Technical Field
The present invention relates to the hydrolysis of the starch and fiber in grains and/or pulses.
Background
Before the present invention, no one has developed a product comprising certain benefits of hydrolyzed starch and fiber (e.g., reduced viscosity and better mouthfeel), while also maintaining certain benefits of unhydrolyzed starch and fiber (e.g., benefits found in whole grains, whole pulses, or portions thereof).
In a first aspect, the invention provides a method comprising several steps. A first step comprises providing starting components comprising: a first enzyme; a second enzyme; water; and a starting composition. The starting composition comprises at least one material selected from the group consisting of at least a portion of grain and at least a portion of pulse, and the at least one material comprises starch and fiber. A second step comprises hydrolyzing the fiber in the at least one material through a fiber hydrolysis reaction. The fiber hydrolysis reaction is catalyzed by the first enzyme. A third step comprises hydrolyzing the starch in the at least one material through a starch hydrolysis reaction. The starch hydrolysis reaction is catalyzed by the second enzyme. A fourth step comprises deactivating the first enzyme. A fifth step comprises deactivating the second enzyme. The method provides a product composition.
In a second aspect, the invention provides a composition comprising at least one material selected from the group consisting of at least a portion of grain and at least a portion of pulse. The at least one material comprises hydrolyzed starch and hydrolyzed fiber. The hydrolyzed starch consists of starch molecules, and the average molecular weight of the hydrolyzed starch molecules in the composition is a first fraction of the molecular weight of unhydrolyzed starch molecules. The unhyhdrolyzed starch molecules are equivalent in kind and condition to the gelatinized, hydrolyzed starch molecules, except that the gelatinized, unhydrolyzed starch molecules have not been hydrolyzed. The first fraction is no more than about 0.80. The hydrolyzed fiber consists of fiber molecules, and the average molecular weight of the hydrolyzed fiber molecules in the composition is a second fraction of the molecular weight of unhydrolyzed fiber molecules. The unhydrolyzed fiber molecules are equivalent in kind and condition to the hydrolyzed fiber molecules, except that the unhydrolyzed fiber molecules have not been hydrolyzed. The second fraction is no more than about 0.80.
Other aspects, embodiments and features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings. The accompanying figures are schematic and are not intended to be drawn to scale. In the figures, each identical, or substantially similar component that is illustrated in various figures is represented by a single numeral or notation. For purposes of clarity, not every component is labeled in every figure. Nor is every component of each embodiment of the invention shown where illustration is not necessary to allow those of ordinary skill in the art to understand the invention.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as a preferred mode of use, further objectives and advantages thereof, will be best understood by reference to the following detailed description of illustrative embodiments when read in conjunction with the accompanying drawings, wherein:
Whole grain products (e.g., cereal grains such as whole grain oat flour or whole grain barley flour) and/or compositions comprising at least a portion of grain (e.g., bran) can deliver dietary fiber and other nutritive components that make them relatively wholesome and high in dietary fiber and/or nutrient delivery per unit mass (e.g., an ounce). Furthermore, when a product comprises sufficient amounts of certain components (e.g., soluble fiber and/or β-glucan from an approved source such as oat bran, rolled oats, whole oat flour, oatrim, whole grain barley, dry milled barely, barley betafiber, or psyllium), the product can qualify for a health claim as established by certain entities. An example of such a health claim is illustrated by 21 C.F.R. Section 101.81, which is incorporated by reference herein as an example. Like whole grain products, pulse products and/or products comprising at least a portion of pulse can provide consumers with desirable dietary fiber and nutritive components at a fairly high level per unit mass of the pulse product. For example, pulses can help provide a desired level of dietary fiber and/or protein quality to a product.
Furthermore, when combined, grain and pulse products can provide complimentary nutritive components. By way of illustration, oats can have a relatively higher amount of the amino acids methionine and cysteine, but a relatively lower amount of lysine. However, pulses can have a relatively higher amount of the amino acid lysine, but a relatively lower amount of methionine and cysteine. Accordingly, in some embodiments, by combining a grain and a pulse in a product, the overall quality of protein delivered by the product can be increased. In addition, both grains and pulses can provide a product with desirable increases in fiber.
Nonetheless, products with high fiber concentration can have a texture and mouthfeel that is undesirable for some consumers. For example, higher concentrations of insoluble and soluble fiber can increase the viscosity of a product or give the product an undesirable degree of sliminess. Additionally, high molecular weight insoluble fiber (e.g., greater than 1,000,000 Dalton) can make a product coarser or grittier in texture and can result in an undesirable mouthfeel. Moreover, particle size (e.g., increasing particle size) can also increase grittiness. Also, a high fiber concentration can impede absorption of water by a composition comprising the high fiber concentration.
The inventors, however, have discovered a process that, in some embodiments, provides at least a portion of grain and/or pulse product (e.g., whole grain and/or pulse product) with reduced viscosity, less sliminess, less coarseness, and/or better mouthfeel. Also, in some embodiments, the inventive process can reduce a potentially undesirable, thick, mouth-coating texture associated with some grain and/or pulse products while avoiding a reduction in desired characteristics (e.g., a relative mass concentration of fiber and/or a given nutritive component in the grain and/or pulse products).
Furthermore, the inventors have developed a process (e.g., an extrusion process) that, in some embodiments, provides for the controlled hydrolysis of starch and/or fiber, and, in some embodiments, results in more open starch and/or fiber molecular structure. For example, the more open molecular structure can provide better wettability, which can be useful for liquid and semi-solid products, (e.g., beverages, soup, ice cream, and yogurt). Wettability is a characterization of a tendency to get hydrated, for example, the rate at which macromolecular entities like starch and fiber are solvated. A more open molecular structure leads to fast penetration of water into matrices in the molecular structure, which leads to faster solvation of soluble fiber and starch. Accordingly, in some embodiments, the process developed by the inventors enables more (or the same) whole grain and/or pulse to be added to a product while providing the same (or better) viscosity, texture, and/or mouthfeel characteristics compared to adding unhydrolyzed whole grain.
Additionally, in some embodiments, hydrolysis of a grain and/or pulse in the extrusion process results in the grain and/or pulse absorbing less water relative to other hydrolysis processes, for example, wet processes. Since some embodiments, for example, powders, can comprise a drying step after the hydrolysis, it can be desirable to avoid water absorption. Furthermore, since higher moisture content can result in a faster hydrolysis reaction that is more difficult to control, some embodiments involving extrusion provide better control over the extent of hydrolysis of starch and/or fiber. This can, for example, help avoid the conversion of starch and/or fiber to monosaccharides and disaccharides, which can, in turn, help maintain a whole grain status or other desired characteristics.
As another potential benefit, in one embodiment, the invention provides for the simultaneous addition of an enzyme with optimal activity at lower temperatures (e.g., endo-cellulase) and an enzyme with optimal activity at higher temperatures (e.g., α-amylase, which is an endo-enzyme) to hydrolyze a composition (e.g., whole grain and/or pulse) that comprises starch and fiber. As an added advantage, in some embodiments, the invention enables the hydrolysis of both the starch and the fiber to occur in a span of no more than about 5 minutes.
In one embodiment, the invention provides a reduced temperature for preconditioning a composition for α-amylase-catalyzed hydrolysis. For example, the temperature can be reduced relative to the temperature at which most α-amylase enzymes are active. This can, in turn, make it easier to combine α-amylase-catalyzed starch hydrolysis with cellulase-catalyzed fiber hydrolysis.
As another potential advantage, in some embodiments, the invention provides for a continuous process (e.g., a continuous extrusion process) for hydrolyzing starch and fiber. For example, in some embodiments, the continuous process provides a greater production rate in comparison to a batch process. In some embodiments, the continuous process is easier to control than a batch process.
Additionally, in some embodiments, the invention provides better control over the fiber and/or starch hydrolysis reaction when compared to the degree of control provided by alternative processes. For example, if the percent conversion or completion of the hydrolysis reaction is not high enough, the reaction can result in insufficient reduction of viscosity or certain undesirable properties such as grittiness. On the other hand, if the percent conversion is too high, all the starch and/or fiber can be converted to monosaccharides and/or disaccharides and certain nutritional or fiber-related benefits can be lost.
Accordingly, in some embodiments, the invention provides for hydrolysis to occur in a preconditioner and/or extruder rather than a large vessel or a vessel filled with water. For example, in some embodiments, it is easier to control the temperature throughout a preconditioner and extruder than it is to control the temperature throughout a large vessel. Furthermore, temperature can be important because, in some embodiments, as temperature increases, the speed of a starch and/or fiber hydrolysis reaction increases, and as temperature decreases the speed of the starch and/or fiber hydrolysis reaction decreases. As another example, in some embodiments, it is easier to control the rate of fiber and/or starch hydrolysis in a preconditioner and/or an extruder because, in comparison to hydrolysis in a vessel filled with water, the preconditioner and/or extruder provide for the hydrolysis to occur at a relatively lower water concentration, which results in a relatively slower rate of hydrolysis.
Further, in some embodiments, the extruder and/or preconditioner comprises a modified screw design with forward and reverse blocks that provide for a greater residence time in the extruder and can provide a greater degree of hydrolysis for a fixed extruder length and screw speed. Additionally, in some embodiments, the extruder and/or preconditioner consists of paddles on a shaft. The paddles can have different angles, which can be used to adjust residence time in the extruder and/or preconditioner. In some embodiments, paddles in the extruder and/or preconditioner are mostly or completely equipped with a forward-conveying orientation to reduce residence time in the extruder and/or preconditioner. Although, in some embodiments, paddles (e.g., for kneading) can be oriented in a neutral- or reverse-conveying pattern to increase residence time in the extruder and/or preconditioner.
Also, in some embodiments, the inventors use endo-enzymes rather than exo-enzymes to avoid converting the starch and/or fiber to monosaccharides and/or disaccharides. For example, some enzyme compositions that can be used to catalyze fiber and/or starch hydrolysis include exo-enzymes and endo-enzymes. However, if the exo-enzymes are present at too high a concentration, it can be more difficult to control the extent of hydrolysis of starch and fiber. For example, enzyme compositions comprising both exo- and endo-enzymes can hydrolyze starches and fibers to monosaccharides and disaccharides rather than smaller starch or fiber molecules. For some embodiments, this is undesirable and results in an unacceptable change in the mass ratio of starches to other components. For example, this could result in a loss of mass of certain desired fiber and/or nutritive components.
Accordingly, in some embodiments, a reduction in viscosity of a product composition (relative to a composition with unhydrolyzed fiber and/or gelatinized, unhydrolyzed starch) is achieved by the controlled molecular weight reduction of starch and fiber so that the resulting product is still whole grain and/or pulse. Examples of fiber include beta-glucan (soluble and insoluble fiber), cellulosic fiber (insoluble fiber), or any combination thereof. Examples of a whole grain and/or pulse with hydrolyzed starch and/or hydrolyzed fiber include whole grain and/or pulse after hydrolysis with the same relative mass ratios of certain components (e.g., starch, fiber, protein, fat, and sugar) as the native whole grain and/or pulse before hydrolysis.
As another example, in some embodiments, a whole grain comprises fiber and/or the starch, and the whole grain maintains whole grain status after hydrolyzing the fiber and/or the starch. For example, in some embodiments, a whole grain maintains its standard of identity as whole grain throughout processing (e.g., hydrolysis, pelletizing, drying, and/or granulating). As an illustration of a whole grain, according to the American Association of Cereal Chemists International (AACCI) “[w]hole grains shall consist of the intact, ground, cracked or flaked caryopsis, whose principal anatomical components—the starchy endosperm, germ and bran—are present in the same relative proportions as they exist in the intact caryopsis.”
Accordingly, in some embodiments, a composition comprising the fiber and/or the starch is a whole grain composition comprising caryopses. For example, in some embodiments, the whole grain can comprise the fiber and/or the starch. Additionally, in some embodiments, the principal anatomical components of the caryopses (i.e., the starchy endosperm, germ, and bran) are present in the same relative mass ratios both before and after hydrolyzing the fiber and/or hydrolyzing the starch. Also, in some embodiments, the principal anatomical components of the caryopses are present in the same relative mass ratios in the caryopses both after harvesting when the caryopses are intact and after hydrolyzing the fiber and/or hydrolyzing the starch in the caryopses.
Further, in some embodiments, if the principal nutrients (i.e., starch, fat, protein, dietary fiber, beta-glucan, and sugar) are present in approximately the same relative proportions for a composition comprising grain before and after hydrolyzing the grain, it can be assumed that the processed grain (e.g., the hydrolyzed grain or the grain in which the fiber and/or the starch has been hydrolyzed) maintains its whole grain status. Also, since the average molecular weight of starch (e.g., amylopectin) in whole grains varies widely across the various types of whole grains (1-400 million Dalton) and even among whole grain oat products, a shift in starch moieties from higher molecular weight to lower molecular weight does not alter whole grain status if the total starch content remains the same or substantially the same (e.g., depending on the circumstances and naturally occurring variations, within +/−5, 3, 2, or 1 wt. % on a dry-total-weight basis). Likewise, since the average molecular weight of fiber in whole grains varies widely across the various types of whole grains and even among whole grain oat products, a shift in fiber moieties from higher molecular weight to lower molecular weight does not alter whole grain status if the total fiber content remains the same or substantially the same (e.g., depending on the circumstances and naturally occurring variations, within +/−5, 3, 2, or 1 wt. % on a dry-total-weight basis). As an example, in one experiment, the molecular weight of one type of dietary fiber, arabinoxylan, was detected in whole grain rye flour with molecular weights ranging from 4×104 to 9×106 Dalton and averaging 2×106 Dalton. See J. Agric. Food Chem., 2009, 57 (5), pp. 2004-2008, Content and Molecular-Weight Distribution of Dietary Fiber Components in Whole-Grain Rye Flour and Bread.
Additionally, even in a selected variety of grain, variations occur in relative mass ratios of the principal nutrients in the grain (i.e., starch, fat, protein, dietary fiber, beta-glucan, and sugar). Accordingly, in some embodiments, the change in relative mass ratios of the principal nutrients due to hydrolyzing the fiber, hydrolyzing the starch, and/or other processing is small enough that the relative mass ratios are still within the natural ranges for the variety of grain, thereby maintaining whole grain status.
Furthermore, in some embodiments, while hydrolyzing the fiber and/or hydrolyzing the starch, the changes in the total-dry-weight basis (e.g., excluding water) weight percentages of the starch, fat, protein, dietary fiber, beta-glucan, sugar, and/or some combination thereof in a composition comprising the fiber and/or the starch are no more than about 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 wt. % on a total-dry-weight-basis. Although specific ranges are listed, as with the other ranges given herein, a skilled person with the benefit of this disclosure would also understand that additional ranges can be formed from values that are contained within the listed ranges and are considered to provide additional embodiments.
An embodiment of the invention will now be described with reference to the flow chart of
Second, in a fiber-hydrolyzing step 206, the fiber 502 in the at least one material is hydrolyzed through a fiber hydrolysis reaction 500 catalyzed by the first enzyme 102.
Third, in a starch-hydrolyzing step 212, the starch 402 in the at least one material is hydrolyzed through a starch hydrolysis reaction 400 catalyzed by the second enzyme 104.
Fourth, in a first-enzyme-deactivating step 208, the first enzyme 102 is deactivated.
Fifth, in a second-enzyme-deactivating step 214, the second enzyme 104 is deactivated.
In some embodiments, the fiber-hydrolyzing step comprises adding endo-cellulase in an amount that provides about 30-200, about 100-130, or about 115 International Units (IU) of enzyme activity per gram of fiber. As used in this context, one IU is the amount of enzyme that will release 1 μmol per minute of reducing sugar from a composition comprising 1 wt. % carboxy-methyl cellulose (CMC) and a 99 wt. % solution of water and acid with a pH of 5, a temperature of 40° C. (104° F.) and a pressure of 1 atm. For example, citric acid can be added to provide the desired pH and to act as a buffer.
In some embodiments, the starch-hydrolyzing step comprises adding α-amylase to provide about 600-3100, about 1700-2000, or about 1,850 Modified Wohlgemuth Units (MWU) of enzyme activity per gram of starch. As used in this context, one MWU is the amount of enzyme activity that will dextrinize 1 milligram (mg) of soluble starch to specified dextrins in 30 minutes under specified conditions. The specified dextrins and specified conditions are according to Valley Research Assay No. 511.003, available from Valley Research, Inc. of South Bend, Ind., US, which was acquired by Royal DSM N. V. of Herleen, the Netherlands.
Furthermore, some embodiments of the invention comprise additional or alternative steps. Several of these additional or alternative steps will now be described with reference to an exemplary embodiment illustrated in
Second, in a heating step 202, the starting components are hydrolyzed to provide a hydrolyzed mixture (e.g., comprising hydrolyzed starch and/or hydrolyzed fiber), which can also be an extruded mixture 112. For example, the heating can be used to activate and then deactivate the fiber hydrolysis reaction 500 and/or starch hydrolysis reaction 400, which are illustrated in
Third, in an optional pelletizing step 216, the hydrolyzed mixture is pelletized (e.g., in a pelletizer 134) to provide a pelletized mixture 114.
Fourth, in an optional drying step 218, the pelletized mixture 114 is dried (e.g., in a dryer 136) to provide a dried mixture 116.
Fifth, in an optional granulating step 220 (e.g., grinding, crushing, or milling step), the dried mixture 116 is ground (e.g., milled) to provide a powder 118 (e.g., flour), which is a hydrolyzed powder 118 in the sense that it comprises hydrolyzed starch and/or hydrolyzed fiber. For example, the dried mixture 116 can be granulated in a granulator 138 (e.g., ground in a grinder or milled in a mill).
Sixth, in an optional adding step 222, at least one additional component (e.g., ingredient) can be added (e.g., in a mixer 140) to the hydrolyzed powder 118 or the hydrolyzed mixture (for example, to provide a food or beverage).
In some embodiments, the invention provides for hydrolyzing starch and fiber in a whole grain while maintaining whole grain status. For example, this can be useful to provide health or nutritional benefits associated with whole grain status.
In some embodiments, the first enzyme 102 is a fiber-hydrolysis-catalyzing enzyme 516. In some embodiments, the enzyme is an endo-enzyme, for example, hydrolyzing inner chemical bonds rather than outer chemical bonds of a fiber molecule. In some embodiments, the fiber-hydrolysis-catalyzing enzyme 516 can be a fibrolytic enzyme, endo-glucanase, endo-cellulase, endo-beta-glucanase, or some combination thereof. Further, in some embodiments, the first enzyme 102 is provided in the starting components by providing an endo-cellulase composition. For example, the endo-cellulase composition can be sufficiently pure endo-cellulase so that the endo-cellulase composition is free from detectable levels of exo-activity (e.g., exo-cellulase activity). In some embodiments, the endo-cellulase composition does not comprise (e.g., within detectable limits) β-amylase (which is an exo-enzyme), exo-cellulase, or a combination of both. As an example, in some embodiments, endo-cellulase from Novozymes of Franklinton, N., U.S. is sufficiently free of β-amylase contamination to avoid production of monosaccharides and disaccharides. As another example, in some embodiments, β-amylase from DSM of Parsippany, N.J., U.S. is sufficiently free of β-amylase contamination to avoid production of monosaccharides and disaccharides.
In some embodiments, the first enzyme 102 is an endo-glucanase, and the endo-glucanase is an endo-cellulase or an endo-beta-glucanase. In some embodiments, the first enzyme 102 is provided in an amount sufficient to provide a mass ratio of the endo-cellulase to total dietary fiber equal to at least about 0.05 or 0.055, or equal to about 0.04-0.08, 0.05-0.07, 0.055 to 0.065 or any range contained within the listed ranges. The endo-cellulase and/or endo-beta-glucanase can be a relatively low temperature enzyme (e.g., having an optimum activity at about 122° F. (50° C.) to about 140° F. (60° C.).
In some embodiments, the second enzyme 104 is a starch-hydrolysis-catalyzing enzyme 416 (e.g., α-amylase molecule). In some embodiments, the second enzyme 104 is an endo-enzyme, for example, hydrolyzing inner chemical bonds rather than outer chemical bonds of a starch molecule. In some embodiments, the second enzyme 104 is a relatively high temperature enzyme. In some embodiments, the second enzyme 104 is provided in an amount sufficient to provide a mass ratio of the second enzyme 104 to the starch 402 equal to at least about 0.0025 or 0.0027, or equal to about 0.0025-0.0033, 0.0026-0.032, 0.00027 to 0.0031 or any range contained within the listed ranges.
In some embodiments, both the first enzyme 102 (e.g., endo-cellulase) and the second enzyme 104 (α-amylase) have some, though not necessarily optimal, activity at around 175° F. (79.44° C.).
In some embodiments, the starting composition 108 (e.g., the fiber 502 in the starting composition 108) comprises beta-glucan. Furthermore, in some embodiments, the first enzyme 102 reduces the molecular weight of the beta-glucan in the starting composition 108 to provide beta-glucan in the product composition 120 with an average molecular weight from about 0.50×106-1.35×106, 0.60×106-1.30×106, 0.60×106-1.20×106, 0.60×106-1.10×106, or 0.60×106-1.00×106, or any range contained within the listed ranges. For example, molecular weight can be reduced by hydrolyzing the fiber 502 in a fiber hydrolysis reaction 500.
In some embodiments, the method provides a product composition that comprises, consists essentially of, or consists of whole grain. Furthermore, some embodiments provide hydrolyzed products (e.g., hydrolyzed starch molecules and/or hydrolyzed fiber molecules) that have reduced molecular weight relative to the fiber and/or the starch while remaining the same type of molecule (e.g., remaining fiber and/or starch, as applicable).
In some embodiments, the starting composition 108 (e.g., the fiber 502 in the starting composition 108) comprises cellulose. Furthermore, in some embodiments, the first enzyme 102 reduces the molecular weight of the cellulose in the starting composition 108 (or in the fiber 502) to provide cellulose in the product composition 120 with a reduced average molecular weight.
In some embodiments, the heating step 202 comprises six subsidiary steps: first, a first-enzyme-activating step 204, second, a fiber-hydrolyzing step 206, third, a first-enzyme-deactivating step 208, fourth, a second-enzyme-activating step 210, fifth a starch-hydrolyzing step 212, and sixth, a second-enzyme-deactivating step 214. In some embodiments the first-enzyme-activating step 204 comprises activating the first enzyme 102 to hydrolyze the fiber 502 in the at least one material. In some embodiments, the first enzyme 102 (e.g., the enzyme catalyzing fiber hydrolysis) is activated when the starting components have a temperature of at least about 77° F. (25° C.) and a moisture content of at least about 20 wt. % water. Furthermore, although in some embodiments the starting components comprise the second enzyme 104, the starting components need not comprise the second enzyme 104 to activate the first enzyme 102. Instead, for example, in some embodiments, the first enzyme 102 is activated as long as the specified temperature and moisture content are achieved. Additionally, in some embodiments, the heating step 202 provides an extruded mixture 112, which can, for example, be a product composition 120.
In some embodiments, the fiber-hydrolyzing step 206 comprises hydrolyzing the fiber 502 in the at least one material (e.g., in a hydrolysis reaction catalyzed by the first enzyme 102). In some embodiments, the fiber-hydrolyzing step 206 begins (e.g., substantially or completely) upon activating the first enzyme 102 (e.g., heating the first enzyme). As an illustration, although a negligible amount of fiber hydrolysis can occur when fiber 502 is in the presence of water 106, or when fiber 502 is in the presence of a fiber-hydrolysis-catalyzing enzyme 516 and water 106, the rate of the fiber hydrolysis reaction 500 can be slower than commercially desirable, and can require large (and expensive) quantities of enzyme or long residence times. However, in one embodiment, once the fiber-hydrolysis-catalyzing enzyme 516 is activated, it provides a fiber hydrolysis reaction 500 rate that is commercially acceptable.
In some embodiments, the first-enzyme-deactivating step 208 comprises deactivating the first enzyme 102. For example, the first enzyme 102 can be deactivated by heating the first enzyme 102 at a first enzyme deactivating temperature equal to at least about 180° F. (82.22° C.). For example, in some embodiments, the first enzyme 102 can be heated to denature the first enzyme 102, thereby deactivating the first enzyme 102. Additionally, in some embodiments, the fiber-hydrolyzing step 206 substantially ends upon deactivating the first enzyme 102. Although the amount of time spent at a given temperature also contributes to enzyme deactivation, for at least some low-temperature endo-cellulase, heating to about 180° F. (82.22° C.) almost instantly deactivates the enzyme.
In some embodiments the second-enzyme-activating step 210 comprises activating the second enzyme 104 (e.g., heating the second enzyme) to hydrolyze the starch 402 in the at least one material. In some embodiments, the second enzyme 104 (e.g., the enzyme catalyzing starch hydrolysis) is activated when the starting components have a temperature from about 194° F. (90° C.) to about 230° F. (110° C.) and a moisture content of at least about 20 wt. % water. In some embodiments, the second enzyme (e.g., the enzyme catalyzing hydrolysis) has optimum activity at about 212° F. (100° C.). Furthermore, although in some embodiments the starting components comprise the first enzyme 102, the starting components need not comprise the first enzyme 102 to activate the second enzyme 104. Instead, for example, in some embodiments, the second enzyme 104 is activated as long as the specified temperature and moisture content are achieved.
In some embodiments, fiber hydrolysis catalyzed by endo-glucanase is followed by an almost simultaneous deactivation of the endo-glucanase and activation of α-amylase to hydrolyze starch 402. Then, the α-amylase is deactivated as well (e.g., at a temperature equal to at least about 282° F. (138.89° C.) for about 10 to 15 seconds, or at a temperature above about 194° F. (90° C.) for about 1 minute), to provide a product composition 120.
In some embodiments, the starch-hydrolyzing step 212 comprises hydrolyzing the starch 402 in the at least one material (e.g., in a hydrolysis reaction catalyzed by the second enzyme 104). In some embodiments, the starch-hydrolyzing step 212 begins (e.g., substantially or completely) upon activating the second enzyme 104. As an illustration, although a negligible amount of starch hydrolysis can occur when starch 402 is in the presence of water 106, or when starch 402 is in the presence of a second enzyme 104 and water 106, the rate of the starch hydrolysis reaction 400 can be slower than commercially desirable, and can require large (and expensive) quantities of enzyme or long residence times. However, in one embodiment, once the second enzyme 104 is activated, it provides a starch hydrolysis reaction rate that is commercially acceptable.
In some embodiments, the second-enzyme-deactivating step 214 comprises deactivating the second enzyme 104. For example, the second enzyme 104 can be deactivated by heating the second enzyme 104 to a second enzyme deactivating temperature. For example, in some embodiments, the second enzyme 104 can be heated to denature the second enzyme 104, thereby deactivating the second enzyme 104. As an illustration, for α-amylase, the second enzyme deactivating temperature is equal to at least about 280° F. Additionally, in some embodiments, the starch-hydrolyzing step 212 substantially ends upon deactivating the second enzyme 104.
Another embodiment of the invention will now be described with reference to
Second, in a heating step 202, the starting components are hydrolyzed to provide a hydrolyzed mixture (e.g., comprising hydrolyzed starch and/or hydrolyzed fiber), which can also be an extruded mixture 112. This heating step 202 can be the same as the heating step 202 described with reference to
Third, in an optional pelletizing step 216, the hydrolyzed mixture is pelletized to provide a pelletized mixture 114.
Fourth, in an optional drying step 218, the pelletized mixture 114 is dried to provide a dried mixture 116.
Fifth, in an optional granulating step 220 (e.g., grinding, crushing, or milling step), the dried mixture 116 is ground (e.g., milled) into a powder 118 (e.g., flour), which is a hydrolyzed powder 118 in the sense that it comprises hydrolyzed starch and/or hydrolyzed fiber.
Sixth, in an optional adding step 222, at least one additional component can be added to the hydrolyzed powder 118 or the hydrolyzed mixture (e.g., the extruded mixture 112), for example, to provide a product composition 120. In some embodiments, the product composition 120 is a food or beverage.
The pelletizing step 216, drying step 218, granulating step 220 (e.g., grinding, crushing, or milling step), and adding step 222 can be the same as the pelletizing step 216, drying step 218, granulating step 220 (e.g., grinding, crushing, or milling step), and adding step 222 described with reference to
In some embodiments, the heating step 202 comprises several subsidiary heating steps. For example, first, in a preconditioning step 300, the starting components are preconditioned by combining the first enzyme 102, the second enzyme 104, the water 106, and the starting composition 108 in a preconditioner 130, thereby providing a preconditioned mixture 110. Second, in an extruding step 302, the preconditioned mixture 110 is extruded (e.g., continuously extruded through an extruder 132), thereby providing an extruded mixture 112. For example, the extruding step 302 can comprise extruding the starting composition 108, the second enzyme 104 and the first enzyme 102, thereby providing an extruded mixture 112. In some embodiments, the extruded mixture 112 is a product composition 120.
As another example, in some embodiments, the extruding step 302 occurs in an extruder 132 comprising forward blocks of conveyors (e.g., augers or shafts with paddles) and reverse blocks of the conveyors (e.g., augers or shafts with paddles). For example, in some embodiments, the extruder 132 has modified screw design comprising reverse blocks of screws to push material backwards in addition to forward blocks of screws to push material forward. For example, this can increase residence time of enzymes (e.g., the first enzyme 102 and/or the second enzyme 104) in the barrel. The size and speed of the conveyors can be varied based on type to deliver a desired degree of mixing and conveying speed.
In some embodiments, the preconditioned mixture 110 is heated to activate the first enzyme 102, deactivate the first enzyme 102, activate the second enzyme 104, and deactivate the second enzyme 104.
In some embodiments, it can be desirable to activate the first enzyme 102 (e.g., endo-glucanase or endo-cellulase) at a first activation temperature and then activate the second enzyme 104 (e.g., α-amylase) at a second activation temperature that is higher than the first activation temperature. Accordingly, in some embodiments, a composition comprising the fiber 502, the starch 402, the first enzyme 102, and the second enzyme 104 is heated from a pre-activation temperature to the first activation temperature (e.g., wet mix temperature), and from the first activation temperature to the second activation temperature.
Furthermore, in some embodiments, a first deactivation temperature of the first enzyme 102 is higher than the first activation temperature and the second deactivation temperature of the second enzyme 104 is higher than the second activation temperature. Additionally, in some embodiments, when the first enzyme 102 is added to a composition comprising the fiber 502 and/or the starch 402, the composition is already at the first activation temperature, which can be the wet mix temperature. Similarly, in some embodiments, when the second enzyme 104 is added to a composition comprising the first and/or the second reagent, the composition is already at the second activation temperature, which can be the wet mix temperature.
In some embodiments, the first enzyme 102 is endo-glucanase.
In some embodiments, the first enzyme 102 is endo-cellulase. Further, in some embodiments, the deactivation temperature is at least about 180° F. (82.22° C.). In some embodiments, a composition is maintained at the deactivation temperature for a time sufficient to achieve deactivation. For example, a temperature of at least about 180° F. (82.22° C.) deactivates endo-cellulase in no more than about 1 minute.
In some embodiments, the second enzyme 104 is α-amylase. Further, in some embodiments, the deactivation temperature is at least about 194° F. (90° C.). In some embodiments, a composition is maintained at the deactivation temperature for a time sufficient to achieve deactivation. For example, a temperature of at least about 194° F. (90° C.) deactivates thermostable (or high temperature) α-amylase in no more than about 1 minute.
In some embodiments, if high temperature inactivation is undesirable, deactivating an enzyme (e.g., α-amylase) can comprise adding an acid (e.g., hydrochloric acid, sulfuric acid), to lower the pH of the composition comprising an enzyme. For example, at a pH of 5.0 and 90° C. (194° F.) or at a pH of 3.5-4.0 and 80-85° C. (176-185° F.), α-amylase can be deactivated in about 15 minutes. In some embodiments, after deactivating the enzyme, the composition comprising the enzyme is provided with a pH closer to neutral by adding a base or buffering component (e.g., sodium carbonate, calcium carbonate).
In some embodiments, the heating step 202 occurs while extruding the preconditioned mixture 110 (e.g., with a jacket on an extruder barrel of an extruder 132 and/or frictional heat generated by an extruder 132) to provide an extruded mixture 112. Further, in some embodiments, upon termination of the extruding (e.g., at the exit of an extruder barrel of an extruder 132), the extruded mixture 112 is provided at a post-extrusion temperature from about 134° C. (274° F.) to about 146° C. (294° F.), about 137° C. (279° F.) to about 143° C. (289° F.), or about 140° C. (60.0° F.).
In some embodiments, the preconditioned mixture 110 is provided with a wet mix temperature from about 54.4° C. (130° F.) to about 76.7° C. (170° F.), or about 60.0° C. (140° F.) to about 71.1° C. (160° F.), or about 62.8° C. (145° F.). Also, in some embodiments, the preconditioned mixture 110 is provided with a selected weight percentage of water 106, for example, about 28 wt. % to about 37 wt. %, or about 30 wt. % to about 34 wt. %, or about 32 wt. %. Further, in some embodiments, the preconditioning comprises conveying and agitating the starting components with screws in the preconditioner 130 to provide the preconditioned mixture 110. In some embodiments, the preconditioner 130 is a mixer. In some embodiments, the water 106 in the preconditioned mixture 110 comes from both liquid water and steam. For example, steam and/or liquid water can be added during the preconditioning step 300 to provide a desired wet mix temperature and a selected weight percentage of water 106.
In some embodiments, the wet mix temperature is the temperature of a mixture (e.g., an enzyme, water, and at least one material comprising hydrolyzed starch and/or hydrolyzed fiber) fed to a hydrolysis reactor. For example, this can be a temperature provided by the preconditioner.
Additionally, in some embodiments, the preconditioning step 300 comprises the first-enzyme-activating step 204 and at least a portion of the fiber-hydrolyzing step 206 described with reference to
In some embodiments, the starch hydrolysis reaction 400 and the fiber hydrolysis reaction 500 occur (e.g., partially, substantially, or completely) during the extruding step 302.
In some embodiments, the fiber hydrolysis reaction 500 occurs during the preconditioning. For example, in some embodiments, the fiber hydrolysis reaction 500 (e.g., the first enzyme-catalyzed fiber hydrolysis reaction 500) begins (e.g., begins substantially or proceeds at a non-negligible rate) during preconditioning and ends (e.g., substantially or completely) during the extruding. In some embodiments, a reaction rate of the fiber hydrolysis reaction 500 is fastest (e.g., has a maximum reaction rate) during the preconditioning. In some embodiments, the fiber hydrolysis reaction 500 is stopped before converting more than about 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 wt. % of the fiber 502 to monosaccharides and disaccharides.
In some embodiments, the starch hydrolysis reaction 400 begins and ends (e.g., effectively, substantially, or completely begins and ends) during the extruding step 302. In some embodiments, a reaction rate of the starch hydrolysis reaction 400 is fastest (e.g., has a maximum reaction rate) during the extruding step 302. In some embodiments, the starch hydrolysis reaction 400 is stopped before converting more than about 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 wt. % of the starch 402 to monosaccharides and disaccharides. For example, from a practical standpoint, it can be useful to convert no more than about 1 wt. % of the starch 402 to monosaccharides and disaccharides, although higher values could also be acceptable in some applications.
In some embodiments, the preconditioning step 300 and the extruding step 302 together have a duration equal to a maximum of (e.g., no more than) about 5 minutes, about 4 minutes, about 3 minutes, or about 2 minutes or equal to 30 seconds to 5 minutes, or any range contained in the listed ranges. For example, drying and milling can be post-extrusion steps that take additional time.
One embodiment of the invention will now be described with reference to
In some embodiments, α-amylase, endo-cellulase, and whole grain are added simultaneously to a preconditioner 130 under conditions (e.g., at a relatively low temperature) in which cellulase is active. Next, the mixture is passed through an extruder 132 at gradually increasing temperatures until α-amylase is activated and cellulase is deactivated. Then, the temperature is increased even more and α-amylase is deactivated to provide an extruded mixture 112 with hydrolyzed starch and hydrolyzed fiber, while still maintaining whole grain status.
In some embodiments, the cellulase enzyme is most active in the preconditioner 130. Additionally, in some embodiments, α-amylase enzyme is most active in the extruder 132.
In some embodiments, a composition (e.g., a slurry, mix or dough) comprises the starch and a liquid, and the starch is gelatinized and hydrated. For example, heating in the presence of a liquid (e.g., water) can result in the gelatinization of starch.
As an illustration of gelatinization, starch naturally has a fairly granular structure, but after gelatinization the structure becomes more open and expands. For example, when the granular starch is heated in the presence of water, the starch absorbs the water (e.g., water gets into the interstitial space of the starch). The water opens up the starch and causes it to expand.
In one embodiment, once the starch has been gelatinized, even if it is later dried, the starch retains a structure that is more open and more expanded than the original granular structure of the starch. Accordingly, in one embodiment, once starch has been gelatinized, it is easier to hydrate in the future. As an illustration, in one embodiment, to hydrate a dry starch that has not yet been gelatinized and hydrated, the starch is mixed with (or dispersed in) water and heated. However, in one embodiment, if a dry starch has been gelatinized and hydrated, it can be re-hydrated more easily (e.g., more quickly and without heat).
In one embodiment, even after a gelatinized starch is dried into powder, it retains a more open and expanded structure. For example, in one embodiment, gelatinized starch can be hydrated more easily (e.g., quicker and without as much or any heat) relative to ungelatinized starch.
Turning to hydration, in one embodiment, something is hydrated when it has absorbed liquid (e.g., a water-based liquid). In one embodiment, a starch and/or fiber is fully hydrated. For example, a composition comprising the starch and/or fiber has absorbed enough water to reach its equilibrium water activity at given conditions (e.g., temperature and pressure). In some embodiments, a starch and/or fiber is only partially hydrated. In some embodiments, starch and fiber or a composition comprising starch and fiber (e.g., grain flour) must be gelatinized in order to be hydrated. For example, in some embodiments, if the starch is not gelatinized, it can be dispersed into a liquid (e.g., water-based liquid) but it will settle (e.g., out or to the bottom of a container of the liquid) and will not remain dispersed in the liquid unless gelatinized. As another example, in some embodiments, if the starch and/or fiber is hydrated by a liquid, it has absorbed the liquid and can remain suspended in the liquid (e.g., indefinitely or for a longer period of time).
In some embodiments, a material is considered fully hydrated when it has absorbed enough liquid to achieve an equilibrium mass concentration of the liquid relative to the total weight of the material. In some embodiments, a composition comprising the starch and/or fiber is essentially fully hydrated (e.g., having absorbed enough liquid to achieve, within about 3 weight percent, the equilibrium mass concentration of liquid). In some embodiments, the composition is substantially hydrated (e.g., having absorbed enough liquid to achieve, within about 50 weight percent, the equilibrium mass concentration of liquid). In some embodiments, the composition is noticeably hydrated (e.g., having absorbed enough liquid that increased hydration is detectable (e.g., using appearance, increased mass, increased volume, expanded shape, decreased hardness, increased elasticity, a measurement, a sensor, etc.).
In some embodiments, the composition comprising the starch and/or fiber and a liquid has absorbed and/or been dispersed in enough liquid to be fluid-like (e.g., free-flowing under gravity and/or pumpable through a conduit). For example, in some embodiments, the composition has absorbed and/or been dispersed in enough liquid that the viscosity of the composition (while it can be relatively high compared to water at 1 cP) is still sufficiently low to enable pumping the composition through a conduit (e.g., pipe).
In some embodiments, in order to hydrolyze a starch, the starch must be gelatinized and hydrated. In one embodiment, this is because, for example, an enzyme (e.g., α-amylase) used to catalyze the starch hydrolysis reaction is more active when the starch is gelatinized.
One embodiment of the invention will now be described with reference to
In some embodiments, a fibrolytic enzyme (e.g., endo-glucanase) is used to catalyze fiber hydrolysis. Examples of endo-glucanase include endo-cellulase, which hydrolyzes insoluble fiber (e.g., cellulose) and soluble fiber (e.g., beta-glucan), and endo-beta-glucanase, which hydrolyzes soluble fiber. In some embodiments, it is desirable to use substantially pure endo-glucanase (e.g., substantially no α-amylase activity and exo-enzyme activity). For example, the substantially pure endo-cellulase can provide better results in terms of controlled molecular weight reduction because the endo-cellulase can hydrolyze both soluble and insoluble fiber.
As an illustration, in some embodiments, a continuous extrusion process provides for the controlled hydrolysis of starch and fiber. For example, in some embodiments, a first enzyme (e.g., endo-cellulase) is activated in the pre-conditioner and then deactivated during extrusion as the temperature rises. Accordingly, the activation of the first enzyme enables hydrolysis of the fiber while the deactivation of the first enzyme stops the hydrolysis of the fiber and helps prevent the conversion of fiber to monosaccharides and disaccharides. Additionally, in some embodiments, the second enzyme (e.g., α-amylase) is activated during extrusion and then deactivated during extrusion as the temperature rises. Accordingly, the activation of the second enzyme enables the hydrolysis of starch while the deactivation of the first enzyme stops the hydrolysis of the starch and helps prevent the dextrinization of starch and the conversion of starch to monosaccharides and disaccharides.
One embodiment of the invention will now be described with reference to
In some embodiments, α-amylase is used to catalyze starch hydrolysis. In embodiments where the α-amylase has higher activity at higher temperatures and the endo-cellulase has higher activity at lower temperatures, the different temperature ranges can complicate using both enzymes in a process. Accordingly, in some embodiments, the temperature profile of a process using both enzymes is specified to satisfy at least two criteria. First, the temperature profile sufficiently activates and then deactivates the enzyme catalyzing fiber hydrolysis to provide a target percent conversion of higher molecular weight fiber to lower molecular weight fiber so that a desired molecular weight average and/or distribution is achieved for the lower molecular weight fiber. Second, the temperature profile sufficiently activates and then deactivates the enzyme catalyzing starch hydrolysis to provide a target percent conversion of higher molecular weight starch to lower molecular weight starch so that a desired molecular weight average and/or distribution is achieved for the lower molecular weight starch.
As another example, in some embodiments, the composition comprising the starch and/or fiber also or alternatively comprises protein. For example, in some embodiments, the composition comprises starch, fiber, protein or some combination thereof. Additionally, some embodiments comprise protein-hydrolysis of protein (e.g., a protein molecule 1402 or plurality of protein molecules as illustrated in
Additionally, the embodiments discussed herein can be modified to form additional embodiments in which protein is hydrolyzed in place of or in addition to another reagent (e.g., starch and/or fiber). As can be seen in
Moreover, in some embodiments, the average molecular weight of the protein molecules can be reduced (e.g., using enzymes with only endo activity) to a fraction of the original average molecular weight (e.g., no more than about 60%, 50%, 40%, 30%, 20%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1% of the original molecular weight). This is so, because, for example, the protein molecules can be selectively reduced in molecular weight to the smallest molecules that still constitute protein, but without being converted into molecules that are not protein, such as individual amino acids.
One embodiments of the invention will now be described with reference to
The preconditioner 130 can comprise at least one block of screws and/or at least one arrangement of paddles. For example, the preconditioner as illustrated comprises a plurality of blocks, including a first block 608 and a second block 610. Although, the preconditioner can also comprise a single block. The feed to the preconditioner passes the plurality of blocks (e.g., first block, then the second block) before exiting the preconditioner as the preconditioned mixture. The first block 608 comprises a rotor 606 and the second block 610 comprises a rotor 606. For example, as illustrated in
As shown in
Similarly, for the right-handed arrangement of paddles, rotating the arrangement counter-clockwise (as seen from the inlet or feed-end) results in the arrangement (in conjunction with gravity) pushing material (e.g., the feed) adjacent to the arrangement away from the inlet and toward the exit. For a left-handed arrangement of paddles, rotating the arrangement of paddles counter-clockwise (as seen from the inlet or feed-end) results in the arrangement (in conjunction with gravity) pushing material (e.g., the feed) adjacent to the arrangement away from the exit and toward the inlet. Additionally, in some embodiments, an arrangement of paddles can be neutral, rather than right-handed or left-handed. For example, if adjacent paddles are rotated at 90 degrees respectively, then the arrangement of paddles will have no overall tendency to move the material (e.g., the feed) either toward the inlet or exit.
With reference again to
One embodiment of the invention will now be described with reference to
One embodiment of the invention will now be described with reference to
As can be seen in the curves of
With reference to both
Second, the mixture was mixed by turning a shaft with a paddle at 500 rpm (for 5 seconds) until the composition, the deactivated α-amylase, and the deactivated cellulase have absorbed an approximately equilibrium amount of the water and are fully dispersed in the water to form the dispersion (e.g., generally homogeneous mixture, and to avoid clumps that can cause viscosity measurement errors).
Third, the dispersion was continuously mixed by turning a shaft with a paddle at 160 rpm and the viscosity of the dispersion was continuously measured while subjecting the dispersion to the following temperature profile: (i) holding the dispersion at about 25° C. for about 2 min; (ii) heating the dispersion to about 95° C. over about 5 minutes; (iii) holding the dispersion at about 95° C. for about 3 minutes; (iv) cooling the dispersion from about 95° C. to about 25° C. over about 5 minutes; (v) holding the dispersion at about 25° C. for about 3 min. The RVA peak viscosity was the maximum viscosity measured during steps (ii) and (iii).
Using a method such as the RVA peak viscosity measurement protocol can be useful, for example, to provide a way to compare the viscosity of compositions that are consumed after their starch has been gelatinized. This is so because the RVA peak viscosity measurement protocol involves heating and hydrating the composition, which gelatinizes starch in the composition if the starch has not already been gelatinized.
As each composition was subject to the temperature profile, each composition had initial measured conditions, local maxima, local minima, and final measured conditions as illustrated in
As illustrated in
As can be seen, the composition illustrated by the control curve, which had not undergone enzyme-catalyzed-hydrolysis, had the highest maximum viscosity (approximately 3,400 cP) and the highest final viscosity, which began to level off at around 1500 cP at 1200 seconds. Although the composition was not hydrolyzed, it was preconditioned and extruded.
Other compositions, illustrated by the cellulase 0.5 wt. % curve, cellulase 1.0 wt. % curve, and cellulase 1.5 wt. % curve had similar maximum viscosities equal to approximately 2500 cP and had final viscosities equal to approximately 1000 cP at 1200 seconds, illustrating that cellulase-catalyzed-fiber hydrolysis reduced the viscosity of a composition relative to a composition with no hydrolysis, where other variables were unchanged. Furthermore, these compositions illustrate that the final viscosity (e.g., at 1200 seconds) for the composition illustrated by the 0.5 wt. % cellulase was less than the final viscosity of the composition illustrated by the 1.5 wt. % cellulase, which was less than the final viscosity of the composition illustrated by the 1.0 wt. % cellulase.
Another composition, illustrated by the amylase 0.12 wt. % curve, had a maximum viscosity equal to approximately 2,250 cP and a final viscosity (e.g., at 1200 seconds) equal to approximately 750 cP, illustrating that amylase-catalyzed-fiber hydrolysis reduced the viscosity of a composition relative to a composition with no hydrolysis, where other variables were unchanged, for example, relative to a composition run through the preconditioner and the extruder, but without enzyme. The maximum and final viscosities of the composition illustrated by the amylase 0.12 wt. % curve were lower than the maximum and final viscosities, respectively, of the compositions illustrated by the 0.5 wt. % cellulase curve, the 1.0 wt. % cellulase curve, and the 1.5 wt. % cellulase curve.
Furthermore, a composition illustrated by the cellulase 1.5 wt. % amylase 0.12 wt. % curve had a maximum viscosity equal to approximately 1,200 cP and a final viscosity (e.g., at 1200 seconds) equal to approximately 300 cP, which were lower than the maximum and final viscosities, respectively, of the composition illustrated by the amylase 0.12 wt. % curve. Accordingly, it is evident that a composition subject to enzyme-catalyzed fiber hydrolysis and enzyme-catalyzed starch hydrolysis is less viscous than a composition subject to enzyme-catalyzed fiber hydrolysis alone, enzyme-catalyzed starch hydrolysis alone, or no enzyme-catalyzed hydrolysis.
One embodiment of the invention will now be described with reference to
All of the compositions illustrated by the curves in
Among other things,
In some embodiments, the first enzyme 102 is a fiber-hydrolysis-catalyzing enzyme 516, and the fiber-hydrolysis-catalyzing enzyme 516 is an endo-glucanase, and the endo-glucanase is endo-cellulase.
In some embodiments the invention provides a composition (e.g., a product composition 120) comprising at least one material selected from the group consisting of at least a portion of grain and at least a portion of pulse. For example, the grain can be a cereal grain.
In some embodiments, the at least one material comprises hydrolyzed starch and hydrolyzed fiber. For example, the hydrolyzed starch can consist of starch molecules (e.g., the first hydrolyzed starch molecule 406 and the second hydrolyzed starch molecule 408 illustrated in
In some embodiments, the starch molecules have an average molecular weight equal to no more than about 3.42×106 (optionally, 3.0×106, 2.5×106, 2.0×106, 1.8×106, 1.7×106, 1.6×106, 1.5×106, 1.4×106, 1.37×106) Dalton, or equal to about 3.6×106-1.0×106, or equal to any range contained in the previously described ranges. For example, molecular weight can be reduced by hydrolyzing the starch 402 in a starch hydrolysis reaction 400. In some embodiments, a largest-sized portion of the starch (e.g., largest 36 wt. % by molecular weight or HMW Amylopectin) has a molecular weight equal to not more than about 5.8×106, 5.0×106, 4.0×106, 3.0×106, or 2.8×106 Dalton, or equal to about 5.8×106-2.8×106 Dalton; a moderately-sized portion of the starch (e.g., middle 39 wt. % by molecular weight or LMW-Amylopectin) has a molecular weight equal to not more than about 1.85×106, 1.80×106, 1.75×106, or 1.70×106 Dalton, or equal to about 1.85×106-1.70×106 Dalton; a smallest-sized portion of the starch (e.g., smallest 25 wt. % by molecular weight or Amylose) has a molecular weight equal to not more than about 3.3×105, 2.7×105, 2.5×105, 2.3×105, 2.0×105, 1.8×105 Dalton, or 1.7×105 Dalton, or equal to about 3.3×105-1.7×105 Dalton; or any combination thereof. Additionally, as with all the ranges described herein, any range contained within the listed ranges provides an additional embodiment. Additionally, as with the other values for any characteristic described herein, any range with endpoints selected from values listed herein is also considered to be an additional embodiment. For example, in Table 16 it is evident that the average molecular weight of the starch can be reduced to any value in the range from the starting value (e.g., 3.873×106 Dalton) to the listed hydrolyzed value (e.g., 1.729×106 Dalton). As another example, individual components (e.g., HMW-amylopectin, LMW-amylopectin, and amylose) within the starch can be similarly reduced in molecular weight to any value in a range whose endpoints are selected from the listed values. Additionally, even lower molecular weights can be achieved, as long as the starch molecules are not converted to non-starch molecules.
In some embodiments, the hydrolyzed fiber consists of fiber molecules (e.g., the first hydrolyzed fiber molecule 506 and the second hydrolyzed fiber molecule 508 illustrated in
In some embodiments, the hydrolyzed starch is gelatinized (e.g., before hydrolysis). For example, this can provide better texture, provide a more open structure, and make it easier for starch 402 to disperse in a liquid. This can be useful, for example, for powder beverage products or soups. In some embodiments, using an extruder 132 to hydrolyze a composition, enables hydrolysis of starch 402 and/or fiber 502 in a composition at a lower moisture content.
In some embodiments, the hydrolyzed fiber comprises insoluble fiber molecules. In some embodiments, the insoluble fiber molecules have an average molecular weight equal to no more than about 1,000,000 Dalton. For example, in some embodiments, insoluble fiber 502 (e.g., insoluble beta-glucan and insoluble cellulose) with high molecular weight is responsible for a coarse mouthfeel, and avoiding a relatively high molecular weight for the insoluble fiber 502 can help to avoid a coarse mouthfeel.
Additionally, in some embodiments, molecular weight, chemical features, and/or structural features of molecules affect solubility in a liquid (e.g., water 106). For example, beta-glucan is generally soluble in water 106 under a given set of conditions, but higher molecular weight beta-glucan is only partially soluble in water 106 under the same conditions and its solubility increases as the molecular weight goes down. Additionally, in some embodiments, a high degree of structural association in beta-glucan from some cereal grains can make the beta-glucan insoluble in water 106. In some embodiments, enzyme-catalyzed hydrolysis can render beta-glucan more soluble by reducing its molecular weight and/or disrupting the structural association of the beta-glucan. As another example, cellulose is generally insoluble regardless of molecular weight due to chemical features and/or structural features.
In some embodiments, the at least one material is hydrolyzed-starch-and-fiber whole grain comprising hydrolyzed starch and hydrolyzed fiber, and the hydrolyzed-starch-and-fiber whole grain has, within a tolerance, the same mass ratio of starch 402 to protein as unhydrolyzed whole grain equivalent in kind to the hydrolyzed-starch-and-fiber whole grain. For example, in some embodiments, the tolerance is about +/−20%, 10%, 5%, 2%, 1%, 20%-0% or any value contained in the listed ranges. In some embodiments, equivalent in kind means equivalent in species or recognized subspecies (e.g., high fiber oats) or plurality of species or plurality of recognized subspecies. Furthermore, in some embodiments, the unhydrolyzed whole grain is equivalent in condition to the hydrolyzed-starch-and-fiber whole grain. Examples of condition include ripeness, lack of rottenness, and level of processing (e.g., harvesting, threshing, grinding, milling, cracking, flaking, separation to remove non-grain components, steaming, rolling, and cutting).
In some embodiments, the at least one material is hydrolyzed-starch-and-fiber whole grain comprising hydrolyzed starch and hydrolyzed fiber. Additionally, in some embodiments, the hydrolyzed-starch-and-fiber whole grain has a mass ratio selected from the group of mass ratios consisting of: (i) a mass ratio of fiber 502 to protein equal to a mass ratio of fiber 502 to protein of unhydrolyzed whole grain equivalent (e.g., in kind and condition) to the hydrolyzed-starch-and-fiber whole grain (e.g., optionally within a tolerance of +/−20%, 10%, 5%, 2% or 1%), (ii) a mass ratio of fat (e.g., triglycerides) to protein equal to a mass ratio of fat to protein of unhydrolyzed whole grain equivalent (e.g., in kind and condition) to the hydrolyzed-starch-and-fiber whole grain (e.g., optionally within a tolerance of +/−20%, 10%, 5%, 2% or 1%), (iii) a mass ratio of starch 402 to protein equal to a mass ratio of starch 402 to protein of unhydrolyzed whole grain equivalent (e.g., in kind and condition) to the hydrolyzed-starch-and-fiber whole grain (e.g., optionally within a tolerance of +/−20%, 10%, 5%, 2% or 1%), and (iv) any combination of (i), (ii) and (iii).
In some embodiments, the at least one material is hydrolyzed-starch-and-fiber pulse (e.g., whole pulse) comprising hydrolyzed starch and hydrolyzed fiber, and the hydrolyzed-starch-and-fiber pulse has (e.g., optionally within a tolerance of +/−30%, 25%, 20%, 15%, 10%, 5%, 4%, 3%, 2%, 1%, 30%-0% or any value contained in the listed ranges) the same mass ratio of starch 402 to protein as unhydrolyzed pulse equivalent in kind (for example, species or recognized subspecies or plurality of species or plurality of recognized subspecies) to the hydrolyzed-starch-and-fiber pulse. Optionally, in some embodiments, the unhydrolyzed pulse is also equivalent in condition to the hydrolyzed-starch-and-fiber pulse. Examples of condition include, ripeness, lack of rottenness, and level of processing (e.g., harvesting, threshing, grinding, dehulling, milling, cracking, flaking, separation to remove non-pulse components, steaming, rolling, and cutting).
In some embodiments, the at least one material is hydrolyzed-starch-and-fiber bran composition (e.g., oat bran, rice bran, wheat bran, sorghum bran, a bran concentrate thereof, etc.) comprising hydrolyzed starch and hydrolyzed fiber. Additionally, in some embodiments, the hydrolyzed-starch-and-fiber bran composition has (e.g., within a tolerance of +/−20%, 10%, 5%, 2%, 1%, 20%-0% or any value contained in the listed ranges) the same mass ratio of starch 402 to protein as an unhydrolyzed bran composition equivalent in kind (for example, species or recognized subspecies or plurality of species or plurality of recognized subspecies) to the hydrolyzed-starch-and-fiber bran composition. Optionally, in some embodiments, the unhydrolyzed whole bran composition is also equivalent in condition to the hydrolyzed-starch-and-fiber bran composition. Examples of condition include, ripeness, lack of rottenness, and level of processing (e.g., harvesting, threshing, grinding, milling, cracking, flaking, separation to remove non-bran components, steaming, rolling, cutting, air classification, screening, and sifting).
In some embodiments, the at least one material is hydrolyzed-starch-and-fiber bran comprising hydrolyzed starch and hydrolyzed fiber, and the hydrolyzed-starch-and-fiber bran has a mass ratio selected from the group of mass ratios consisting of: (i) a mass ratio of fiber 502 to protein equal to a mass ratio of fiber 502 to protein of unhydrolyzed bran equivalent (e.g., in kind and condition) to the hydrolyzed-starch-and-fiber bran (e.g., within a tolerance of +/−20%, 10%, 5%, 2% or 1%), (ii) a mass ratio of fat to protein equal to a mass ratio of fat to protein of unhydrolyzed bran equivalent (e.g., in kind and condition) to the hydrolyzed-starch-and-fiber bran (e.g., within a tolerance of +/−20%, 10%, 5%, 2% or 1%), (iii) a mass ratio of starch 402 to protein equal to a mass ratio of starch 402 to protein of unhydrolyzed bran equivalent (e.g., in kind and condition) to the hydrolyzed-starch-and-fiber bran (e.g., within a tolerance of +/−20%, 10%, 5%, 2% or 1%), and (iv) any combination of (i), (ii), and (iii).
For example, in some embodiments, if alpha-amylase is used to catalyze the hydrolysis of starch, then the starch will by hydrolyzed, but not protein, fat or fiber. Accordingly, the mass ratio of any one component (protein, fat, dietary fiber, sugar) to another component in at least a portion of pulse and/or grain can remain unchanged or substantially or essentially unchanged unless the mass ratio involves starch. Furthermore, assuming that the mass of starch is unchanged (e.g., because the hydrolysis is controlled and stopped before starch is converted to monosaccharides, disaccharides, simple sugars, and/or non-starch molecules), then the mass ratio of starch to other components will also remain unchanged or substantially or essentially unchanged. Accordingly, a small tolerance can be achieved for the change in the mass ratios of any one component relative to another component (e.g., protein) in at least a portion of pulse and/or grain. Nonetheless, larger tolerances can also be obtained, where desired, or where smaller tolerances are not necessary or as relatively important for a particular application.
As an example of the various ratios of some components in whole grain to other components in whole grain, Table 1 below shows the proximate constituents of whole grain as compiled from USDA data. As used herein, the mass ratio of component X (e.g., starch) to Y (e.g., protein) in a composition (e.g., whole grain) is the mass of X in the composition divided by the mass of Y in the composition. As an illustration, this data was used to calculate the mass ratios of the various components, with the results being shown in Table 2. Table 2A provides a key for various terms used in Table 1 and Table 2. As used in the following Tables, Below Quantifiable Limits (“BQL”) is below 0.20 wt. % for mono- and di-saccharides.
Although these ratios of components (e.g., macronutrients) are shown for a whole grain composition with unhydrolyzed starch, the ratios can remain unchanged or substantially or essentially unchanged as starch is subject to controlled hydrolysis as described herein. Furthermore, several Tables herein show examples of various compositions subject to controlled hydrolysis under listed extrusion conditions.
In some embodiments, the at least a portion of grain comprises whole grain. For example, the composition can comprise about 90 to 99.94 wt. % whole grain on a dry basis, at least about 90, 95, 96, 97, 98, 99, or 99.94 wt. % whole grain on a dry basis, or any range formed by values contained within the listed ranges. Furthermore, in some embodiments, the whole grain can comprise each component in an original set of components (e.g., comprising starch, fat, dietary fiber, and protein) at an original mass ratio relative to protein within a tolerance of +/−20%, 15%, 10%, 5%, 2% or 1%. For example, the original mass ratio can be the mass ratio of each component relative to protein at a time of harvesting, although it can also be at another reference time, for example, before processes including separation of the anatomical components of the whole grain, grinding, cooking, gelatinization of the starch in the whole grain, hydrolysis of the starch in the whole grain, and/or some combination thereof.
In some embodiments, the at least a portion of grain is hydrolyzed-starch whole grain (e.g., whole grain flour ground from a whole grain); the at least a portion of grain comprises caryopses (e.g., intact, ground, cracked, or flaked); and the caryopses comprise principal anatomical components consisting of starchy endosperm, germ, and bran. For example, the composition can comprise about 90 to 99.94 wt. % hydrolyzed-starch whole grain on a dry basis, at least about 90, 95, 96, 97, 98, 99, or 99.94 wt. % hydrolyzed-starch whole grain on a dry basis, or any range formed by values contained within the listed ranges. Furthermore, in some embodiments, the hydrolyzed-starch whole grain has within a tolerance of +/−20% (optionally, 15%, 10%, 5%, 2% or 1%) at least one mass ratio selected from the group consisting of: (i) a mass ratio of germ to endosperm equivalent to a mass ratio of germ to endosperm of unhydrolyzed intact caryopses of the same kind and condition as the caryopses of the hydrolyzed-starch whole grain; (ii) a mass ratio of bran to endosperm equivalent to a mass ratio of bran to endosperm of unhydrolyzed intact caryopses of the same kind and condition as the caryopses of the hydrolyzed-starch whole grain; and (iii) any combination thereof.
In some embodiments, the hydrolyzed-starch-and-fiber bran composition is oat bran, and the oat bran comprises at least about 5.5 wt. % beta-glucan on a total dry weight basis (e.g., excluding water 106) and at least about 16.0 wt. % dietary fiber 502 on a total dry weight basis. Additionally, in some embodiments, at least one-third of the total dietary fiber 502 is soluble fiber 502.
As an example, the American Association of Cereal Chemists International (AACCI) has stated: “Oat Bran is the food which is produced by grinding clean oat groats or rolled oats and separating the resulting oat flour by sieving bolting, and/or other suitable means into fractions such that the oat bran fraction is not more than 50% of the original starting material and has a total betaglucan content of at least 5.5% (dry-weight basis) and a total dietary fiber content of at least 16.0% (dry-weight basis), and such that at least one-third of the total dietary fiber is soluble fiber.”
In some embodiments, the hydrolyzed-starch-and-fiber bran composition is oat bran concentrate and the oat bran concentrate comprises: at least about 10 wt. % beta-glucan on a total dry weight basis and at least about 29.1 wt. % dietary fiber 502 on a total dry weight basis. Additionally, in some embodiments, at least one-third of the total dietary fiber 502 is soluble fiber 502.
In some embodiments, the composition comprising at least one material selected from the group consisting of at least a portion of grain and at least a portion of pulse is a powder 118 (e.g., a flour). In some embodiments, the composition comprises a liquid. Additionally, in some embodiments, the at least one material is fully hydrated by (e.g., has absorbed an equilibrium concentration of) the liquid and suspended in the liquid (e.g., dispersed in an excess amount of the liquid) to form a suspension. Furthermore, in some embodiments, the composition comprises at least 6 wt. % of the at least one material.
In some embodiments, the composition comprises a liquid, and the liquid is a water-based liquid selected from the group consisting of water 106, milk (e.g., cow's milk, sheep's milk, goat's milk etc.), soy milk, grain milk (e.g., rice milk), nut milk (e.g., almond milk, hazelnut milk), coconut milk, fruit juice, and vegetable juice. As another example, in some embodiments, the liquid comprises water 106.
In some embodiments, the composition comprises a powder 118 hydrated by a water-based liquid. For example, the powder 118 can consist of powder particles. Furthermore, the powder particles can have an average particle size (e.g., average equivalent spherical diameter on a volume-weighted basis) equal to about 50-200 (e.g., 94.5-193.4, 50-150, or any range contained within the listed ranges) microns, for example, as measured using laser-diffraction-based, particle-size measurement equipment (e.g., a Malvern Mastersizer 3000 equipped with a multi-angle log-spaced diode array type of detector, available from Malvern Instruments Ltd of Malvern, Worcestershire, United Kingdom). As used herein, the equivalent spherical diameter of a particle is determined by calculating the diameter of a sphere that would cause a measured result (e.g., in this case, a measured light diffraction) for the particle.
In some embodiments, 10% by volume of the powder 118 particles have a particle size smaller than about 56.4 (optionally, 55, 50, 45, 40, 35, 30, or 25) microns; 50% by volume of the powder particles have a particle size smaller than about 190 (optionally, 185.1, 180, 170, 160, 150, 140, or 130) microns; 90% by volume of the powder particles have a particle size smaller than about 340 (optionally, 336.7, 320, 300, 280, 260, 240, 220, 200, 180) microns; or any combination thereof, where the particle size is the diameter of a sphere that would provide the same laser diffraction measurements as the particle.
In some embodiments, relatively smaller particle sizes decrease dispersibility in a liquid and increase absorption of the liquid, while larger particles sizes increase dispersibility in a liquid and decrease absorption of the liquid.
In some embodiments, the at least one material comprises the at least a portion of grain. Additionally, in some embodiments, the grain is selected from the group consisting of wheat, oat, barley, corn, white rice, brown rice, barley, millet, sorghum, rye, triticale, teff, spelt, buckwheat, quinoa, amaranth, kaniwa, cockscomb, green groat (e.g., uncooked groat of any type of grain or cereal grain) and combinations thereof.
In some embodiments, the at least one material comprises the at least a portion of pulse. Additionally, in some embodiments, the pulse is selected from the group consisting of peas, lentils, chickpeas, navy beans, black turtle beans, cranberry beans, kidney beans, pinto beans, small red beans, Dutch brown beans, pink beans and combinations thereof. As used herein, grain is generally used to refer to cereal grains and pulse is generally used to refer to legumes, beans, peas, etc.).
In some embodiments, the composition comprises at least two enzymes (e.g., multiple deactivated enzymes). Furthermore, in some embodiments, the at least two enzymes comprise: an α-amylase and an endo-glucanase, for example, beta-glucanase or cellulase (e.g., endo-fibrolytic enzyme, or endo-hemicellulase). As another example, in some embodiments, the at least two enzymes comprise: thermostable α-amylase (e.g., thermostable, bacterial food grade α-amylase). As a further illustration, in some embodiments, the at least two enzymes comprise endo-beta-1,4-glucanase.
In some embodiments, the composition is food grade. As an example, in some embodiments, the composition is a beverage or a food.
Tables 3-14 provide examples of compositions with various characteristics (e.g., reduced viscosity) as a result of certain listed extrusion conditions. For example, Table 3 shows a portion of grain, namely oat bran concentrate, before and after extrusion under various extrusion conditions. As can be seen, extruding oat bran concentrate without enzyme catalyzed hydrolysis resulted in some reduction in the RVA peak viscosity of the oat bran concentrate from 7,879 cP to 6,692 cP. However, extrusion with cellulase-catalyzed hydrolysis resulted in greater reduction in the RVA peak viscosity, to about 5,235 cP. Similarly, extrusion with α-amylase-catalyzed hydrolysis resulted in reduction in the RVA peak viscosity, namely, to 3,028 cP and 2,806 cP, depending on the enzyme concentration. Furthermore, extrusion with both cellulase-catalyzed hydrolysis and α-amylase-catalyzed hydrolysis resulted in a greater reduction in the RVA peak viscosity. It is worthwhile to point out that the viscosity of the dough can affect the pressure and temperature of the dough within the extruder. For example, greater viscosity can result in greater friction-related temperature increases. Similarly, if pressure is measured at one point, a more viscous composition will result in greater pressure at the same point, as a result of frictional pressure loss as the composition is conveyed. In Table 5, Table 9, and Table 13, pressure was measured at the exit end of the extruder screw. Furthermore, in some embodiments, the screw profiles employed build pressure throughout the screw and/or screws so that the exit end of the screw has the highest pressure. Although, some embodiments can have different screw profiles that result, for example, in pressure increasing and then decreasing along an extruder screw and/or screws.
With reference to the following Tables, it is also worthwhile to note that the listed values pertain to a composition comprising flour, water moisture, optionally tocopherol, and optionally enzyme, as indicated. Accordingly, the mass concentrations in the Tables (e.g., wt. %) are given as a fraction of the mass of the composition. Additionally, the moisture (i.e. water moisture including inherent and added water) in the following tables (e.g., Table 3) was generally determined by measuring the composition before and after dehydration and assuming that the difference in weight was caused by evaporation of water.
The Rapid Visco Analyzer (“RVA”) peak viscosity of the compositions in Tables 4, 8, and 12 was measured using the following protocol. First, a mixture was formed consisting of a composition comprising at least a portion of pulse and/or grain, a specified wt. % tocopherol, a specified weight percentage of deactivated α-amylase, and a remainder of water. Water was added in an amount to provide the mixture with 14.3 wt. % solids. In other words, if the mixture were completely dehydrated by evaporating away the moisture, 14.3 wt. % solids would remain.
Second, the mixture was mixed by turning a shaft with a paddle at 500 rpm (for 5 seconds) until the composition, the tocopherol, and the deactivated α-amylase had absorbed an equilibrium amount of the water and were fully dispersed in the water to form the dispersion (e.g., generally homogeneous mixture, and to avoid clumps that can cause viscosity measurement errors).
Third, the dispersion was continuously mixed by turning a shaft with a paddle at 160 rpm and the viscosity of the dispersion was continuously measured while subjecting the dispersion to the following temperature profile: (i) holding the dispersion at about 25° C. for about 2 min; (ii) heating the dispersion to about 95° C. over about 5 minutes; (iii) holding the dispersion at about 95° C. for about 3 minutes; (iv) cooling the dispersion from about 95° C. to about 25° C. over about 5 minutes; (v) holding the dispersion at about 25° C. for about 3 min. The RVA peak viscosity was the maximum viscosity measured during steps (ii) and (iii).
In some embodiments, the composition is a first composition comprising a viscosity at 25° C. (e.g., RVA viscosity at 25° C.) equal to at most 75%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 5%, or equal to about 75-5%, 75-10%, 70-20% (or any range contained in the listed ranges) of a viscosity at 25° C. (e.g., RVA viscosity at 25° C.) of a second composition. For example, the first composition can consist of each ingredient in a first set of ingredients at a specified weight percentage, and the first set of ingredients can comprise the at least a portion of pulse, the at least a portion of grain, and water. Furthermore, the second composition can consist of the first set of ingredients in the specified weight percentages, except that the at least a portion of pulse comprising gelatinized, hydrolyzed starch is replaced with at least a portion of pulse comprising gelatinized, unhydrolyzed starch, and except that the at least a portion of grain comprising gelatinized, hydrolyzed starch is replaced with at least a portion of grain comprising gelatinized, unhydrolyzed starch.
Additionally, in some embodiments, the viscosity (e.g., RVA viscosity at 25° C. (77° F.) or peak RVA viscosity) of a composition (e.g., before or after hydrolysis, as applicable) is equal to any viscosity (e.g., RVA viscosity at 25° C. (77° F.) or peak RVA viscosity, respectively) for a composition (e.g., before or after hydrolysis, as applicable) described herein (e.g., in the tables or elsewhere), or any viscosity range whose endpoints are selected from values described herein. Furthermore, in some embodiments, the viscosity of a composition after hydrolysis can be any value between a value before hydrolysis and a value obtained after a certain degree of hydrolysis. For example, in light of the present specification, a skilled person would understand that the degree of hydrolysis can be adjusted using factors such as temperature, time, moisture level, enzyme level, and other factors, which can in turn be used to adjust the viscosity of a composition after hydrolysis.
Additionally, in some embodiments, the composition is a first composition comprising an RVA peak viscosity equal to at most 75%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, or 5%, or 17% to 5% of an RVA peak viscosity of a second composition. For example, the first composition can consist of each ingredient in a first set of ingredients at a specified weight percentage, and the first set of ingredients can comprise the at least a portion of pulse, the at least a portion of grain, and water. The second composition can consist of the first set of ingredients in the specified weight percentages, except that the at least a portion of pulse comprising hydrolyzed starch is replaced with at least a portion of pulse comprising unhydrolyzed starch, and except that the at least a portion of grain comprising hydrolyzed starch is replaced with at least a portion of grain comprising unhydrolyzed starch. Related examples are provided in Table 4, Table 8, Table 12, and Table 20.
In some embodiments, the average molecular weight of the gelatinized, hydrolyzed starch molecules in the composition is a fraction of the molecular weight of gelatinized, unhydrolyzed starch molecules equivalent (e.g., in kind and condition) to the gelatinized, hydrolyzed starch molecules, except that the gelatinized, unhydrolyzed starch molecules have not been hydrolyzed. For example, the fraction can be selected from the group consisting of about 0.90 to 0.47, 0.80 to 0.47, 0.70 to 0.47, 0.60 to 0.47, 0.50 to 0.47; no more than about 0.90, 0.80, 0.70, 0.60, 0.50; and any range formed from values contained in the listed ranges.
Tables 15-16 below provide examples of the percentage change in the average molecular weight (in Daltons) of starch in whole oat flour as it undergoes controlled hydrolysis during extrusion to provide SoluOat flour. As can be seen, the average molecular weight of the starch in both sample 1 and sample 2 decreased by more than 50%. Accordingly, the molecular weight of the SoluOat flour is only a fraction of the molecular weight of the original whole oat flour starting material. Furthermore, as can be seen, there was only a small change in the wt. % of the starch as a component of the flour. This change was a small increase in sample 1 and a small decrease in sample 2. It should be noted that in some circumstances, the experimental data can be affected by measurement error, detection limits, natural variation in the mass concentration of a component in native plants, or variation in the mass concentration of a component with location in a batch as a result of imperfect mixing throughout the volume of the batch.
Tables 15-16 show how a certain mass of the starch can be shifted from higher molecular weight to lower molecular weight starch. For example, the high molecular weight amylopectin (“HMW-Amylopectin”) decreases as a weight percentage of the starch and decreases in average molecular weight. Low molecular weight amylopectin (“LMW-Amylopectin”) increases substantially as a weight percentage of the starch and decreases slightly in average molecular weight. The weight percentage of amylose increases slightly as a weight percentage of the starch and decreases substantially in average molecular weight. Accordingly, the average molecular weight of the starch decreases from about 3.7×106 to 1.7×106 Dalton.
In some embodiments, the average molecular weight of the gelatinized, hydrolyzed starch molecules in the at least a portion of grain is a fraction of the molecular weight of gelatinized, unhydrolyzed starch molecules equivalent (e.g., in kind and condition) to the gelatinized, hydrolyzed starch molecules in the at least a portion of grain, except that the gelatinized, unhydrolyzed starch molecules have not been hydrolyzed. For example, the fraction can be selected from the group consisting of about 0.90 to 0.47, 0.80 to 0.47, 0.70 to 0.47, 0.60 to 0.47, 0.50 to 0.47, no more than about 0.90, 0.80, 0.70, 0.60, 0.50, and any range formed from values contained in the listed ranges.
In some embodiments, the average molecular weight of the gelatinized, hydrolyzed starch molecules in the at least a portion of pulse is a fraction of the molecular weight of gelatinized, unhydrolyzed starch molecules equivalent (e.g., in kind and condition) to the gelatinized, hydrolyzed starch molecules in the at least a portion of pulse, except that the gelatinized, unhydrolyzed starch molecules have not been hydrolyzed. For example, the fraction can be selected from the group consisting of about 0.90 to 0.47, 0.80 to 0.47, 0.70 to 0.47, 0.60 to 0.47, 0.50 to 0.47, no more than about 0.90, 0.80, 0.70, 0.60, 0.50, and any range formed from values contained in the listed ranges.
In some embodiments, the inventors expect the average molecular weight of the hydrolyzed fiber molecules in the composition can be fraction of the molecular weight of unhydrolyzed fiber molecules equivalent (e.g., in kind and condition) to the hydrolyzed fiber molecules, except that the unhydrolyzed fiber molecules have not been hydrolyzed. For example, the inventors expect the fraction can be selected from the group consisting of about 0.90 to 0.25, 0.80 to 0.25, 0.70 to 0.25, 0.60 to 0.25, and 0.50 to 0.25; no more than about 0.90, 0.80, 0.70, 0.60, 0.50, 0.40, and 0.30; and any range formed from values contained in the listed ranges.
Tables 17-21 illustrate further examples of characteristics and extrusion conditions for at least a portion of pulse and/or grain (e.g., a flour) of various types. The extrusion conditions for the various flours shown in Tables 17-21 are provided in Table 17. Table 18 provides a key for various symbols and terms used in Tables 17 and 19-21.
Table 19 provides particle size analysis using laser diffraction for the at least a portion of pulse and/or grain after extrusion. Providing a desired particle size can be useful to provide a desired degree of dispersibility. Furthermore, as a skilled person would understand after reading the present disclosure, additional embodiments can be provided in which a characteristic listed herein (e.g., Dx (10)) is equal to a first range whose endpoints are selected from any values listed herein (e.g., 33.8-52 μm). Moreover, additional embodiments can be provided in which a listed characteristic is equal to a second range whose endpoints are selected from any values contained within the first range.
Table 20 provides various measured characteristics for at least a portion of pulse and/or grain before and after extrusion. As can be seen in Table 20, the viscosity (and other characteristics) of various native grains and/or pulses vary. Additionally, the viscosity (and other characteristics) can vary among varieties of the same species of grain and/or pulse. Furthermore, the viscosity (and other characteristics) of even a single variety of grain and/or pulse can vary with factors such as season, location, growing conditions, etc.
The Rapid Visco Analyzer (“RVA”) peak viscosity of the compositions in Table 20 was measured using the protocol discussed with reference to Tables 4, 8, and 12. The RVA viscosity at 25° C. of the compositions in Table 20 was measured using the following protocol. First, a mixture was formed consisting of a composition comprising at least a portion of pulse and/or grain, a specified wt. % tocopherol, a specified weight percentage of deactivated α-amylase, and a remainder of water. Water was added in an amount to provide the mixture with 6 wt. % solids. In other words, if the mixture were completely dehydrated by evaporating away the moisture, 6 wt. % solids would remain.
Second, the mixture was mixed by turning a shaft with a paddle at 500 rpm (for 5 seconds) until the composition, the tocopherol, and the deactivated α-amylase have absorbed an equilibrium amount of the water and are fully dispersed in the water to form the dispersion (e.g., generally homogeneous mixture, and to avoid clumps that can cause viscosity measurement errors).
Third, the dispersion was continuously mixed by turning a shaft with a paddle at 160 rpm and the viscosity of the dispersion was continuously measured while subjecting the dispersion to the following temperature profile: (i) heating the dispersion to about 95° C. over about 1 minute (ii) holding the dispersion at about 95° C. for about 11 minutes; (iii) cooling the dispersion to about 70° C. over about 1 minute; (iv) holding the dispersion at about 70° C. for about 5 minutes; (v) cooling the dispersion from about 70° C. to about 25° C. over about 8 minutes; (vi) holding the dispersion at about 25° C. for about 6 minutes. The RVA viscosity at 25° C. is the viscosity measured immediately after the dispersion has been subject to the temperature profile. In other words, the RVA viscosity at 25° C. is the viscosity measured immediately after holding the dispersion at about 25° C. for about 6 minutes.
Using a measurement protocol such as the protocol for the RVA viscosity at 25° C. can be useful, for example, to provide a way to compare the viscosity of compositions that are consumed or used after starch gelatinization. This is so because the RVA viscosity measurement protocol involves heating and hydrating the composition, which gelatinizes starch in the composition.
Table 21 provides various sensory characteristics for at least a portion of pulse and/or grain after extrusion. The sensory characteristics were characterized using a trained panel with 9 people. The individuals on the panel were given samples in duplicate and the results were averaged. Each sample was a slurry consisting of 5 wt. % of an extruded flour as shown and 95 wt. % water (e.g., 5 grams of the extruded flour was added to 95 grams of water). The results indicate the percentage of panelists who perceived the sample to have the listed characteristic (e.g., sticky).
Tables 22-25 provide examples of compositions with various characteristics (e.g., compositions) as a result of certain listed extrusion conditions. For example, Tables 22A-22B shows the composition of oat flour before (e.g., “Flour Feed” sample) and after extrusion under various extrusion conditions. The weight percentage of enzyme in the description indicates the weight percent of enzyme present in the feed to the extruder as a fraction of the entire mass (including the enzyme) of the feed to the extruder. The “control” sample shows oat flour that has been extruded without enzyme-catalyzed hydrolysis.
Turning to sugar content, extruding oat flour without enzyme-catalyzed hydrolysis (e.g., “Control” sample) resulted in a reduction in the measured sugar content from 1.3 wt. % to 1.13 wt. %. This reduction may have been caused by the decomposition of sucrose to sugars or other components that were present at undetected levels. However, as with any other proposed theories herein, Applicants do not intend to be bound by any such theoretical discussion. A similar measured reduction occurred during extrusion with cellulase-catalyzed hydrolysis using 0.5 wt. % cellulase, where the measured sugar content of the composition was reduced from 1.3 wt. % to 1.14 wt. %. Regarding the molecular weight of beta-glucan in the 0.12 wt. % amylase sample, the decrease in measured molecular weight may have been the result of a decrease in solubility or extractability of the beta-glucan as a result of the enzyme treatment. For example, this seems more likely than the idea that α-amylase itself reduced the molecular weight of the beta-glucan as α-amylase specifically catalyzes starch hydrolysis.
In Table 24, pressure was measured at the exit end of the extruder screw. With reference to the following Tables, it is also worthwhile to note that the listed values pertain to a composition comprising flour, water moisture, optionally tocopherol, and optionally enzyme, as indicated. Accordingly, the mass concentrations in the Tables (e.g., wt. %) are given as a fraction of the mass of the composition. Additionally, the moisture (i.e. water moisture including inherent and added water) in the following tables (e.g., Table 3) was generally determined by measuring the composition before and after dehydration and assuming that the difference in weight was caused by evaporation of water. As can be seen, several characteristics of various embodiments have been described herein, for example, in the various Tables, Figures and description. It should be understood that for every characteristic listed herein, some embodiments can be provided in which the value of the characteristic is provided over a selected range whose end points are selected from any value for that characteristic (e.g., viscosity, composition, etc.) listed herein. Also, in further embodiments, the value of the characteristic can be selected from any range (or value) contained in the selected range. For example, in one embodiment, the molecular weight of beta-glucan in a composition after cellulase-catalyzed hydrolysis (e.g., in an extruder) is about 0.338 to about 0.722 Million Dalton. As another example, in one embodiment, the molecular weight of beta-glucan in a composition after 1.0 wt. % cellulase-catalyzed hydrolysis is about 0.338 to about 0.462 Million Dalton.
Although various embodiments of the invention have been described herein, the features, elements, and/or steps of the embodiments and equivalent features, elements, and/or steps can be combined, interchanged, and/or omitted to form further embodiments, for example, as appropriate in light of the disclosure or as would be apparent to a person having ordinary skill in the art upon reading the disclosure.
The following clauses are offered as further description of the disclosed invention:
at least one material selected from the group consisting of at least a portion of grain and at least a portion of pulse;
wherein the at least one material comprises hydrolyzed starch (e.g., gelatinized, hydrolyzed starch) and hydrolyzed fiber;
wherein the hydrolyzed starch consists of starch molecules (e.g., gelatinized, hydrolyzed starch molecules);
wherein the average molecular weight of the hydrolyzed starch molecules (e.g., gelatinized, hydrolyzed starch molecules) in the composition is a first fraction of the molecular weight of unhydrolyzed starch molecules (e.g., gelatinized, unhydrolyzed starch molecules);
wherein the unhydrolyzed starch molecules (e.g., gelatinized, unhydrolyzed starch molecules) are equivalent in kind and condition to the hydrolyzed starch molecules (e.g., gelatinized, hydrolyzed starch molecules), except that the unhydrolyzed starch molecules (e.g., gelatinized, unhydrolyzed starch molecules) have not been hydrolyzed;
wherein the first fraction is selected from the group consisting of no more than about 0.80, 0.70, 0.60, 0.50, 0.40, 0.30, 0.20, and 0.10;
wherein the hydrolyzed fiber consists of fiber molecules; and
wherein the average molecular weight of the hydrolyzed fiber molecules in the composition is a second fraction of the molecular weight of unhydrolyzed fiber molecules;
wherein the unhydrolyzed fiber molecules are equivalent in kind and condition to the hydrolyzed fiber molecules, except that the unhydrolyzed fiber molecules have not been hydrolyzed;
wherein the second fraction is selected from the group consisting no more than about 0.80, 0.70, 0.60, 0.50, 0.40, 0.30, 0.20, and 0.10.
wherein the at least one material is hydrolyzed-starch-and-fiber whole grain comprising hydrolyzed starch and hydrolyzed fiber; and
wherein the hydrolyzed-starch-and-fiber whole grain has within a tolerance of +/−20% (optionally, 10%, 5%, 2% or 1%) the same mass ratio of starch to protein as unhydrolyzed whole grain equivalent in kind and condition to the hydrolyzed-starch-and-fiber whole grain, except that the unhydrolyzed whole grain has not been hydrolyzed.
wherein the at least one material is hydrolyzed-starch-and-fiber whole grain comprising hydrolyzed starch and hydrolyzed fiber; and
wherein the hydrolyzed-starch-and-fiber whole grain has a mass ratio selected from the group of mass ratios consisting of:
wherein the at least one material is hydrolyzed-starch-and-fiber pulse (e.g., whole pulse) comprising hydrolyzed starch and hydrolyzed fiber; and
wherein the hydrolyzed-starch-and-fiber pulse has, within a tolerance of +/−30% (optionally, 25%, 20%, 15%, 10%, 5%, 4%, 3%, 2% or 1%) the same mass ratio of starch to protein as unhydrolyzed pulse equivalent in kind and condition to the hydrolyzed-starch-and-fiber pulse, except that the unhydrolyzed pulse has not been hydrolyzed.
wherein the hydrolyzed starch molecules have an average molecular weight of no more than about 3.4×106 (optionally, 3.0×106, 2.5×106, 2.0×106, 1.8×106, 1.7×106) Dalton.
wherein the hydrolyzed fiber molecules have an average molecular weight of no more than about 700,000 Dalton (e.g., about 500,000-700,000)
wherein the at least one material is hydrolyzed-starch-and-fiber bran composition (e.g., oat bran, rice bran, wheat bran, sorghum bran, bran concentrates thereof, etc.) comprising hydrolyzed starch and hydrolyzed fiber; and
wherein the hydrolyzed-starch-and-fiber bran composition has within a tolerance of +/−20% (optionally, 10%, 5%, 2% or 1%) the same mass ratio of starch to protein as an unhydrolyzed bran composition equivalent in kind and condition to the hydrolyzed-starch-and-fiber bran composition, except that the unhydrolyzed bran composition has not been hydrolyzed.
wherein the at least one material is hydrolyzed-starch-and-fiber bran comprising hydrolyzed starch and hydrolyzed fiber; and
wherein the hydrolyzed-starch-and-fiber bran has a mass ratio selected from the group of mass ratios consisting of:
wherein the hydrolyzed-starch-and-fiber bran composition is oat bran;
wherein the oat bran comprises:
wherein the hydrolyzed-starch-and-fiber bran composition is oat bran concentrate;
wherein the oat bran concentrate comprises:
wherein at least one-third of the total dietary fiber is soluble fiber.
wherein the composition is a powder (e.g., a flour).
wherein the composition comprises a liquid; and
wherein the at least one material is fully hydrated by (e.g., has absorbed an equilibrium concentration of) the liquid and suspended in the liquid (e.g., dispersed in an excess amount of the liquid) to form a suspension.
wherein the composition comprises at least 6 wt. % of the at least one material.
wherein the composition comprises a liquid; and
wherein the liquid is a water-based liquid selected from the group consisting of water, mammalian milk (e.g., cow's milk, sheep's milk, goat's milk etc.), soy milk, grain milk (e.g., rice milk), nut milk (e.g., almond milk, hazelnut milk), coconut milk, fruit juice, and vegetable juice.
wherein the composition comprises a powder hydrated by a water-based liquid,
wherein the powder consists of powder particles;
wherein the powder particles have an average particle size equal to about 50-200 microns on a volume-weighted basis;
optionally wherein 10% by volume of the powder particles have a particle size smaller than about 56.4 (optionally, 55, 50, 45, 40, 35, 30, 25) microns;
optionally wherein 50% by volume of the powder particles have a particle size smaller than about 190 (optionally, 180, 170, 160, 150, 140, 130) microns;
optionally wherein 90% by volume of the powder particles have a particle size smaller than about 340 (optionally, 320, 300, 280, 260, 240, 220, 200, 180) microns; and
wherein the particle size is the diameter of a sphere that would provide the same laser diffraction measurements as the particle.
wherein the at least one material comprises the at least a portion of grain; and
wherein the grain is selected from the group consisting of wheat, oat, barley, corn, white rice, brown rice, barley, millet, sorghum, rye, triticale, teff, spelt, buckwheat, quinoa, amaranth, kaniwa, cockscomb, green groat and combinations thereof.
wherein the at least one material comprises the at least a portion of pulse; and
wherein the pulse is selected from the group consisting of peas, lentils, chickpeas, navy beans, black turtle beans, cranberry beans, kidney beans, pinto beans, small red beans, Dutch brown beans, pink beans and combinations thereof.
wherein the composition comprises at least two enzymes (e.g., multiple kinds of deactivated enzymes, α-amylase and endo-glucanase or cellulase).
wherein the hydrolyzed fiber comprises insoluble fiber molecules;
wherein the insoluble fiber molecules have an average molecular weight equal to no more than about 1,000,000 Dalton.
wherein the composition is food grade (e.g., wherein the composition is selected from a food and a beverage).
wherein the first composition consists of each ingredient in a first set of ingredients at a specified weight percentage, and the first set of ingredients comprises the at least a portion of pulse, the at least a portion of grain, and water;
wherein the second composition consists of the first set of ingredients in the specified weight percentages, except that the at least a portion of pulse comprising hydrolyzed starch is replaced with at least a portion of pulse comprising unhydrolyzed starch, and except that the at least a portion of grain comprising hydrolyzed starch is replaced with at least a portion of grain comprising unhydrolyzed starch.
wherein the composition comprises a liquid;
wherein the liquid comprises water.
wherein the at least two enzymes comprise:
α-amylase (e.g., thermostable α-amylase or thermostable, bacterial food grade α-amylase); and
endo-glucanase (e.g., beta-glucanase (for example, endo-beta-1,4-glucanase) or cellulase (for example, endo-fibrolytic enzyme or endo-hemicellulase).
wherein the first composition consists of each ingredient in a first set of ingredients at a specified weight percentage, and the first set of ingredients comprises the at least a portion of pulse, the at least a portion of grain, and water;
wherein the second composition consists of the first set of ingredients in the specified weight percentages, except that the at least a portion of pulse comprising hydrolyzed starch is replaced with at least a portion of pulse comprising unhydrolyzed starch, and except that the at least a portion of grain comprising hydrolyzed starch is replaced with at least a portion of grain comprising unhydrolyzed starch.
wherein the at least one material is green groat; and
wherein the at least one material has a mean particle size on a volume-weighted basis equal to about 130.3 microns within a tolerance of +/−20% (optionally, 10%, 5%, 4%, 3%, 2%, 1%), wherein the particle size is the diameter of a sphere-shaped particle that would produce laser diffraction measured for the particle.
wherein, within a tolerance of +/−20% (optionally, 10%, 5%, 4%, 3%, 2%, 1%):
wherein the at least one material is high fiber oat (e.g., HiFi variety oat registered under the Plant Protection Act, with certificate number 200300193 to NDSU Research foundation, having a mean groat protein content of about 18.7 wt. % dry basis and a mean groat Beta-glucan content of about 6.42 wt. % dry basis); and
wherein the at least one material has a mean particle size on a volume-weighted basis equal to about 94.5 microns within a tolerance of +/−20% (optionally, 10%, 5%, 4%, 3%, 2%, 1%), wherein the particle size is the diameter of a sphere-shaped particle that would produce laser diffraction measured for the particle.
wherein, within a tolerance of +/−20% (optionally, 10%, 5%, 4%, 3%, 2%, 1%):
10% by volume of particles in the at least one material have a particle size no more than about 24.7 microns;
50% by volume of particles in the at least one material have a particle size no more than about 82.6 microns; and
90% by volume of particles in the at least one material have a particle size no more than about 181.6 microns.
wherein the at least one material is oat bran; and
wherein the at least one material has a mean particle size on a volume-weighted basis equal to about 151.5 microns within a tolerance of +/−20% (optionally, 10%, 5%, 4%, 3%, 2%, 1%), wherein the particle size is the diameter of a sphere-shaped particle that would produce laser diffraction measured for the particle.
wherein, within a tolerance of +/−20% (optionally, 10%, 5%, 4%, 3%, 2%, 1%):
10% by volume of particles in the at least one material have a particle size no more than about 39.4 microns;
50% by volume of particles in the at least one material have a particle size no more than about 141.2 microns; and
90% by volume of particles in the at least one material have a particle size no more than about 273.5 microns.
wherein the at least one material is whole grain rice (e.g., brown rice); and
wherein the at least one material has a mean particle size on a volume-weighted basis equal to about 157.8 microns within a tolerance of +/−20% (optionally, 10%, 5%, 4%, 3%, 2%, 1%),
wherein the particle size is the diameter of a sphere-shaped particle that would produce laser diffraction measured for the particle.
wherein, within a tolerance of +/−20% (optionally, 10%, 5%, 4%, 3%, 2%, 1%): 10% by volume of particles in the at least one material have a particle size no more than about 44.0 microns;
50% by volume of particles in the at least one material have a particle size no more than about 143.4 microns; and
90% by volume of particles in the at least one material have a particle size no more than about 291.5 microns.
wherein the at least one material is white rice; and
wherein the at least one material has a mean particle size on a volume-weighted basis equal to about 168.4 microns within a tolerance of +/−20% (optionally, 10%, 5%, 4%, 3%, 2%, 1%), wherein the particle size is the diameter of a sphere-shaped particle that would produce laser diffraction measured for the particle.
wherein, within a tolerance of +/−20% (optionally, 10%, 5%, 4%, 3%, 2%, 1%):
10% by volume of particles in the at least one material have a particle size no more than about 56.4 microns;
50% by volume of particles in the at least one material have a particle size no more than about 155.3 microns; and
90% by volume of particles in the at least one material have a particle size no more than about 299.4 microns.
wherein the at least one material is RM blend (e.g., about 70 wt. % oat, 10 wt. % barley, 10 wt. % rye, and 10 wt. % wheat within a tolerance of +/−10% of the wt. % of each cereal grain component); and
wherein the at least one material has a mean particle size on a volume-weighted basis equal to about 147.3 microns within a tolerance of +/−20% (optionally, 10%, 5%, 4%, 3%, 2%, 1%), wherein the particle size is the diameter of a sphere-shaped particle that would produce laser diffraction measured for the particle.
wherein, within a tolerance of +/−20% (optionally, 10%, 5%, 4%, 3%, 2%, 1%):
10% by volume of particles in the at least one material have a particle size no more than about 42.3 microns;
50% by volume of particles in the at least one material have a particle size no more than about 139.4 microns; and
90% by volume of particles in the at least one material have a particle size no more than about 259.4 microns.
wherein the at least one material is barley; and
wherein the at least one material has a mean particle size on a volume-weighted basis equal to about 193.4 microns within a tolerance of +/−20% (optionally, 10%, 5%, 4%, 3%, 2%, 1%), wherein the particle size is the diameter of a sphere-shaped particle that would produce laser diffraction measured for the particle.
wherein, within a tolerance of +/−20% (optionally, 10%, 5%, 4%, 3%, 2%, 1%):
10% by volume of particles in the at least one material have a particle size no more than about 52.0 microns;
50% by volume of particles in the at least one material have a particle size no more than about 185.1 microns; and
90% by volume of particles in the at least one material have a particle size no more than about 336.7 microns.
wherein the at least one material is quinoa; and
wherein the at least one material has a mean particle size on a volume-weighted basis equal to about 159.0 microns within a tolerance of +/−20% (optionally, 10%, 5%, 4%, 3%, 2%, 1%), wherein the particle size is the diameter of a sphere-shaped particle that would produce laser diffraction measured for the particle.
wherein, within a tolerance of +/−20% (optionally, 10%, 5%, 4%, 3%, 2%, 1%):
10% by volume of particles in the at least one material have a particle size no more than about 55.2 microns;
50% by volume of particles in the at least one material have a particle size no more than about 150.9 microns; and
90% by volume of particles in the at least one material have a particle size no more than about 271.2 microns.
wherein the at least one material is 50 wt. % oat and 50 wt. % yellow pea; and
wherein the at least one material has a mean particle size on a volume-weighted basis equal to about 139.2 microns within a tolerance of +/−20% (optionally, 10%, 5%, 4%, 3%, 2%, 1%), wherein the particle size is the diameter of a sphere-shaped particle that would produce laser diffraction measured for the particle.
wherein, within a tolerance of +/−20% (optionally, 10%, 5%, 4%, 3%, 2%, 1%):
10% by volume of particles in the at least one material have a particle size no more than about 38.9 microns;
50% by volume of particles in the at least one material have a particle size no more than about 130.2 microns; and
90% by volume of particles in the at least one material have a particle size no more than about 249.6 microns.
wherein the at least one material is whole grain oat comprising hydrolyzed starch and hydrolyzed fiber; and
wherein the at least one material comprises a mass ratio selected from the group of mass ratios consisting of:
wherein the at least one material is whole grain wheat comprising hydrolyzed starch and hydrolyzed fiber; and
wherein the at least one material comprises a mass ratio selected from the group of mass ratios consisting of:
wherein the at least one material is whole grain rice (e.g., brown rice) comprising hydrolyzed starch and hydrolyzed fiber; and
wherein the at least one material comprises a mass ratio selected from the group of mass ratios consisting of:
wherein the at least one material is whole grain rye comprising hydrolyzed starch and hydrolyzed fiber; and
wherein the at least one material comprises a mass ratio selected from the group of mass ratios consisting of:
wherein the at least one material is whole grain barley comprising hydrolyzed starch and hydrolyzed fiber; and
wherein the at least one material comprises a mass ratio selected from the group of mass ratios consisting of:
wherein the at least one material is whole grain sorghum comprising hydrolyzed starch and hydrolyzed fiber; and
wherein the at least one material comprises a mass ratio selected from the group of mass ratios consisting of:
any combination thereof.
wherein the at least one material is green groat; and
wherein an RVA viscosity at 25° C. (77° F.) of the composition is no more than about 800 (optionally, 700, 600, 500, 400, 312) cP.
wherein the at least one material is high fiber oat (e.g., HiFi oat); and
wherein an RVA viscosity at 25° C. (77° F.) of the composition is no more than about 800 (optionally, 700, 600, 500, 400, 300, 200, 166) cP.
wherein the at least one material is oat bran; and
wherein an RVA viscosity at 25° C. of the composition is no more than about 700 (optionally, 600, 500, 400, 300, 200, 145) cP.
wherein the at least one material is whole grain rice (e.g., brown rice); and
wherein an RVA viscosity at 25° C. (77° F.) of the composition is no more than about 300 (optionally, 250, 200, 150, 100, 50) cP.
wherein the at least one material is white rice; and
wherein an RVA viscosity at 25° C. (77° F.) of the composition is no more than about 350 (optionally, 300, 250, 200, 150, 100, 50, 33) cP.
wherein the at least one material is RM blend; and
wherein an RVA viscosity at 25° C. (77° F.) of the composition is no more than about 600 (optionally, 500, 400, 300, 200, 150, 142) cP.
wherein the at least one material is barley; and
wherein an RVA viscosity at 25° C. (77° F.) of the composition is no more than about 800 (optionally, 700, 600, 500, 400, 300, 200, 100, 78) cP.
wherein the at least one material is quinoa; and
wherein an RVA viscosity at 25° C. (77° F.) of the composition is no more than about 90 (optionally, 80, 70, 60, 50, 40, 37) cP.
wherein the at least one material is amaranth; and
wherein an RVA viscosity at 25° C. (77° F.) of the composition is no more than about 160 (optionally, 140, 120, 100, 80, 60, 40, 20) cP.
wherein the at least one material is 50 wt. % oat and 50 wt. % yellow pea; and
wherein an RVA viscosity at 25° C. (77° F.) of the composition is no more than about 250 (optionally, 200, 150, 100, 72) cP.
wherein the at least one material is 50 wt. % oat and 50 wt. % pinto bean; and
wherein an RVA viscosity at 25° C. (77° F.) of the composition is no more than about 300 (optionally, 250, 200, 150, 107) cP.
providing starting components comprising:
hydrolyzing the fiber in the at least one material through a fiber hydrolysis reaction, wherein the fiber hydrolysis reaction is catalyzed by the first enzyme;
hydrolyzing the starch in the at least one material through a starch hydrolysis reaction, wherein the starch hydrolysis reaction is catalyzed by the second enzyme;
deactivating the first enzyme; and
deactivating the second enzyme;
wherein the method provides a product composition.
preconditioning the starting components by combining the first enzyme, the second enzyme, the water, and the starting composition in a preconditioner, thereby providing a preconditioned mixture.
extruding (e.g., continuously extruding) the preconditioned mixture (e.g., in an extruder), thereby providing an extruded mixture.
pelletizing the extruded mixture to provide a pelletized mixture.
drying the pelletized mixture to provide a dried mixture.
grinding (e.g., milling) the dried mixture to provide a powder (e.g., a flour).
preconditioning the starting components to provide a preconditioned mixture with a wet mix temperature selected from the group consisting of about 54.4° C. (130° F.) to about 76.7° C. (170° F.), about 60.0° C. (140° F.) to about 71.1° C. (160° F.), and about 62.8° C. (145° F.).
preconditioning the starting components to provide a preconditioned mixture with a selected weight percentage of water, wherein the selected weight percentage of water is selected from the group consisting of about 28 wt. % to about 37 wt. %, about 30 wt. % to about 34 wt. %, and about 32 wt. %.
heating the preconditioned mixture to deactivate the first enzyme, activate the second enzyme, and deactivate the second enzyme.
wherein the heating step occurs while extruding the preconditioned mixture (e.g., with a jacket on an extruder barrel of an extruder and/or frictional heat generated by an extruder) to provide an extruded mixture; and
wherein, upon termination of the extruding (e.g., at the exit of an extruder barrel of an extruder), the extruded mixture is provided at a post-extrusion temperature selected from the group consisting of about 140° C. (284° F.) to about 151° C. (304° F.), about 142° C. (288° F.) to about 149° C. (300° F.), and about 146° C. (294° F.).
wherein the first enzyme is endo-cellulase.
wherein the second enzyme (e.g., an α-amylase) is a relatively high temperature enzyme (e.g., having an optimum-activity temperature range from about 66° C. (150° F.) to about 91° C. (195° F.));
wherein the first enzyme (e.g., an endo-cellulase) is a relatively low temperature enzyme; and
wherein the first enzyme has an optimum-activity temperature range that is lower than the optimum-activity temperature range of the second enzyme, and optionally, wherein the optimum-activity temperature range of the second enzyme does not overlap with the optimum activity temperature range of the first enzyme.
wherein the fiber comprises cellulose;
wherein the first enzyme reduces the molecular weight of the cellulose in the starting composition (or in the fiber) to provide cellulose in the product composition with a reduced average molecular weight.
wherein the starch hydrolysis reaction and the fiber hydrolysis reaction occur (e.g., partially, substantially, or completely) during the extruding.
wherein the fiber hydrolysis reaction occurs during the preconditioning.
wherein the fiber hydrolysis reaction ends during the extruding.
wherein a reaction rate of the starch hydrolysis reaction is fastest (e.g., has a maximum reaction rate, and also begins substantially) during the extruding.
wherein the starch hydrolysis reaction ends (e.g., effectively, substantially, or completely) during the extruding.
wherein the preconditioning and the extruding (and optionally pelletizing) together have a duration equal to a maximum of about 5 minutes (e.g., about 4 minutes, about 3 minutes, or about 2 minutes, or equal to about 30 seconds to 5 minutes, about 30 seconds to 3 minutes, or about 1 minute to 3 minutes).
wherein the starch hydrolysis reaction is stopped before converting more than about 10 (optionally, 9, 8, 7, 6, 5, 4, 3, 2, 1) wt. % of the starch to monosaccharides and disaccharides.
wherein the fiber hydrolysis reaction is stopped before converting more than about 10 (optionally, 9, 8, 7, 6, 5, 4, 3, 2, 1) wt. % of the fiber to monosaccharides and disaccharides.
wherein the water comprises liquid water and steam.
wherein the extruding step occurs in an extruder comprising:
preconditioning the starting components to provide a preconditioned mixture by conveying and agitating the starting components with conveyors (e.g., shafts with paddles or screws) in the preconditioner.
wherein the first enzyme is endo-cellulase;
wherein the first enzyme is provided in an endo-cellulase composition; and
wherein the endo-cellulase composition is sufficiently pure endo-cellulase that the endo-cellulase composition is free from detectable levels of exo-activity.
wherein the first enzyme is endo-cellulase;
wherein the first enzyme is provided in an endo-cellulase composition; and
wherein the endo-cellulase composition comprises no more than undetectable levels of exo-cellulase and β-amylase.
wherein the first enzyme is an endo-cellulase;
wherein the first enzyme provides about 30-200, about 100-130, or about 115 International Units (IU) of enzyme activity per gram of fiber (e.g., the fiber in the at least one material).
wherein the second enzyme is an α-amylase;
wherein the second enzyme provides about 600-3100, about 1700-2000, or about 1,850 Modified Wohlgemuth Units (MWU) of enzyme activity per gram of starch (e.g., the starch in the at least one material).
adding at least one additional component to the extruded mixture to provide a product composition, wherein the product composition is a food.
adding at least one additional component to the extruded mixture to provide a product composition, wherein the product composition is a beverage.
extruding the starting composition, the second enzyme and the first enzyme, thereby providing an extruded mixture.
While this invention has been particularly shown and described with reference to preferred embodiments, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
Number | Name | Date | Kind |
---|---|---|---|
1163175 | Rullman | Dec 1915 | A |
1384894 | Torlick | Jul 1921 | A |
2999018 | Huffman | Sep 1961 | A |
3116150 | Baker | Dec 1963 | A |
3317402 | Smith | May 1967 | A |
3391003 | Armstrong | Jul 1968 | A |
3494769 | Tressler | Feb 1970 | A |
3579352 | Bookwalter | May 1971 | A |
3595671 | Cooke | Jul 1971 | A |
3732109 | Poat | May 1973 | A |
3753728 | Bedenk | Aug 1973 | A |
3851085 | Rodgers | Nov 1974 | A |
3869558 | Hampton | Mar 1975 | A |
3925343 | Hampton | Dec 1975 | A |
3950543 | Buffa | Apr 1976 | A |
3958016 | Galle | May 1976 | A |
4028468 | Hohner | Jun 1977 | A |
4038427 | Martin | Jul 1977 | A |
4041187 | Nelson | Aug 1977 | A |
4167584 | Nelson | Sep 1979 | A |
4171384 | Chwalek | Oct 1979 | A |
4247561 | Nelson | Jan 1981 | A |
4259358 | Duthie | Mar 1981 | A |
4266027 | Muller | May 1981 | A |
4282319 | Conrad | Aug 1981 | A |
4330625 | Miller | May 1982 | A |
4377602 | Conrad | Mar 1983 | A |
4431674 | Fulger | Feb 1984 | A |
4435429 | Burrows | Mar 1984 | A |
4435430 | Fulger | Mar 1984 | A |
4438150 | Gantwerker | Mar 1984 | A |
4439460 | Tsau et al. | Mar 1984 | A |
4500558 | Fulger | Feb 1985 | A |
4551347 | Karwowski | Nov 1985 | A |
4613507 | Fulger et al. | Sep 1986 | A |
4656040 | Fulger | Apr 1987 | A |
4668519 | Dartey | May 1987 | A |
4692340 | Grutte | Sep 1987 | A |
4710386 | Fulger | Dec 1987 | A |
4777056 | Buhler | Oct 1988 | A |
4814172 | Chavkin | Mar 1989 | A |
4834988 | Karwowski | May 1989 | A |
4864989 | Bolles | May 1989 | A |
4886665 | Kovacs | Dec 1989 | A |
4894242 | Mitchell | Jan 1990 | A |
4957563 | Gallaher | Sep 1990 | A |
4996063 | Inglett | Feb 1991 | A |
4999208 | Wolfe | Mar 1991 | A |
4999298 | Wolfe | Mar 1991 | A |
5021248 | Stark | Jun 1991 | A |
5045328 | Lewis | Sep 1991 | A |
5106343 | Laufer | Apr 1992 | A |
5106634 | Thacker | Apr 1992 | A |
5145698 | Cajigas | Sep 1992 | A |
5234704 | Devine | Aug 1993 | A |
5320856 | Veronesi | Jun 1994 | A |
5334407 | Donnelly | Aug 1994 | A |
5346890 | Hagiwara | Sep 1994 | A |
5385746 | De Almeida | Jan 1995 | A |
5395623 | Kovach | Mar 1995 | A |
5407694 | Devine | Apr 1995 | A |
5458893 | Smith | Oct 1995 | A |
5464760 | Tsai | Nov 1995 | A |
5476675 | Lou | Dec 1995 | A |
5490997 | Devine | Feb 1996 | A |
5514387 | Zimmerman | May 1996 | A |
5523109 | Hellweg | Jun 1996 | A |
5554402 | Smith | Sep 1996 | A |
5571334 | Dunn et al. | Nov 1996 | A |
5593503 | Shi | Jan 1997 | A |
5656317 | Smits | Aug 1997 | A |
5686123 | Lindahl | Nov 1997 | A |
5738887 | Wu | Apr 1998 | A |
5744187 | Gaynor | Apr 1998 | A |
5846786 | Senkeleski | Dec 1998 | A |
5849090 | Haralampu et al. | Dec 1998 | A |
5863590 | Alan | Jan 1999 | A |
5888548 | Wongsuragrai | Mar 1999 | A |
5912031 | Fitchett | Jun 1999 | A |
5932264 | Hurd | Aug 1999 | A |
5962047 | Gross | Oct 1999 | A |
5981237 | Meagher | Nov 1999 | A |
5985339 | Kamarei | Nov 1999 | A |
5997917 | Uchida et al. | Dec 1999 | A |
6013289 | Blank | Jan 2000 | A |
6054302 | Shi | Apr 2000 | A |
6135015 | Mendez | Oct 2000 | A |
6168821 | Castleberry | Jan 2001 | B1 |
6190708 | Triantafyllou | Feb 2001 | B1 |
6210722 | Wullschleger | Apr 2001 | B1 |
6210738 | Chen | Apr 2001 | B1 |
6210741 | Van Lengerich | Apr 2001 | B1 |
6221406 | Meschonat | Apr 2001 | B1 |
6244528 | Wallis | Jun 2001 | B1 |
6277186 | Shi | Aug 2001 | B1 |
6287621 | Lacourse | Sep 2001 | B1 |
6287626 | Fox | Sep 2001 | B1 |
6387435 | Fox | May 2002 | B1 |
6395314 | Whalen | May 2002 | B1 |
6451369 | Triantafyllou | Sep 2002 | B1 |
6468355 | Thompson | Oct 2002 | B1 |
6482459 | Anderson | Nov 2002 | B1 |
6485575 | Yuan | Nov 2002 | B2 |
6551366 | D'Souza | Apr 2003 | B1 |
6592914 | Triantafyllou | Jul 2003 | B1 |
6610349 | Delrue et al. | Aug 2003 | B1 |
6617446 | Papadopoulos | Sep 2003 | B1 |
6685974 | Whalen | Feb 2004 | B2 |
6720022 | Arnaut | Apr 2004 | B1 |
6723358 | Van Lengerich | Apr 2004 | B1 |
6737099 | Guraya | May 2004 | B2 |
6759077 | Lewis | Jul 2004 | B1 |
6797307 | Malkki et al. | Sep 2004 | B2 |
7030092 | Levine | Apr 2006 | B1 |
7037704 | Dunn-Coleman | May 2006 | B2 |
7101585 | Shen | Sep 2006 | B2 |
7160564 | Oste | Jan 2007 | B2 |
7244457 | Racicot | Jul 2007 | B2 |
7318519 | Sorensen | Jan 2008 | B2 |
7419694 | Korolchuk | Sep 2008 | B2 |
7754270 | Wuersch | Jul 2010 | B2 |
7794774 | Foster | Sep 2010 | B2 |
7914972 | Fujiwara | Mar 2011 | B2 |
8241696 | Chung | Aug 2012 | B2 |
8518469 | MacDonald | Aug 2013 | B2 |
8574644 | Chatel | Nov 2013 | B2 |
8591970 | Chatel | Nov 2013 | B2 |
8742095 | Lehtomaki | Jun 2014 | B2 |
9149060 | Chatel | Oct 2015 | B2 |
9150895 | Kurihara | Oct 2015 | B2 |
20010002269 | Zhao | May 2001 | A1 |
20010022986 | Girsh | Sep 2001 | A1 |
20020127319 | Gare | Sep 2002 | A1 |
20020187224 | Haefliger | Dec 2002 | A1 |
20030091716 | Kuramoto | May 2003 | A1 |
20030124195 | Delprato | Jul 2003 | A1 |
20030170362 | Manning | Sep 2003 | A1 |
20040028797 | Squire | Feb 2004 | A1 |
20040101935 | Vasanthan | May 2004 | A1 |
20040140584 | Wang | Jul 2004 | A1 |
20040151805 | Gao et al. | Aug 2004 | A1 |
20040219261 | Triantafyllou Oste | Nov 2004 | A1 |
20040258829 | Zheng | Dec 2004 | A1 |
20050064080 | Creighton | Mar 2005 | A1 |
20050089602 | Kvist et al. | Apr 2005 | A1 |
20050106216 | Maurer et al. | May 2005 | A1 |
20050181114 | Bruemmer | Aug 2005 | A1 |
20050191400 | Satyavolu et al. | Sep 2005 | A1 |
20050214347 | Astrup et al. | Sep 2005 | A1 |
20050233051 | Shen | Oct 2005 | A1 |
20050238777 | Klingeberg et al. | Oct 2005 | A1 |
20050244563 | Cavalieri et al. | Nov 2005 | A1 |
20050260305 | Adele et al. | Nov 2005 | A1 |
20060008574 | Begli et al. | Jan 2006 | A1 |
20060013940 | Mueller | Jan 2006 | A1 |
20060093720 | Tatz | May 2006 | A1 |
20060115573 | Singer et al. | Jun 2006 | A1 |
20060121174 | Franke | Jun 2006 | A1 |
20060134299 | Lahteenmaki | Jun 2006 | A1 |
20060141097 | Guo | Jun 2006 | A1 |
20060240148 | Nguyen et al. | Oct 2006 | A1 |
20060251791 | Rubio | Nov 2006 | A1 |
20060257548 | Crofskey | Nov 2006 | A1 |
20060280838 | Kvist | Dec 2006 | A1 |
20060286269 | Shah | Dec 2006 | A1 |
20070014892 | Mitchell | Jan 2007 | A1 |
20070026105 | Seo | Feb 2007 | A1 |
20070059340 | Bello | Mar 2007 | A1 |
20070071857 | Vemuganti | Mar 2007 | A1 |
20070141218 | Chatel | Jun 2007 | A1 |
20070154609 | Li | Jul 2007 | A1 |
20070172568 | Spelman | Jul 2007 | A1 |
20070178199 | Minor | Aug 2007 | A1 |
20070184175 | Rubio | Aug 2007 | A1 |
20070212472 | Hoelstein | Sep 2007 | A1 |
20070243301 | Barnett | Oct 2007 | A1 |
20070264400 | Milne | Nov 2007 | A1 |
20070292583 | Haynes | Dec 2007 | A1 |
20080003340 | Karwowski | Jan 2008 | A1 |
20080008801 | Barnekow | Jan 2008 | A1 |
20080098900 | Aremu | May 2008 | A1 |
20080131582 | Karwowski | Jun 2008 | A1 |
20080171114 | Castillo Rodriguez | Jul 2008 | A1 |
20080260909 | Chung | Oct 2008 | A1 |
20080305212 | Wong | Dec 2008 | A1 |
20090053771 | Dale | Feb 2009 | A1 |
20090148562 | Lin | Jun 2009 | A1 |
20090181128 | Blumenthal | Jul 2009 | A1 |
20090221041 | Aux | Sep 2009 | A1 |
20090253191 | Ward | Oct 2009 | A1 |
20090311376 | Rao | Dec 2009 | A1 |
20100015306 | Peryra | Jan 2010 | A1 |
20100104718 | Durand | Apr 2010 | A1 |
20100112127 | Chatel | May 2010 | A1 |
20100112167 | Chatel | May 2010 | A1 |
20100178400 | Pereyra | Jul 2010 | A1 |
20100189870 | Frohberg | Jul 2010 | A1 |
20100316765 | French | Dec 2010 | A1 |
20110020523 | Pereyra | Jan 2011 | A1 |
20120082740 | Collins | Apr 2012 | A1 |
20120245111 | Hoebler | Sep 2012 | A1 |
20130017300 | Avila | Jan 2013 | A1 |
20130183405 | Chatel | Jul 2013 | A1 |
20130209610 | Carder | Aug 2013 | A1 |
20130170362 | Manning | Sep 2013 | A1 |
20130323799 | Takaha | Dec 2013 | A1 |
20140017356 | Te Biesebeke | Jan 2014 | A1 |
20140050819 | Chatel et al. | Feb 2014 | A1 |
20140087430 | Lee | Mar 2014 | A1 |
20140170723 | Dobson | Jun 2014 | A1 |
20140193563 | Carder | Jul 2014 | A1 |
20140193564 | Carder | Jul 2014 | A1 |
20150183821 | Konstantinov | Jul 2015 | A1 |
20150191758 | Larsen | Jul 2015 | A1 |
20150351432 | Triantafyllou | Dec 2015 | A1 |
20160185641 | Zuback | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
1989045913 | Dec 1989 | AU |
1045890 | Jan 1979 | CA |
2015149 | Oct 1990 | CA |
1386446 | Dec 2002 | CN |
102224907 | Sep 2012 | CN |
970141 | Aug 1958 | DE |
0078782 | May 1983 | EP |
0231729 | Aug 1987 | EP |
0312220 | Apr 1989 | EP |
0512249 | Nov 1992 | EP |
0634106 | Jan 1995 | EP |
474230 | Mar 1995 | EP |
0474230 | Mar 1995 | EP |
1723953 | Nov 2006 | EP |
1782697 | May 2007 | EP |
1872666 | Jan 2008 | EP |
2222831 | May 2015 | EP |
2620906 | Mar 1989 | FR |
1168692 | Oct 1969 | GB |
S63116657 | May 1988 | JP |
2000004852 | Jan 2000 | JP |
2002171920 | Jun 2002 | JP |
2009207359 | Sep 2009 | JP |
2010051285 | Mar 2010 | JP |
2044503 | Sep 1995 | RU |
2161419 | Jan 2001 | RU |
2199246 | Feb 2003 | RU |
2233599 | Aug 2004 | RU |
2237419 | Oct 2004 | RU |
2244444 | Jan 2005 | RU |
2287295 | Nov 2006 | RU |
9210106 | Jun 1992 | WO |
1993000826 | Jan 1993 | WO |
9413826 | Jun 1994 | WO |
9604799 | Feb 1996 | WO |
2000030457 | Jun 2000 | WO |
2003011052 | Feb 2003 | WO |
2003090557 | Nov 2003 | WO |
2004019701 | Mar 2004 | WO |
2006009169 | Jan 2006 | WO |
2007020059 | Feb 2007 | WO |
2008028994 | Mar 2008 | WO |
2008056360 | May 2008 | WO |
2008096044 | Aug 2008 | WO |
2008097619 | Aug 2008 | WO |
2008097620 | Aug 2008 | WO |
2009077659 | Jun 2009 | WO |
2009109703 | Sep 2009 | WO |
2009127687 | Oct 2009 | WO |
2009158588 | Dec 2009 | WO |
2014160351 | Oct 2014 | WO |
2014177304 | Nov 2014 | WO |
Entry |
---|
Likimani, T. A. et al. J. Food Sci. 56: 99-105 (1991) (Year: 1991). |
Skoglund, M., “Avenanthramide Content and Related Enzyme Activities in Oats as Affected by Steeping and Germination”, Journal of Cereal Science, Academic Press Ltd, GB, vol. 48, No. 2, Sep. 1, 2008, pp. 294-303, XP023979477, 10 pages. |
Camire, Mary Ellen, et al. “Thermal Processing Effects on Dietary Fiber Composition and Hydration Capacity in Corn Meal, Oat Meal, and Potato Peels,” Cereal Chemistry 68(6), pp. 645-647, vol. 68, No. 6, 1991 (3 pages). |
Singh, Narpinder, et al., “A Comparison of Wheat Starch, Whole Wheat Meal and Oat Flour in the Extrusion Cooking Process,” J. Food Engineering 34 (1997) 15-32 (18 pages). |
Tapola, N., et al. “Glycemic responses of oat brain products in type 2 diabetic patients,” Nutrition, Metabolism & Cardiovascular Diseases (2005) 15, 255-261 (7 pages). |
Vasanthan, et al. “Dietary fiber profile of barley flour as affected by extrusion cooking,” Food Chemistry 77 (2002) pp. 35-40 (6 pages). |
Hao, L. Food Additives, 1st edition, p. 246-247, China Agricultural University Press, China, Aug. 2002. |
Li, Z. et al. “Fermented Food Technology,” China Metrology Publishing House, p. 141, 2012. |
Zheng, B. “Food Enzymology,” Southeast University Press, p. 132, 2006. |
Jay, James, “Modern Food Microbiology”, 7th Edition, pae 123 f., Springer Science+Business Media, Inc., 2005. |
Polaina, Julio and MacCabe, Andrew, “Industrial Enzymes—Structure, Function, and Applications”, Springer 2007, p. 1-34. |
Berger, R. G., “Flavours and Fragrances—Chemistry, Bioprocessing and Sustainablitiy”, Springer-Verlag Berlin Heidelberg, 2007, p. 464, p. 483. |
Howling, D., “Mechanisms of Starch Enzymolysis”, International Biodeterioration 25, 1989, p. 15-19. |
Xiaoyan, Fu, “Optimization and comparison of the Solvent Extraction and Enzyme Assistant Extraction of Oat Phenols”, Science and Technology of Food Industry, Dec. 31, 2012, vol. 33, No. 24, p. 277-281. |
Encyclopedia of Food Sciences and Nutrition, 2003, 2nd ed., searched for “beta-glucan”—https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/beta-glucan (visited homepage on Aug. 16, 2018) (2 pages). |
Hareland, G.A., “Evaluation of Flour Particle Size Distributionn by Laser Diffraction, Sieve Analysis and Near-infrared Reflectance Spectroscopy,” 1994, vol. 20, Issue 2, Abstract (visited homepage on Aug. 17, 2018), (1 page). |
Kent, James A., “Kent and Riegel's Handbook of Industrial Chemistry and Biotechnology,” Springer Science+Business Media, LLC, 2007, vol. 1, 11th ed., pp. 1684-1685, (6 pages). |
Reddy, Avanija, et al., “The pH of beverages in the United States,” 2016, vol. 147, Issue 4, pp. 255-263, (10 pages). (This reference was not cited as prior art). |
Srilakshmi, B., “Food Science,” New Age International, 2003, 3rd ed., p. 269, (5 pages). |
Kunert, Joachim, et al., (1999): “On the Triangle Test with Replication,” Technical Report, No. 1999, 10, University of Dortmund, 18 pages. |
Watts, et al., “Basic Sensory Methods for Food Evaluation,” International Development Research Centre, 1989, 164 pages. |
Office Action and Search Report issued in Russian Application No. 2018136069 dated Oct. 12, 2020. |
Examination Report issued in Australian Application No. 2017237000 dated Aug. 31, 2020. |
Examination Report issued in European Application No. 17771089.4 dated Sep. 28, 2020. |
Anderson, et al. “Gelatinazation of corn grits by roll cooking, extrusion cooking and steaming,” Staerke 22:130-135. |
Anonymous: “Ovsena nahradka mlieka,” XP002561727, URL:http://web.archive.org/web/2008420075151/http://www.aspsk.sk/ovsene_mlieko.htm>, retrieved from the internet on Dec. 18, 2009, pp. 1-1, dated Apr. 20, 2008. |
“Anonymous: ““Goldkill Instant Barley Drink””, XP002561728, URL:http:f/web.archive.org/web/20060303003347/goldkill. \ I com/goldkili_instant.php>, retrieved from the Internet on Dec. 28, 2009, pp. 1-2, dated Mar. 3, 2006”. |
Brenda, The comprehensive Enzyme Information System, BC 3.2.1.1.—alpha amylase; pp. 1 to 297; Retrieved from the internet: http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.1 &organism_list=,date unknown. |
Changquing, et al, Study on the Extruding Production Method of Soluble Oats Fiber, vol. 28, No. 2, pp. 45-48, dated Mar. 20, 2002, with English Abstract. |
Grenus, Food Product Design, Applications, Agglomerations, Jul. 10, 2014, Weeks Publishing Co., pp. 1-4, www.foodproductdesign.com/articles/2004/07/food-product-design-applications. |
Gualberto, D.G. et al., Effect of extrusion processing on the soluble and insoluble fiber, and phytic acid contents of cereal brans, dated Sep. 28, 1997. |
Gutkoski, L.C., et al., Effect of Extrusion Process Variables on Physical and Chemical Properties of Extruded Oat Products, Plant Foods for Human Nutrition, © 2000 Kluwer Academic Publishers, pp. 315-325, dated Dec. 31, 1999. |
Inglett, G.E. et al., Oat beta-glucan-amylodextrin: Preliminary preparations and biological properties, plant Fd. For Human Nutrition, vol. 45, pp. 53-61, dated Jun. 5, 2012. |
Linko Y Y et al: The effect of HTST-extrusion on retention of cereal alpha-amylase activity and on enzymatic hydrolisis of barley starch, Food Processing Systems, Applied Science Publ, UK, Jan. 1, 1980 (Jan. 1, 1980), pages Abstr, 4.2.25, 210-223, XP009127925, ISBN: 978-0-85334-896-2. |
PCT Application No. PCT/US2008/060323 International Search Report and Written Opinion dated Aug. 13, 2008. |
PCT Application No. PCT/US2009/060016 International Search Report dated Feb. 8, 2010. |
PCT Application No. PCT/US2009/060016, International Preliminary Report on Patentability dated May 19, 2011. |
PCT Application No. PCT/US2009/059916 International Search Report and Written Opinion dated Feb. 16, 2010. |
PCT Application No. PCT/US2014/21913 International Search Report and Written Opinion dated Jun. 23, 2014. |
PCT Application No. PCT/US2010/038506 International Search Report and Written Opinion dated Aug. 10, 2010. |
PCT Application No. PCT/US2014/17288 International Search Report and Written Opinion dated Jun. 13, 2014. |
PCT Application No. PCT/US2014/26367 International Search Report and Written Opinion dated Sep. 9, 2014. |
Peter Koelln KGAA: Kochjule, Hafer-Getrank mit Fruchtsaft, XP002499645, Internet Citation, URL:http//www.koelin.de/downloads/37/Kochjule.pdf>, retrieved from the Internet on Oct. 14, 2008, pp. 1-19, dated Oct. 14, 2008, copy unavailable. |
Peter Kolin KGAA: Kolln Schmelzflocken Dinkel-Hafer, XP002499438, Internet Citation, URL:http:f/www.koelln.de/produkte/2/103/index.html>, retrieved from the Internet on Oct. 13, 2008, p. 1, dated Oct. 13, 2008. |
Peter Kolin KGAA: KollnFlocken Instant, XP002499437, Internet Citation, URL:http:/fwww.koelln.de/produkte/1/15/Index.html>, retrieved from the Internet on Oct. 13, 2008, p. 1, dated Oct. 13, 2008. |
Vasanthan et al., Dextrinization of Starch in Barley Flurs with Thermostable alpha-Amylase by Extrusion Cooking, vol. 53, No. 12, pp. 616-622, dated Dec. 1, 2001. |
Wang, Ming-chun, et al, Extrusion Technology Applied in the Nutritional Health Foods, College of Food Engineering & Biologic Technology, Tianjin University of Science and Technology, Tianjin 300457, pp. 63-66, dated Aug. 1, 2007, with English Abstract. |
The Whole Grains Council, What are the Health Benefits?, http://wholegrainscouncil.org/whole-grains-101/what-are-the-health-benefits, 2 pages. |
Zhang Haodong, “Starch Article Technology,” Jilin Science and Technology Press, Feb. 29, 2008. |
Davis, “The Effect of Cold on Micro-Organisms in Relation to Dairying,” Express Dairy Co (London), Proceedigns of the Society for Applied Bacteriology, vol. 14, Issue 2, pp. 216-242, Oct. 1951. |
Food Reference, About.com “Why Does Milk Curdle,” http://foodreference.about.com/od/Dairy/a/Why-Does-Milk-Curdle.htm, pp. 1-2. |
PCT Application No. PCT/US2012/046450 International Search Report and Written Opinion dated Sep. 9, 2012. |
Springer New York, “Milk and Milk Products,” Essentials of Food Science, Food Science Texts Series, pp. 237-269. |
“Hoseney, R. Carl,” “Principles of Cereal Science and Technology,” “1986, American Association of Cereal Chemists, Inc., St. Paul Minnesota 55121,pp. 148-149 (4 pages)”. |
Number | Date | Country | |
---|---|---|---|
20170273337 A1 | Sep 2017 | US |