The field of the present application pertains to medical devices. More particularly, the field of the invention pertains to an apparatus, system, and method for performing surgery.
A cataract is a clouding of the lens in the eye that affects vision. Most cataracts are related to aging. Cataracts are very common in older people. By age 80, more than half of all Americans either have a cataract or have had cataract surgery.
The lens lies behind the iris and the pupil. It works much like a camera lens. It focuses light onto the retina at the back of the eye, where an image is recorded. The lens also adjusts the eye's focus, letting us see things clearly both up close and far away. The lens is made of mostly water and protein. The protein is arranged in a precise way that keeps the lens clear and lets light pass through it. But as we age, some of the protein may clump together and start to cloud a small area of the lens. This is a cataract. Over time, the cataract may grow larger and cloud more of the lens, making it harder to see.
Age-related cataracts can affect vision in two ways. First, clumps of protein reduce the sharpness of the image reaching the retina. The lens consists mostly of water and protein. When the protein clumps up, it clouds the lens and reduces the light that reaches the retina. The clouding may become severe enough to cause blurred vision. Most age-related cataracts develop from protein clumping. Second, the clear lens slowly changes to a yellowish/brownish color, adding a brownish tint to vision. As the clear lens slowly colors with age, it may gradually cause vision to have a brownish shade. At first, the amount of tinting may be small and may not cause a vision problem. Over time, increased tinting may make it more difficult to read and perform other routine activities.
Surgery is the only real treatment for cataracts. Each year, cataract surgeons in the United States perform over three million cataract surgeries. One of the more conventional cataract surgery procedures is called extracapsular cataract extraction (ECCE). Extracapsular cataract extraction involves the removal of almost the entire natural lens while the elastic lens capsule (posterior capsule) is left intact to allow implantation of an intraocular lens. It involves manual expression of the lens through a large (usually 10-12 mm) incision made in the cornea or sclera. Although it requires a larger incision and the use of stitches, the conventional method may be indicated for patients with very hard cataracts or other situations in which phacoemulsification is problematic.
Modern cataract surgery is usually performed using a microsurgical technique called phacoemulsification, whereby the cataract is emulsified with an ultrasonic handpiece and then suctioned out of the eye. Before phacoemulsification can be performed, one or more incisions are made in the eye to allow the introduction of surgical instruments. The surgeon then removes the anterior face of the capsule that contains the lens inside the eye. A phacoemulsification probe is an ultrasonic handpiece with a titanium or steel needle. The tip of the needle vibrates at ultrasonic frequency to sculpt and emulsify the cataract while a pump aspirates particles through the tip. In some techniques, a second fine steel instrument called a chopper is used from a side port to help with chopping the nucleus into smaller pieces. The cataract is usually broken into two or four pieces and each piece is emulsified and aspirated out with suction. The nucleus emulsification makes it easier to aspirate the particles. After removing all hard central lens nucleus with phacoemulsification, the softer outer lens cortex is removed with suction only. As with other cataract extraction procedures, an intraocular lens implant (IOL), is placed into the remaining lens capsule.
One possible improvement to phacoemulsification is a cataract surgery performed with lasers. Femtosecond Laser cataract surgery is rapidly emerging as a potential technology that may allow for improved precision of incision formation and emulsification of the cataract.
Although phacoemulsification and laser-based cataract surgery work well for many patients, these technologies have several shortcomings. For example, phacoemulsification ultrasound probes must propagate ultrasound energy along the length of the probe, from a proximal transducer to a distal tip. This propagation may lead to transmission of ultrasound energy along the probe to tissues in and around the eye that do not benefit from the transmission. Ultrasound probes also tend to generate more heat than would be desirable for a procedure in the eye. Finally, it may be quite difficult to steer an ultrasound probe around corners or bends, due to the mechanical requirements of propagating the ultrasound wave along the entire instrument. In other words, the probe may have to be rigid or at least more rigid than would be desirable.
Probe based lasers have similar drawbacks. They may generate unwanted heat in the eye and are often difficult to control, thus risking damage to important nearby tissues. They also are easily damaged when attempting to navigate tight corners, as fibers in a laser probe may easily break. Femtosecond laser systems are costly to own and operate and have the additional drawback of extending operative time.
Therefore, it would be advantageous to have a method and device for treating cataracts, and potentially other eye ailments, that included many of the advantages of phacoemulsification and laser procedures without at least some of the drawbacks. Ideally, such a method and device would be relatively simple to manufacture and implement, and would work well for performing cataract surgery without harming surrounding eye tissue. Also ideally, the method and/or device would be applicable to one or more other eye conditions.
Many people worldwide are afflicted by chronic or acute intermittent sinusitis, and it can often be a debilitating disease that affects one's ability to exercise, breathe, fly on airplanes, and the like. Chronic or acute intermittent sinusitis sufferers often experience symptoms such as drainage of a thick, yellow or greenish discharge from the nose or down the back of the throat, nasal obstruction or congestion, causing difficulty breathing through your nose, pain, tenderness and swelling around the eyes, cheeks, nose or forehead, reduced sense of smell and taste, ear pain, aching in the upper jaw and teeth, cough, which may be worse at night, sore throat, bad breath (halitosis), fatigue or irritability and nausea. Several types of surgical procedures have been developed to treat chronic sinusitis, such as functional endoscopic sinus surgery (“FESS”) and balloon sinuplasty. FESS is very invasive, however, and requires a long and painful recovery process. Balloon sinuplasty is less invasive but is not effective in all patients.
Some existing solutions are discussed in several issued patents and publications. For example, U.S. Pat. No. 7,967,799 teaches a liquefaction hand-piece tip. However, the tip requires a standoff or spacer to keep the distal end from directly contacting delicate tissue. In another existing solution, United States publication 2004/0030349 creates pulses of fluid. However, the fluid needs to be heated.
Therefore, it would be beneficial to have a new method, apparatus, and system for performing surgery for various applications including eye, micro-surgery, and/or other emulsification applications.
Embodiments described herein are directed to a method, apparatus, and system for performing surgery for various applications including eye, micro-surgery, and/or other emulsification applications. Specifically, in one embodiment, a water jet apparatus may be used for manually performing eye surgery such as, cataract, or perform micro-surgery (remove cartilage), endoscopic orthopedic surgery, surgery of the ear, or any other procedure requiring removal of tissue in a small confined space. In other embodiments, a system with robotic control of the water jet apparatus may be used. In these embodiments, the water jet apparatus is coupled to a robotic arm via an instrument drive mechanism.
In other embodiments, methods and workflows for cataract extraction are discussed to facilitate the use of the previous apparatus and system embodiments. For example, the workflows depicted are efficient and replace typical steps in a common modern cataract extraction flow. For example, the traditional Hydro dissection, Nuclear fracture, and emsulfication steps are replaced with a single water jet emulsification step.
In another aspect of the present invention, a method of utilizing the water jet apparatus treating a cataract in an eye may involve controlling a cutting jet area of the water jet based at least in part on a flow rate meter utilizing a feedback loop to a pump.
In another aspect of the present invention, the water jet apparatus utilizes a nozzle that has a jet cutting area and a dispersive area. In one embodiment, the water jet apparatus could be coupled to a system that incorporates a flow rate meter or pressure gauge, pressure vessel or reservoir, and pump. A feedback loop from the flow meter to the pump is controlled by a computer, central processing unit, microcontroller, or any custom application specific integrated circuit (ASIC). In another embodiment, a feedback loop exists at the aspiration pump that is controlled by a computer, central processing unit, microcontroller, or any custom application specific integrated circuit (ASIC). In yet another embodiment, a throttle valve helps to control the flow rate meter based on a feedback loop. All the previous embodiments are discussed in different versions of
These and other aspects and embodiments will be described in greater detail below, in reference to the attached drawing figures.
Although certain preferred embodiments and examples are disclosed below, inventive subject matter extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses, and to modifications and equivalents thereof. Thus, the scope of the claims appended hereto is not limited by any of the particular embodiments described below. For example, in any method or process disclosed herein, the acts or operations of the method or process may be performed in any suitable sequence and are not necessarily limited to any particular disclosed sequence. Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding certain embodiments; however, the order of description should not be construed to imply that these operations are order dependent. Additionally, the structures, systems, and/or devices described herein may be embodied as integrated components or as separate components.
For purposes of comparing various embodiments, certain aspects and advantages of these embodiments are described. Not necessarily all such aspects or advantages are achieved by any particular embodiment. Thus, for example, various embodiments may be carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other aspects or advantages as may also be taught or suggested herein.
The embodiments described herein are directed to method, apparatus, and system for performing surgery for various applications including eye, micro-surgery, and/or other emulsification applications. Specifically, in one embodiment, a water jet apparatus may be used for manually performing eye surgery such as, cataract, or perform micro-surgery (remove cartilage), or any emulsification technique. In the case of a cataract in an eye, a water jet apparatus or system may be used to break apart a cataract into multiple, smaller pieces, which may then be suctioned from the eye using the probe or other suction means. Although the method and device are typically described below in the context of treating cataracts, in various alternative embodiments, other eye conditions may be treated.
In other embodiments, a system with robotic control of the water jet apparatus may be used. In these embodiments, the water jet apparatus is coupled to a robotic arm via an instrument drive mechanism, depicted in connection with
In other embodiments, methods and workflows for cataract extraction are discussed to facilitate the use of the previous apparatus and system embodiments. For example, the workflows depicted are efficient and replace typical steps in a common modern cataract extraction flow. For example, the common Hydro dissection, Nuclear fracture, and emsulfication steps are replaced with a single water jet emsulfication step. The improved workflows are depicted in connection with
In another aspect of the present invention, a method of utilizing the water jet apparatus treating a cataract in an eye may involve controlling a cutting jet area of the water jet based at least in part on a flow rate meter utilizing a feedback loop to a pump, as depicted in connection with
In another aspect of the present invention, the water jet apparatus utilizes a nozzle that generates a jet cutting area and a dispersive area when pressurized water is passed through it into a fluid filled environment, a preferred embodiment uses saline. In one embodiment, the water jet apparatus could be coupled to a system that incorporates a flow rate meter, pressure vessel, and pump. A feedback loop from the flow meter to the pump is controlled by a computer or central processing unit, as depicted in connection with
Referring to
However, in another embodiment, the water jet apparatus 102 would not have a instrument drive coupling mechanism 103 and would be used in a manual and may have a different configuration at the proximal end.
In one embodiment, the water jet apparatus would consist of the probe 102. In another embodiment, the water jet apparatus could be configured to include or support the other block diagrams depicted in connection with
Referring to
However, the claimed subject matter is not limited to a sapphire orifice nozzle. One skilled in the art appreciates utilizing not only different nozzle configurations, but also different nozzle material, such as, but not limited to, diamond or stainless steel.
Referring to
In one embodiment for a robotic control system, the water jet apparatus 102 is controlled by a robotic system, because the water jet apparatus is coupled to an instrument drive mechanism. For this embodiment, the other blocks depicted, such as, flow rate meter, computer, feedback loop, pump, and pressure vessel, are coupled to the robotic arm while residing near the robotic arm.
In another embodiment, the water jet apparatus 102 includes a pressure vessel, and is controlled by a robotic system, because the water jet apparatus is coupled to an instrument drive mechanism. For this embodiment, the other blocks depicted, such as, flow rate meter, personal computer, feedback loop, and pump are coupled to the robotic arm while residing near the robotic arm.
In yet another embodiment, the water jet apparatus 102 is manually controlled and may be coupled to the other block diagrams via an interface.
In this water jet system 300, the fluid enters a pump 302 and is forwarded to a pressure vessel 304 via a tube. An output of the pressure vessel is forwarded to the flow rate meter 306. In one embodiment, an output of the flow rate meter is controlled by a feedback loop through a computer and a pump. The feedback loop facilitates the output of the flow rate meter based on a desired jet cutting area of an output of the nozzle 106 from the water jet apparatus.
In alternative embodiments,
In yet another embodiment,
Referring to
Referring to
Referring to
However, the instrument drive mechanism is not limited to this embodiment. One skilled in the art appreciates modifications to facilitate coupling to different robotic arm configurations.
In this embodiment for a robotic control system, two instrument drivers each of which contains an instrument interface that drives a medical instrument is depicted. However, the claimed subject matter is not limited to this particular robotic system and could support any robotic control system with one or more interfaces and one or more instrument drivers. As previously mentioned, various robotic systems facilitate control of the water jet apparatus within the eye. For example, the robotic systems could utilize known localization techniques, such as, 3D imaging, MRI, CT, Ultrasound, Intra operative (OCT), and the like.
Turning now to
In
Different instrument configurations for the water jet are depicted in
In alternative embodiments, any other suitable type of articulation mechanism may be used to articulate the water jet apparatus. Examples include, but are not limited to, concentric shaped tubes, flexures, pivot joints, cam mechanisms, pull wire enabled bending, slotted tubes and the like.
Elements or components shown with any embodiment herein are exemplary for the specific embodiment and may be used on or in combination with other embodiments disclosed herein. While the invention is susceptible to various modifications and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. The invention is not limited, however, to the particular forms or methods disclosed, but to the contrary, covers all modifications, equivalents and alternatives thereof.
This application is a continuation of U.S. patent application Ser. No. 14/158,548 filed Jan. 17, 2014, which claims the benefit of U.S. Provisional Application No. 61/754,426, filed Jan. 18, 2013, the entire contents of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3763860 | Clarke | Oct 1973 | A |
4040413 | Ohshiro | Aug 1977 | A |
4198960 | Utsugi | Apr 1980 | A |
4470407 | Hussein | Sep 1984 | A |
4532935 | Wang et al. | Aug 1985 | A |
4597388 | Koziol et al. | Jul 1986 | A |
4685458 | Leckrone | Aug 1987 | A |
4747405 | Leckrone | May 1988 | A |
4854301 | Nakajima | Aug 1989 | A |
4898574 | Uchiyama et al. | Feb 1990 | A |
4905673 | Pimiskern | Mar 1990 | A |
4983165 | Loiterman | Jan 1991 | A |
5029574 | Shimamura et al. | Jul 1991 | A |
5085659 | Rydell | Feb 1992 | A |
5196023 | Martin | Mar 1993 | A |
5217465 | Steppe | Jun 1993 | A |
5308323 | Sogawa et al. | May 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5325848 | Adams et al. | Jul 1994 | A |
5342381 | Tidemand | Aug 1994 | A |
5344395 | Whalen et al. | Sep 1994 | A |
5353783 | Nakao et al. | Oct 1994 | A |
5370609 | Drasler et al. | Dec 1994 | A |
5372124 | Takayama et al. | Dec 1994 | A |
5411016 | Kume | May 1995 | A |
5425735 | Rosen et al. | Jun 1995 | A |
5431649 | Mulier et al. | Jul 1995 | A |
5441485 | Peters | Aug 1995 | A |
5449356 | Walbrink | Sep 1995 | A |
5450843 | Moll et al. | Sep 1995 | A |
5472406 | De La Torre et al. | Dec 1995 | A |
5472426 | Bonati et al. | Dec 1995 | A |
5496267 | Drasler | Mar 1996 | A |
5501667 | Verduin, Jr. | Mar 1996 | A |
5520684 | Imran | May 1996 | A |
5545170 | Hart | Aug 1996 | A |
5562648 | Peterson | Oct 1996 | A |
5562678 | Booker | Oct 1996 | A |
5572999 | Funda et al. | Nov 1996 | A |
5573535 | Viklund | Nov 1996 | A |
5613973 | Jackson et al. | Mar 1997 | A |
5645083 | Essig et al. | Jul 1997 | A |
5653374 | Young et al. | Aug 1997 | A |
5658311 | Baden | Aug 1997 | A |
5662590 | De La Torre et al. | Sep 1997 | A |
5695500 | Taylor et al. | Dec 1997 | A |
5697949 | Giurtino et al. | Dec 1997 | A |
5710870 | Ohm | Jan 1998 | A |
5716325 | Bonutti | Feb 1998 | A |
5788667 | Stoller | Aug 1998 | A |
5792165 | Klieman | Aug 1998 | A |
5797900 | Madhani | Aug 1998 | A |
5810770 | Chin et al. | Sep 1998 | A |
5893869 | Barnhart | Apr 1999 | A |
5897491 | Kastenbauer et al. | Apr 1999 | A |
5924175 | Lippitt | Jul 1999 | A |
5989230 | Frassica | Nov 1999 | A |
6033371 | Torre et al. | Mar 2000 | A |
6071281 | Burnside et al. | Jun 2000 | A |
6093157 | Chandrasekaran | Jul 2000 | A |
6110171 | Rydell | Aug 2000 | A |
6120476 | Fung et al. | Sep 2000 | A |
6120498 | Jani et al. | Sep 2000 | A |
6156030 | Neev | Dec 2000 | A |
6174318 | Bates et al. | Jan 2001 | B1 |
6206903 | Ramans | Mar 2001 | B1 |
6183435 | Bumbalough et al. | Jun 2001 | B1 |
6322557 | Nikolaevich | Nov 2001 | B1 |
6326616 | Andrien et al. | Dec 2001 | B1 |
6375635 | Moutafis | Apr 2002 | B1 |
6394998 | Wallace et al. | May 2002 | B1 |
6398792 | O'Connor | Jun 2002 | B1 |
6405078 | Moaddeb et al. | Jun 2002 | B1 |
6406486 | De La Torre et al. | Jun 2002 | B1 |
6436107 | Wang et al. | Aug 2002 | B1 |
6440061 | Wenner et al. | Aug 2002 | B1 |
6508823 | Gonon | Jan 2003 | B1 |
6522906 | Salisbury et al. | Feb 2003 | B1 |
6554793 | Pauker et al. | Apr 2003 | B1 |
6577891 | Jaross et al. | Jun 2003 | B1 |
6638246 | Naimark et al. | Oct 2003 | B1 |
6671581 | Niemeyer et al. | Dec 2003 | B2 |
6676668 | Mercereau et al. | Jan 2004 | B2 |
6685698 | Morley et al. | Feb 2004 | B2 |
6706050 | Giannadakis | Mar 2004 | B1 |
6736784 | Menne et al. | May 2004 | B1 |
6763259 | Hauger et al. | Jul 2004 | B1 |
7087061 | Chernenko et al. | Aug 2006 | B2 |
7282055 | Tsuruta | Oct 2007 | B2 |
7344528 | Tu et al. | Mar 2008 | B1 |
7351193 | Forman et al. | Apr 2008 | B2 |
7559934 | Teague et al. | Jul 2009 | B2 |
7725214 | Diolaiti | May 2010 | B2 |
7736356 | Cooper et al. | Jun 2010 | B2 |
7882841 | Aljuri | Feb 2011 | B2 |
7883475 | Dupont et al. | Feb 2011 | B2 |
7963911 | Turliuc | Jun 2011 | B2 |
7967799 | Boukhny | Jun 2011 | B2 |
7987046 | Peterman | Jul 2011 | B1 |
8002713 | Heske | Aug 2011 | B2 |
8038598 | Khachi | Oct 2011 | B2 |
8049873 | Hauger et al. | Nov 2011 | B2 |
8092397 | Wallace et al. | Jan 2012 | B2 |
8187173 | Miyoshi | May 2012 | B2 |
8224484 | Swarup et al. | Jul 2012 | B2 |
8257303 | Moll et al. | Sep 2012 | B2 |
8414564 | Goldshleger et al. | Apr 2013 | B2 |
8480595 | Speeg | Jul 2013 | B2 |
8518024 | Williams et al. | Aug 2013 | B2 |
8523762 | Miyamoto et al. | Sep 2013 | B2 |
8540748 | Murphy et al. | Sep 2013 | B2 |
8820603 | Shelton et al. | Sep 2014 | B2 |
8827948 | Romo et al. | Sep 2014 | B2 |
8882660 | Phee et al. | Nov 2014 | B2 |
8945163 | Voegele et al. | Feb 2015 | B2 |
8956280 | Eversull et al. | Feb 2015 | B2 |
9173713 | Hart et al. | Nov 2015 | B2 |
9254123 | Alvarez et al. | Feb 2016 | B2 |
9345456 | Tsonton et al. | May 2016 | B2 |
9460536 | Hasegawa et al. | Oct 2016 | B2 |
9504604 | Alvarez | Nov 2016 | B2 |
9561083 | Yu et al. | Feb 2017 | B2 |
9592042 | Titus | Mar 2017 | B2 |
9597152 | Schaeffer | Mar 2017 | B2 |
9622827 | Yu et al. | Apr 2017 | B2 |
9636184 | Lee et al. | May 2017 | B2 |
9713509 | Schuh et al. | Jul 2017 | B2 |
9727963 | Mintz et al. | Aug 2017 | B2 |
9730757 | Brudniok | Aug 2017 | B2 |
9737371 | Romo et al. | Aug 2017 | B2 |
9737373 | Schuh | Aug 2017 | B2 |
9744335 | Jiang | Aug 2017 | B2 |
9763741 | Alvarez et al. | Sep 2017 | B2 |
9788910 | Schuh | Oct 2017 | B2 |
9844412 | Bogusky et al. | Dec 2017 | B2 |
9867635 | Alvarez et al. | Jan 2018 | B2 |
9918681 | Wallace et al. | Mar 2018 | B2 |
9931025 | Graetzel et al. | Apr 2018 | B1 |
9949749 | Noonan et al. | Apr 2018 | B2 |
9955986 | Shah | May 2018 | B2 |
9962228 | Schuh et al. | May 2018 | B2 |
9980785 | Schuh | May 2018 | B2 |
9993313 | Schuh et al. | Jun 2018 | B2 |
10016900 | Meyer et al. | Jul 2018 | B1 |
10022192 | Ummalaneni | Jul 2018 | B1 |
10080576 | Romo et al. | Sep 2018 | B2 |
10136959 | Mintz et al. | Nov 2018 | B2 |
10145747 | Lin et al. | Dec 2018 | B1 |
10149720 | Romo | Dec 2018 | B2 |
10159532 | Ummalaneni | Dec 2018 | B1 |
10159533 | Moll et al. | Dec 2018 | B2 |
10169875 | Mintz et al. | Jan 2019 | B2 |
10482599 | Mintz et al. | Nov 2019 | B2 |
10517692 | Eyre et al. | Dec 2019 | B2 |
10524866 | Srinivasan | Jan 2020 | B2 |
10639114 | Schuh | May 2020 | B2 |
20020019644 | Hastings | Feb 2002 | A1 |
20020111608 | Baerveldt | Aug 2002 | A1 |
20020111621 | Wallace et al. | Aug 2002 | A1 |
20030004455 | Kadziauskas | Jan 2003 | A1 |
20030040681 | Ng et al. | Feb 2003 | A1 |
20030065358 | Frecker | Apr 2003 | A1 |
20030109877 | Morley | Jun 2003 | A1 |
20030109889 | Mercereau | Jun 2003 | A1 |
20030158545 | Hovda et al. | Aug 2003 | A1 |
20030208189 | Payman | Nov 2003 | A1 |
20040030349 | Boukhny | Feb 2004 | A1 |
20040143253 | Vanney | Jul 2004 | A1 |
20040153093 | Donovan | Aug 2004 | A1 |
20040158261 | Vu | Aug 2004 | A1 |
20040186349 | Ewers | Sep 2004 | A1 |
20040193146 | Lee et al. | Sep 2004 | A1 |
20040210116 | Nakao | Oct 2004 | A1 |
20040253079 | Sanchez | Dec 2004 | A1 |
20050033270 | Ramans et al. | Feb 2005 | A1 |
20050054900 | Mawn | Mar 2005 | A1 |
20050070844 | Chow et al. | Mar 2005 | A1 |
20050159645 | Bertolero | Jul 2005 | A1 |
20050240178 | Morley et al. | Oct 2005 | A1 |
20050261705 | Gist | Nov 2005 | A1 |
20060015133 | Grayzel | Jan 2006 | A1 |
20060058813 | Teague | Mar 2006 | A1 |
20060116693 | Weisenburgh | Jun 2006 | A1 |
20060135963 | Kick | Jun 2006 | A1 |
20060156875 | McRury et al. | Jul 2006 | A1 |
20060189891 | Waxman et al. | Aug 2006 | A1 |
20070016164 | Dudney et al. | Jan 2007 | A1 |
20070027443 | Rose | Feb 2007 | A1 |
20070027534 | Bergheim | Feb 2007 | A1 |
20070032906 | Sutherland et al. | Feb 2007 | A1 |
20070106304 | Hammack | May 2007 | A1 |
20070135763 | Musbach et al. | Jun 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070208375 | Nishizawa | Sep 2007 | A1 |
20070213668 | Spitz | Sep 2007 | A1 |
20070239178 | Weitzner et al. | Oct 2007 | A1 |
20070250111 | Lu | Oct 2007 | A1 |
20070299427 | Yeung et al. | Dec 2007 | A1 |
20080015566 | Livneh | Jan 2008 | A1 |
20080021440 | Solomon | Jan 2008 | A1 |
20080033467 | Miyamoto et al. | Feb 2008 | A1 |
20080046122 | Manzo et al. | Feb 2008 | A1 |
20080065109 | Larkin | Mar 2008 | A1 |
20080065111 | Blumenkranz | Mar 2008 | A1 |
20080097293 | Chin et al. | Apr 2008 | A1 |
20080114341 | Thyzel | May 2008 | A1 |
20080125698 | Greg et al. | May 2008 | A1 |
20080177285 | Brock et al. | Jul 2008 | A1 |
20080187101 | Gertner | Aug 2008 | A1 |
20080196533 | Bergamasco | Aug 2008 | A1 |
20080228104 | Uber et al. | Sep 2008 | A1 |
20090012507 | Culbertson et al. | Jan 2009 | A1 |
20090030446 | Measamer | Jan 2009 | A1 |
20090036900 | Moll | Feb 2009 | A1 |
20090043305 | Brodbeck | Feb 2009 | A1 |
20090062602 | Rosenberg et al. | Mar 2009 | A1 |
20090082634 | Kathrani et al. | Mar 2009 | A1 |
20090088774 | Swarup et al. | Apr 2009 | A1 |
20090105723 | Dillinger | Apr 2009 | A1 |
20090131885 | Akahoshi | May 2009 | A1 |
20090161827 | Gertner et al. | Jun 2009 | A1 |
20090171271 | Webster et al. | Jul 2009 | A1 |
20090227998 | Aljuri | Sep 2009 | A1 |
20090248041 | Williams et al. | Oct 2009 | A1 |
20090248043 | Tierney et al. | Oct 2009 | A1 |
20090264878 | Carmel et al. | Oct 2009 | A1 |
20090268015 | Scott et al. | Oct 2009 | A1 |
20090270760 | Leimbach et al. | Oct 2009 | A1 |
20090287188 | Golden et al. | Nov 2009 | A1 |
20090299352 | Zerfas | Dec 2009 | A1 |
20090312768 | Hawkins et al. | Dec 2009 | A1 |
20090326322 | Diolaiti | Dec 2009 | A1 |
20100004642 | Lumpkin | Jan 2010 | A1 |
20100010504 | Simaan et al. | Jan 2010 | A1 |
20100011900 | Burbank | Jan 2010 | A1 |
20100011901 | Burbank | Jan 2010 | A1 |
20100036294 | Mantell et al. | Feb 2010 | A1 |
20100073150 | Olson et al. | Mar 2010 | A1 |
20100082017 | Zickler | Apr 2010 | A1 |
20100114115 | Schlesinger et al. | May 2010 | A1 |
20100179632 | Bruszewski et al. | Jul 2010 | A1 |
20100204605 | Blakley | Aug 2010 | A1 |
20100204646 | Plicchi et al. | Aug 2010 | A1 |
20100217235 | Thorstenson | Aug 2010 | A1 |
20100225209 | Goldberg | Sep 2010 | A1 |
20100228191 | Alvarez et al. | Sep 2010 | A1 |
20100228249 | Mohr | Sep 2010 | A1 |
20100268211 | Manwaring et al. | Oct 2010 | A1 |
20100280320 | Alvarez et al. | Nov 2010 | A1 |
20100280525 | Alvarez et al. | Nov 2010 | A1 |
20100312141 | Keast et al. | Dec 2010 | A1 |
20100331858 | Simaan et al. | Dec 2010 | A1 |
20110009779 | Romano et al. | Jan 2011 | A1 |
20110015483 | Barbagli | Jan 2011 | A1 |
20110015648 | Alvarez et al. | Jan 2011 | A1 |
20110028887 | Fischer et al. | Feb 2011 | A1 |
20110040404 | Diolaiti et al. | Feb 2011 | A1 |
20110046441 | Wiltshire et al. | Feb 2011 | A1 |
20110071541 | Prisco et al. | Mar 2011 | A1 |
20110071543 | Prisco et al. | Mar 2011 | A1 |
20110106102 | Balicki et al. | May 2011 | A1 |
20110106146 | Jeong | May 2011 | A1 |
20110125165 | Simaan et al. | May 2011 | A1 |
20110152880 | Alvarez et al. | Jun 2011 | A1 |
20110160713 | Neuberger | Jun 2011 | A1 |
20110167611 | Williams | Jul 2011 | A1 |
20110184391 | Aljuri | Jul 2011 | A1 |
20110213362 | Cunningham | Sep 2011 | A1 |
20110224660 | Neuberger et al. | Sep 2011 | A1 |
20110238064 | Williams et al. | Sep 2011 | A1 |
20110257641 | Hastings et al. | Oct 2011 | A1 |
20110276085 | Krzyzanowski | Nov 2011 | A1 |
20110306836 | Ohline et al. | Dec 2011 | A1 |
20110313343 | Milutinovic et al. | Dec 2011 | A1 |
20120069167 | Liu et al. | Mar 2012 | A1 |
20120253277 | Tah et al. | Apr 2012 | A1 |
20120138586 | Webster et al. | Jun 2012 | A1 |
20120209315 | Amat | Aug 2012 | A1 |
20120232342 | Reydel | Sep 2012 | A1 |
20120253332 | Moll | Oct 2012 | A1 |
20120259320 | Loesel et al. | Oct 2012 | A1 |
20120283747 | Popovic | Nov 2012 | A1 |
20120296318 | Wellhofer et al. | Nov 2012 | A1 |
20130006144 | Clancy | Jan 2013 | A1 |
20130035537 | Wallace | Feb 2013 | A1 |
20130053877 | BenMaamer | Feb 2013 | A1 |
20130066136 | Palese et al. | Mar 2013 | A1 |
20130085442 | Shtul et al. | Apr 2013 | A1 |
20130085486 | Boutoussov et al. | Apr 2013 | A1 |
20130096422 | Boctor | Apr 2013 | A1 |
20130096574 | Kang et al. | Apr 2013 | A1 |
20130110042 | Humphreys | May 2013 | A1 |
20130110107 | Smith et al. | May 2013 | A1 |
20130116716 | Bahls et al. | May 2013 | A1 |
20130144116 | Cooper et al. | Jun 2013 | A1 |
20130144274 | Stefanchik et al. | Jun 2013 | A1 |
20130144395 | Stefanchik | Jun 2013 | A1 |
20130190796 | Tilson et al. | Jul 2013 | A1 |
20130225997 | Dillard et al. | Aug 2013 | A1 |
20130226161 | Hickenbotham | Aug 2013 | A1 |
20130253267 | Collins | Sep 2013 | A1 |
20130303876 | Gelfand et al. | Nov 2013 | A1 |
20130310819 | Neuberger et al. | Nov 2013 | A1 |
20130345686 | Brown | Dec 2013 | A1 |
20140005681 | Gee et al. | Jan 2014 | A1 |
20140012276 | Alvarez | Jan 2014 | A1 |
20140039681 | Bowling | Feb 2014 | A1 |
20140046308 | Bischoff | Feb 2014 | A1 |
20140051985 | Fan et al. | Feb 2014 | A1 |
20140058365 | Bille | Feb 2014 | A1 |
20140058404 | Hammack | Feb 2014 | A1 |
20140058428 | Christopher | Feb 2014 | A1 |
20140100445 | Stenzel | Apr 2014 | A1 |
20140142591 | Alvarez et al. | May 2014 | A1 |
20140163318 | Swanstrom | Jun 2014 | A1 |
20140194859 | Ianchulev | Jul 2014 | A1 |
20140194905 | Kappel | Jul 2014 | A1 |
20140243849 | Saglam | Aug 2014 | A1 |
20140275956 | Fan | Sep 2014 | A1 |
20140276594 | Tanner et al. | Sep 2014 | A1 |
20140276723 | Parihar | Sep 2014 | A1 |
20140276956 | Crainich | Sep 2014 | A1 |
20140309649 | Alvarez et al. | Oct 2014 | A1 |
20140309655 | Gal et al. | Oct 2014 | A1 |
20140316203 | Carroux et al. | Oct 2014 | A1 |
20140357984 | Wallace et al. | Dec 2014 | A1 |
20140364870 | Alvarez et al. | Dec 2014 | A1 |
20150051592 | Kintz | Feb 2015 | A1 |
20150080879 | Trees | Mar 2015 | A1 |
20150119638 | Yu et al. | Apr 2015 | A1 |
20150127045 | Prestel | May 2015 | A1 |
20150133960 | Lohmeier | May 2015 | A1 |
20150164522 | Budiman | Jun 2015 | A1 |
20150164594 | Romo et al. | Jun 2015 | A1 |
20150164596 | Romo | Jun 2015 | A1 |
20150201917 | Snow | Jul 2015 | A1 |
20150202085 | Lemonis | Jul 2015 | A1 |
20150314110 | Park | Nov 2015 | A1 |
20150335480 | Alvarez et al. | Nov 2015 | A1 |
20160001038 | Romo et al. | Jan 2016 | A1 |
20160022289 | Wan | Jan 2016 | A1 |
20160022466 | Pedtke | Jan 2016 | A1 |
20160030073 | Lsakov | Feb 2016 | A1 |
20160045208 | Ciulla | Feb 2016 | A1 |
20160051318 | Manzo et al. | Feb 2016 | A1 |
20160066935 | Nguyen et al. | Mar 2016 | A1 |
20160151122 | Alvarez et al. | Jun 2016 | A1 |
20160158490 | Leeflang | Jun 2016 | A1 |
20160183841 | Duindam et al. | Jun 2016 | A1 |
20160199984 | Lohmeier et al. | Jul 2016 | A1 |
20160235495 | Wallace et al. | Aug 2016 | A1 |
20160249932 | Rogers et al. | Sep 2016 | A1 |
20160270865 | Landey et al. | Sep 2016 | A1 |
20160279394 | Moll et al. | Sep 2016 | A1 |
20160287279 | Bovay et al. | Oct 2016 | A1 |
20160303743 | Rockrohr | Oct 2016 | A1 |
20160331358 | Gordon | Nov 2016 | A1 |
20160367324 | Sato et al. | Dec 2016 | A1 |
20160374541 | Agrawal et al. | Dec 2016 | A1 |
20170007337 | Dan | Jan 2017 | A1 |
20170049471 | Gaffney et al. | Feb 2017 | A1 |
20170065227 | Marrs | Mar 2017 | A1 |
20170095234 | Prisco et al. | Apr 2017 | A1 |
20170095295 | Overmyer | Apr 2017 | A1 |
20170100199 | Yu et al. | Apr 2017 | A1 |
20170119413 | Romo | May 2017 | A1 |
20170119481 | Romo et al. | May 2017 | A1 |
20170135706 | Frey | May 2017 | A1 |
20170151416 | Kutikov | Jun 2017 | A1 |
20170165011 | Bovay et al. | Jun 2017 | A1 |
20170172553 | Chaplin | Jun 2017 | A1 |
20170172673 | Yu et al. | Jun 2017 | A1 |
20170202627 | Sramek et al. | Jul 2017 | A1 |
20170209073 | Sramek et al. | Jul 2017 | A1 |
20170252096 | Felder | Sep 2017 | A1 |
20170265923 | Privitera | Sep 2017 | A1 |
20170290631 | Lee et al. | Oct 2017 | A1 |
20170319289 | Neff et al. | Nov 2017 | A1 |
20170333679 | Jiang | Nov 2017 | A1 |
20170340396 | Romo et al. | Nov 2017 | A1 |
20170367782 | Schuh et al. | Dec 2017 | A1 |
20180000563 | Shanjani et al. | Jan 2018 | A1 |
20180025666 | Ho et al. | Jan 2018 | A1 |
20180049824 | Harris | Feb 2018 | A1 |
20180177383 | Noonan et al. | Jun 2018 | A1 |
20180177556 | Noonan et al. | Jun 2018 | A1 |
20180193049 | Heck et al. | Jul 2018 | A1 |
20180214011 | Graetzel et al. | Aug 2018 | A1 |
20180221038 | Noonan et al. | Aug 2018 | A1 |
20180221039 | Shah | Aug 2018 | A1 |
20180250083 | Schuh et al. | Sep 2018 | A1 |
20180271616 | Schuh et al. | Sep 2018 | A1 |
20180279852 | Rafii-Tari et al. | Oct 2018 | A1 |
20180280660 | Landey et al. | Oct 2018 | A1 |
20180289243 | Landey et al. | Oct 2018 | A1 |
20180289431 | Draper et al. | Oct 2018 | A1 |
20180296285 | Simi et al. | Oct 2018 | A1 |
20180325499 | Landey et al. | Nov 2018 | A1 |
20180333044 | Jenkins | Nov 2018 | A1 |
20180360435 | Romo | Dec 2018 | A1 |
20190000559 | Berman et al. | Jan 2019 | A1 |
20190000560 | Berman et al. | Jan 2019 | A1 |
20190000566 | Graetzel et al. | Jan 2019 | A1 |
20190000568 | Connolly et al. | Jan 2019 | A1 |
20190000576 | Mintz et al. | Jan 2019 | A1 |
20190083183 | Moll et al. | Mar 2019 | A1 |
20190099231 | Bruehwiler | Apr 2019 | A1 |
20190105776 | Ho et al. | Apr 2019 | A1 |
20190105785 | Meyer | Apr 2019 | A1 |
20190107454 | Lin | Apr 2019 | A1 |
20190110839 | Rafii-Tari et al. | Apr 2019 | A1 |
20190110843 | Ummalaneni et al. | Apr 2019 | A1 |
20190167366 | Ummalaneni | Jun 2019 | A1 |
20190175009 | Mintz | Jun 2019 | A1 |
20190175062 | Rafii-Tari et al. | Jun 2019 | A1 |
20190175287 | Hill | Jun 2019 | A1 |
20190175799 | Hsu | Jun 2019 | A1 |
20190183585 | Rafii-Tari et al. | Jun 2019 | A1 |
20190183587 | Rafii-Tari et al. | Jun 2019 | A1 |
20190216548 | Ummalaneni | Jul 2019 | A1 |
20190216576 | Eyre | Jul 2019 | A1 |
20190223974 | Romo | Jul 2019 | A1 |
20190228525 | Mintz et al. | Jul 2019 | A1 |
20190239890 | Stokes | Aug 2019 | A1 |
20190246882 | Graetzel et al. | Aug 2019 | A1 |
20190262086 | Connolly et al. | Aug 2019 | A1 |
20190269468 | Hsu et al. | Sep 2019 | A1 |
20190274764 | Romo | Sep 2019 | A1 |
20190290109 | Agrawal et al. | Sep 2019 | A1 |
20190298160 | Ummalaneni et al. | Oct 2019 | A1 |
20190298460 | Al-Jadda | Oct 2019 | A1 |
20190298465 | Chin | Oct 2019 | A1 |
20190314616 | Moll et al. | Oct 2019 | A1 |
20190328213 | Landey et al. | Oct 2019 | A1 |
20190336238 | Yu | Nov 2019 | A1 |
20190365209 | Ye et al. | Dec 2019 | A1 |
20190365479 | Rafii-Tari | Dec 2019 | A1 |
20190365486 | Srinivasan et al. | Dec 2019 | A1 |
20190374297 | Wallace et al. | Dec 2019 | A1 |
20190375383 | Alvarez | Dec 2019 | A1 |
20190380787 | Ye | Dec 2019 | A1 |
20190380797 | Yu | Dec 2019 | A1 |
20200000530 | DeFonzo | Jan 2020 | A1 |
20200000533 | Schuh | Jan 2020 | A1 |
20200022767 | Hill | Jan 2020 | A1 |
20200039086 | Meyer | Feb 2020 | A1 |
20200046434 | Graetzel | Feb 2020 | A1 |
20200054408 | Schuh | Feb 2020 | A1 |
20200060516 | Baez | Feb 2020 | A1 |
20200093549 | Chin | Mar 2020 | A1 |
20200093554 | Schuh | Mar 2020 | A1 |
20200100845 | Julian | Apr 2020 | A1 |
20200100853 | Ho | Apr 2020 | A1 |
20200100855 | Leparmentier | Apr 2020 | A1 |
20200101264 | Jiang | Apr 2020 | A1 |
20200107894 | Wallace | Apr 2020 | A1 |
20200121502 | Kintz | Apr 2020 | A1 |
20200146769 | Eyre | May 2020 | A1 |
20200163726 | Tanner | May 2020 | A1 |
Number | Date | Country |
---|---|---|
101443069 | May 2009 | CN |
100515347 | Jul 2009 | CN |
103298414 | Sep 2013 | CN |
205729413 | Nov 2016 | CN |
1 321 106 | Jun 2003 | EP |
1 849 423 | Oct 2007 | EP |
09-224951 | Sep 1997 | JP |
2005-270464 | Oct 2005 | JP |
WO 03096871 | Nov 2003 | WO |
WO 04105849 | Dec 2004 | WO |
WO 11161218 | Dec 2011 | WO |
WO 13107468 | Jul 2013 | WO |
WO 13130895 | Sep 2013 | WO |
WO 17114855 | Jul 2017 | WO |
WO 18069679 | Apr 2018 | WO |
Entry |
---|
Balicki, et al. Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery. Medical Image Computing and Computer-Assisted Intervention. MICCAI 2009. Springer Berlin Heidelberg, 2009. 108-115. |
Ehlers, et al. Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging. Investigative Ophthalmology and Visual Science 52.6. 2011; 3153-3159. |
Hubschman. Robotic Eye Surgery: Past, Present, and Future. Journal of Computer Science and Systems Biology. 2012. |
Stoyanov, Oct. 20, 2011, Surgical Vision, Annals of Biomedical Engineering 40(2):332-345. |
Verdaasdonk et al., Jan. 23, 2012, Effect of microsecond pulse length and tip shape on explosive bubble formation of 2.78 pm Er,Cr;Ysgg and 2.94 μm Er:YAG laser, Proceedings of SPIE, vol. 8221, 12. |
European search report and search opinion dated Jul. 2, 2015 for EP Application No. 12856685.8. |
International search report dated Jun. 16, 2014 for PCT/US2014/022424. |
International search report and written opinion dated Mar. 29, 2013 for PCT/US2012/069540. |
International search report and written opinion dated Jan. 27, 2015 for PCT Application No. PCT/US2014/062284. |
International Search Report dated Nov. 7, 2014 in PCT/US2014/041990. |
Number | Date | Country | |
---|---|---|---|
20190151148 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
61754426 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14158548 | Jan 2014 | US |
Child | 16257980 | US |