent node before beginning its contribution to the self_ID process, and that the root node 10-1 initiates the process. As defined in the 1394a standard, six bits are provided on each node to designate a unique identifier within network 12. A maximum value, 63, is reserved as a broadcast identifier for all nodes in network 12. Thus, if a node needs to send a message to all nodes 10, it sets the address message for node 63 and all nodes in network 12 receive this message. Node value 63 is not individually addressable. A node having a value of 63 indicates a malconfigured bus. Any such node may repeat packets originated by other nodes, but is not permitted otherwise to participate in bus activity. The remaining identifiers, 0 through 62, are available for identification designation.
During the self_ID process, each node 10 in turn assigns itself a unique identifier, so that the process assigns a unique identifier to nodes 10 on network 12. Each node 10 maintains a register that records the next available identifier. When a node 10 receives a notification that another node 10 has assigned itself an identifier, the node 10 updates its register to the next value incrementally. However, the value in the register is not allowed to exceed 63. When a child node is instructed by its parent node to execute its contribution to the self_ID process, the child first instructs its children (if any) in turn to execute their contributions to the self_ID process. When all its children have completed their contributions, the node checks its internal register for the next available value and selects this value as its identifier. It then broadcasts this value across network 12 and all nodes update their identification registers with this node-value assignment. The child node then instructs the parent node that it has completed the self_ID process. Once all of the children of a parent node have assigned values to themselves, the parent node selects a value in a similar fashion, and sends a message to its parent that it has finished. This process continues up the tree until root node makes the final node-value assignment. The root thus always assigns itself the highest node-value. This self_ID process as executed in a tree structure is illustrated in
The self_ID process works smoothly as long as there are 62 or less nodes connected in network 10. In these cases, the root will have a node value of 62 or less. If more than 63 nodes are present on the bus, then the nodes after the 63rd to allocate themselves identifiers, including the root node, are all allocated Physical_ID 63.
The present invention provides a solution to the problem described above that modifies the self_ID process of the 1394a standard to mark nodes in excess of the allowable value as non-functional nodes and thus preserve the node configuration mandated by the 1394a standard. The present invention ensures that, during self_ID processes, no non-root node can allocate itself Physical_ID 62. Said differently, Physical_ID 62 is reserved for use only by root. Consequently, a node which is root can be fully functional, despite a malconfigured bus, and in particular can exercise its specific bus-related responsibilities. For each node that executes the self_ID process, a check is made of the available Physical_ID value as well as the designation of the node as a root or non-root node. If the value available is less than 62, the value is assigned to the node. If the value not less than the root node, a check is made to see if the node is a root node. If the node is a root node, the value 62 is assigned to the node. If the node is not a root node, the value 63 is assigned to the node. After a value is assigned to a node, that value-node assignment is broadcast over the network and the registers showing the next available value are updated. Control loops through this algorithm until all nodes have been assigned a value.
In another aspect of the invention, a method for ensuring proper Physical_ID assignment to a root node in a network is disclosed. In one embodiment, the method comprises: selecting a physical identification value to be assigned to a node, the physical identification value uniquely identifying the node within a network; comparing the selected physical identification value to a value reserved for a root node; assigning the selected physical identification value to a node if the selected physical identification value is less than the value reserved for the root node. If the selected physical identification value is not less than the value reserved for the root node and if the node is root node then assigning the value reserved for the root node to the root node; and if the selected physical identification value is not less than the value reserved for the root node and if the node is not root node then assigning to the node a physical identification value greater than the value reserved for root node.
In yet another aspect of the invention, a computer readable medium comprising instructions is disclosed. In one embodiment, the instructions, when executed by a computer: select a physical identification value to be assigned to a node, the physical identification value uniquely identifying the node within a network; compare the selected physical identification value to a value reserved for a root node; and assign the selected physical identification value to a node if the selected physical identification value is less than the value reserved for the root node. If the selected physical identification value is not less than the value reserved for the root node and if the node is root node then assign the value reserved for the root node to the root node. If the selected physical identification value is not less than the value reserved for the root node and if the node is not root node then assign to the node a physical identification value greater than the value reserved for root node.
In still another aspect of the invention, a method for assigning an identifier to each node of a network is disclosed. In one embodiment, the network comprises a serial bus network, and the method comprises: executing a first process until the value of a current identifier is greater than or equal to the value of an identifier reserved for the root node, the first process comprising: selecting a node that has not yet been assigned an identifier; assigning the current identifier to the node; and selecting the next available current identifier as the current identifier; and executing a second process until the root node is selected, the second process comprising: selecting a node that has not yet been assigned an identifier; and assigning a special identifier to the node. A third process comprising assigning the identifier reserved for the root node to the root node is also executed.
In a further aspect of the invention, a system for assigning an identifier to each node of a network is disclosed. In one embodiment, the network comprises a serial bus network, and the system comprises: a first module adapted to execute a first process until the value of a current identifier is equal to the value of an identifier reserved for the root node, the first process comprising: selecting a node that has not yet been assigned an identifier; assigning the current identifier to the node; and selecting the next available current identifier as the current identifier; a second module adapted to execute a second process until the root node is selected, the second process comprising: selecting a node that has not yet been assigned an identifier; and assigning a special identifier to the node; and a third module adapted to assign the identifier reserved for the root node to the root node.
In still another aspect of the invention, a method for assigning an identifier to nodes of a network is disclosed. In one embodiment, the method comprises: successively assigning a current identifier to a respective node of the network until the value of the current identifier bears a prescribed relationship to a reserved identifier; successively assigning a special identifier to respective ones of nodes without identifiers; and assigning the reserved identifier to a designated node.
In yet a further aspect, a method for ensuring the proper assignment of unique node identifiers within a network is disclosed. In one embodiment, the method comprises: selecting an identification value and assigning that selected value to a given node in the network if the selected value is less than a predetermined value associated with a designated node; and if the selected identification value is not less than the predetermined value, and if the given node is the designated node, then assigning the predetermined value to the designated node.
Directing attention to
While the value of 62 is reserved for root node and nodes that exceed the maximum number of nodes allowed in the network are assigned the value of 63, these values can be adjusted as needed, depending on how many nodes can be accommodated on network 10.
The product of algorithm 100 is the node-value assignment illustrated in
Referring now to
The local host 152 may be any device one wishes to attach to the bus, such as a disk drive, CPU, keyboard, television, stereo, household appliance, or any other component which needs to communicate with other components in the system. The node 10, by means of its logic, will implement the arbitration protocol including the bus initialization, tree identification and self-identification described above.
The node 10 communicates with other nodes through communications links. A link is a connection between two ports. Typically, a cable segment is used for a link. However, a link may be implemented as any physical communication channel, including wireless RF or infrared. A port is the interface between a node and a link. A port has the ability to transmit and receive data. A port can also determine whether it is connected to another port through a link. As shown In
An individual node may have more than one port, and each node is able to transmit and receive data on any one of its ports. A node is also able to receive and transmit signaling messages through all of its ports.
While the preferred embodiment of the present invention has been illustrated and described in detail, it is to be understood that the figures and detailed description are merely illustrative and many modifications can be made without departing from the spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4156798 | Doelz | May 1979 | A |
4194113 | Fulks et al. | Mar 1980 | A |
5014262 | Harshavardhar | May 1991 | A |
5274631 | Bhardwaj | Dec 1993 | A |
5343461 | Barton et al. | Aug 1994 | A |
5394556 | Oprescu | Feb 1995 | A |
5452330 | Goldstein | Sep 1995 | A |
5490253 | Laha et al. | Feb 1996 | A |
5495481 | Duckwall | Feb 1996 | A |
5539390 | Nagano et al. | Jul 1996 | A |
5541670 | Hanai | Jul 1996 | A |
5568641 | Nelson et al. | Oct 1996 | A |
5583922 | Davis et al. | Dec 1996 | A |
5621659 | Matsumoto et al. | Apr 1997 | A |
5630173 | Oprescu | May 1997 | A |
5640595 | Baugher et al. | Jun 1997 | A |
5684715 | Palmer | Nov 1997 | A |
5687319 | Cook et al. | Nov 1997 | A |
5701476 | Fenger | Dec 1997 | A |
5701492 | Wadsworth et al. | Dec 1997 | A |
5712834 | Nagano et al. | Jan 1998 | A |
5719862 | Lee et al. | Feb 1998 | A |
5784648 | Duckwall | Jul 1998 | A |
5802048 | Duckwall | Sep 1998 | A |
5802057 | Duckwall et al. | Sep 1998 | A |
5805073 | Nagano et al. | Sep 1998 | A |
5809331 | Staats et al. | Sep 1998 | A |
5832298 | Sanchez et al. | Nov 1998 | A |
5835761 | Ishii et al. | Nov 1998 | A |
5867730 | Leyda | Feb 1999 | A |
5875301 | Duckwall et al. | Feb 1999 | A |
5938764 | Klein | Aug 1999 | A |
5968152 | Staats | Oct 1999 | A |
5970052 | Lo et al. | Oct 1999 | A |
5987605 | Hill et al. | Nov 1999 | A |
6032202 | Lea et al. | Feb 2000 | A |
6038625 | Ogino et al. | Mar 2000 | A |
6070187 | Subramaniam et al. | May 2000 | A |
6073206 | Piwonka et al. | Jun 2000 | A |
6122248 | Murakoshi et al. | Sep 2000 | A |
6131129 | Ludtke et al. | Oct 2000 | A |
6131134 | Huang et al. | Oct 2000 | A |
6133938 | James | Oct 2000 | A |
6138196 | Takayama et al. | Oct 2000 | A |
6141702 | Ludtke et al. | Oct 2000 | A |
6141767 | Hu et al. | Oct 2000 | A |
6157972 | Newman et al. | Dec 2000 | A |
6160796 | Zou | Dec 2000 | A |
6167532 | Wiseccup | Dec 2000 | A |
6173327 | De Borst et al. | Jan 2001 | B1 |
6192189 | Fujinami et al. | Feb 2001 | B1 |
6202210 | Ludtke | Mar 2001 | B1 |
6233615 | Van Loo | May 2001 | B1 |
6233624 | Hyder et al. | May 2001 | B1 |
6247083 | Hake et al. | Jun 2001 | B1 |
6253114 | Takihara | Jun 2001 | B1 |
6253255 | Hyder et al. | Jun 2001 | B1 |
6260063 | Ludtke et al. | Jul 2001 | B1 |
6266334 | Duckwall | Jul 2001 | B1 |
6266344 | Fujimori et al. | Jul 2001 | B1 |
6266701 | Sridhar et al. | Jul 2001 | B1 |
6282597 | Kawamura | Aug 2001 | B1 |
6295479 | Shima et al. | Sep 2001 | B1 |
6308222 | Krueger et al. | Oct 2001 | B1 |
6311228 | Ray | Oct 2001 | B1 |
6345315 | Mishra | Feb 2002 | B1 |
6353868 | Takayama et al. | Mar 2002 | B1 |
6363085 | Samuels | Mar 2002 | B1 |
6366964 | Shima et al. | Apr 2002 | B1 |
6385679 | Duckwall et al. | May 2002 | B1 |
6425019 | Tateyama et al. | Jul 2002 | B1 |
6453376 | Fairman et al. | Sep 2002 | B1 |
6473816 | Yoshida et al. | Oct 2002 | B1 |
6512767 | Takeda et al. | Jan 2003 | B1 |
6513064 | Horiguchi et al. | Jan 2003 | B1 |
6553013 | Jones et al. | Apr 2003 | B1 |
6580827 | Ueda | Jun 2003 | B2 |
6628607 | Hauck et al. | Sep 2003 | B1 |
6633577 | Nyu | Oct 2003 | B1 |
6658474 | Kang | Dec 2003 | B2 |
6691096 | Staats | Feb 2004 | B1 |
6754184 | Miyano et al. | Jun 2004 | B2 |
6799208 | Sankaranarayan et al. | Sep 2004 | B1 |
6813651 | Smith et al. | Nov 2004 | B1 |
6910086 | Inoue et al. | Jun 2005 | B1 |
6950408 | Domon et al. | Sep 2005 | B1 |
6963938 | Suzuki et al. | Nov 2005 | B2 |
7187655 | Sato et al. | Mar 2007 | B1 |
7194755 | Nakata et al. | Mar 2007 | B1 |
20010028656 | Fukunaga | Oct 2001 | A1 |
20030001883 | Wang | Jan 2003 | A1 |
20030135495 | Vagnozzi | Jul 2003 | A1 |
20040073912 | Meza | Apr 2004 | A1 |
20040251887 | Sparrell et al. | Dec 2004 | A1 |
20060168337 | Stahl et al. | Jul 2006 | A1 |