Method, apparatus and system for a water jet

Information

  • Patent Grant
  • 10980669
  • Patent Number
    10,980,669
  • Date Filed
    Friday, January 25, 2019
    6 years ago
  • Date Issued
    Tuesday, April 20, 2021
    4 years ago
Abstract
A water jet instrument may be used for manually performing surgery. The water jet instrument may be manually controlled or controlled by a system with a robotic control. The water jet apparatus defines a jet cutting area that is based at least in part on a flow rate meter and a feedback loop.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The field of the present application pertains to medical devices. More particularly, the field of the invention pertains to an apparatus, system, and method for performing surgery.


2. Description of the Background Art

A cataract is a clouding of the lens in the eye that affects vision. Most cataracts are related to aging. Cataracts are very common in older people. By age 80, more than half of all Americans either have a cataract or have had cataract surgery.


The lens lies behind the iris and the pupil. It works much like a camera lens. It focuses light onto the retina at the back of the eye, where an image is recorded. The lens also adjusts the eye's focus, letting us see things clearly both up close and far away. The lens is made of mostly water and protein. The protein is arranged in a precise way that keeps the lens clear and lets light pass through it. But as we age, some of the protein may clump together and start to cloud a small area of the lens. This is a cataract. Over time, the cataract may grow larger and cloud more of the lens, making it harder to see.


Age-related cataracts can affect vision in two ways. First, clumps of protein reduce the sharpness of the image reaching the retina. The lens consists mostly of water and protein. When the protein clumps up, it clouds the lens and reduces the light that reaches the retina. The clouding may become severe enough to cause blurred vision. Most age-related cataracts develop from protein clumping. Second, the clear lens slowly changes to a yellowish/brownish color, adding a brownish tint to vision. As the clear lens slowly colors with age, it may gradually cause vision to have a brownish shade. At first, the amount of tinting may be small and may not cause a vision problem. Over time, increased tinting may make it more difficult to read and perform other routine activities.


Surgery is the only real treatment for cataracts. Each year, cataract surgeons in the United States perform over three million cataract surgeries. One of the more conventional cataract surgery procedures is called extracapsular cataract extraction (ECCE). Extracapsular cataract extraction involves the removal of almost the entire natural lens while the elastic lens capsule (posterior capsule) is left intact to allow implantation of an intraocular lens. It involves manual expression of the lens through a large (usually 10-12 mm) incision made in the cornea or sclera. Although it requires a larger incision and the use of stitches, the conventional method may be indicated for patients with very hard cataracts or other situations in which phacoemulsification is problematic.


Modern cataract surgery is usually performed using a microsurgical technique called phacoemulsification, whereby the cataract is emulsified with an ultrasonic handpiece and then suctioned out of the eye. Before phacoemulsification can be performed, one or more incisions are made in the eye to allow the introduction of surgical instruments. The surgeon then removes the anterior face of the capsule that contains the lens inside the eye. A phacoemulsification probe is an ultrasonic handpiece with a titanium or steel needle. The tip of the needle vibrates at ultrasonic frequency to sculpt and emulsify the cataract while a pump aspirates particles through the tip. In some techniques, a second fine steel instrument called a chopper is used from a side port to help with chopping the nucleus into smaller pieces. The cataract is usually broken into two or four pieces and each piece is emulsified and aspirated out with suction. The nucleus emulsification makes it easier to aspirate the particles. After removing all hard central lens nucleus with phacoemulsification, the softer outer lens cortex is removed with suction only. As with other cataract extraction procedures, an intraocular lens implant (IOL), is placed into the remaining lens capsule.


One possible improvement to phacoemulsification is a cataract surgery performed with lasers. Femtosecond Laser cataract surgery is rapidly emerging as a potential technology that may allow for improved precision of incision formation and emulsification of the cataract.


Although phacoemulsification and laser-based cataract surgery work well for many patients, these technologies have several shortcomings. For example, phacoemulsification ultrasound probes must propagate ultrasound energy along the length of the probe, from a proximal transducer to a distal tip. This propagation may lead to transmission of ultrasound energy along the probe to tissues in and around the eye that do not benefit from the transmission. Ultrasound probes also tend to generate more heat than would be desirable for a procedure in the eye. Finally, it may be quite difficult to steer an ultrasound probe around corners or bends, due to the mechanical requirements of propagating the ultrasound wave along the entire instrument. In other words, the probe may have to be rigid or at least more rigid than would be desirable.


Probe based lasers have similar drawbacks. They may generate unwanted heat in the eye and are often difficult to control, thus risking damage to important nearby tissues. They also are easily damaged when attempting to navigate tight corners, as fibers in a laser probe may easily break. Femtosecond laser systems are costly to own and operate and have the additional drawback of extending operative time.


Therefore, it would be advantageous to have a method and device for treating cataracts, and potentially other eye ailments, that included many of the advantages of phacoemulsification and laser procedures without at least some of the drawbacks. Ideally, such a method and device would be relatively simple to manufacture and implement, and would work well for performing cataract surgery without harming surrounding eye tissue. Also ideally, the method and/or device would be applicable to one or more other eye conditions.


Many people worldwide are afflicted by chronic or acute intermittent sinusitis, and it can often be a debilitating disease that affects one's ability to exercise, breathe, fly on airplanes, and the like. Chronic or acute intermittent sinusitis sufferers often experience symptoms such as drainage of a thick, yellow or greenish discharge from the nose or down the back of the throat, nasal obstruction or congestion, causing difficulty breathing through your nose, pain, tenderness and swelling around the eyes, cheeks, nose or forehead, reduced sense of smell and taste, ear pain, aching in the upper jaw and teeth, cough, which may be worse at night, sore throat, bad breath (halitosis), fatigue or irritability and nausea. Several types of surgical procedures have been developed to treat chronic sinusitis, such as functional endoscopic sinus surgery (“FESS”) and balloon sinuplasty. FESS is very invasive, however, and requires a long and painful recovery process. Balloon sinuplasty is less invasive but is not effective in all patients.


Some existing solutions are discussed in several issued patents and publications. For example, U.S. Pat. No. 7,967,799 teaches a liquefaction hand-piece tip. However, the tip requires a standoff or spacer to keep the distal end from directly contacting delicate tissue. In another existing solution, United States publication 2004/0030349 creates pulses of fluid. However, the fluid needs to be heated.


Therefore, it would be beneficial to have a new method, apparatus, and system for performing surgery for various applications including eye, micro-surgery, and/or other emulsification applications.


SUMMARY OF THE INVENTION

Embodiments described herein are directed to a method, apparatus, and system for performing surgery for various applications including eye, micro-surgery, and/or other emulsification applications. Specifically, in one embodiment, a water jet apparatus may be used for manually performing eye surgery such as, cataract, or perform micro-surgery (remove cartilage), endoscopic orthopedic surgery, surgery of the ear, or any other procedure requiring removal of tissue in a small confined space. In other embodiments, a system with robotic control of the water jet apparatus may be used. In these embodiments, the water jet apparatus is coupled to a robotic arm via an instrument drive mechanism.


In other embodiments, methods and workflows for cataract extraction are discussed to facilitate the use of the previous apparatus and system embodiments. For example, the workflows depicted are efficient and replace typical steps in a common modern cataract extraction flow. For example, the traditional Hydro dissection, Nuclear fracture, and emsulfication steps are replaced with a single water jet emulsification step.


In another aspect of the present invention, a method of utilizing the water jet apparatus treating a cataract in an eye may involve controlling a cutting jet area of the water jet based at least in part on a flow rate meter utilizing a feedback loop to a pump.


In another aspect of the present invention, the water jet apparatus utilizes a nozzle that has a jet cutting area and a dispersive area. In one embodiment, the water jet apparatus could be coupled to a system that incorporates a flow rate meter or pressure gauge, pressure vessel or reservoir, and pump. A feedback loop from the flow meter to the pump is controlled by a computer, central processing unit, microcontroller, or any custom application specific integrated circuit (ASIC). In another embodiment, a feedback loop exists at the aspiration pump that is controlled by a computer, central processing unit, microcontroller, or any custom application specific integrated circuit (ASIC). In yet another embodiment, a throttle valve helps to control the flow rate meter based on a feedback loop. All the previous embodiments are discussed in different versions of FIGS. 3A, B, C, and D.


These and other aspects and embodiments will be described in greater detail below, in reference to the attached drawing figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a water jet apparatus, according to one embodiment of the present invention;



FIG. 2 is a side-view of a portion of a nozzle of the water jet apparatus depicted in FIG. 1;



FIGS. 3A, 3B, 3C, 3D, 3E, 3F, and 3G are block diagrams of a water jet system, according to multiple embodiments of the present invention;



FIG. 4 is a cross section side view of an output of the nozzle with a cutting jet area and dispersive area depicted, according to another embodiment of the present invention;



FIG. 5 is an instrument drive mechanism to couple the water jet to a robotic system, according to another embodiment of the present invention;



FIG. 6 is a robotic system to control the water jet apparatus or water jet system, according to another embodiment of the present invention;



FIGS. 7A-7G are side, cross-sectional views of a portion of an eye, illustrating a method for using the water jet apparatus to perform cataract surgery, according to one embodiment of the present invention;



FIG. 8 is a common modern cataract extraction workflow; and



FIGS. 9-11 depict a method for a workflow based at least in part on utilizing the previous examples of a water jet apparatus or water jet system in manual or robotic system control, according to one embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Although certain preferred embodiments and examples are disclosed below, inventive subject matter extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses, and to modifications and equivalents thereof. Thus, the scope of the claims appended hereto is not limited by any of the particular embodiments described below. For example, in any method or process disclosed herein, the acts or operations of the method or process may be performed in any suitable sequence and are not necessarily limited to any particular disclosed sequence. Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding certain embodiments; however, the order of description should not be construed to imply that these operations are order dependent. Additionally, the structures, systems, and/or devices described herein may be embodied as integrated components or as separate components.


For purposes of comparing various embodiments, certain aspects and advantages of these embodiments are described. Not necessarily all such aspects or advantages are achieved by any particular embodiment. Thus, for example, various embodiments may be carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other aspects or advantages as may also be taught or suggested herein.


The embodiments described herein are directed to method, apparatus, and system for performing surgery for various applications including eye, micro-surgery, and/or other emulsification applications. Specifically, in one embodiment, a water jet apparatus may be used for manually performing eye surgery such as, cataract, or perform micro-surgery (remove cartilage), or any emulsification technique. In the case of a cataract in an eye, a water jet apparatus or system may be used to break apart a cataract into multiple, smaller pieces, which may then be suctioned from the eye using the probe or other suction means. Although the method and device are typically described below in the context of treating cataracts, in various alternative embodiments, other eye conditions may be treated.


In other embodiments, a system with robotic control of the water jet apparatus may be used. In these embodiments, the water jet apparatus is coupled to a robotic arm via an instrument drive mechanism, depicted in connection with FIG. 5. It may be advantageous to incorporate any of the water jet apparatus or water jet system described herein into a robotic surgery/delivery system, such as, the system depicted in FIG. 6. For example, any of the water jet apparatus or water jet systems may be incorporated into the da Vinci® Surgical System, provided by Intuitive Surgical, Inc., or the Magellan™ Robotic System, provided by Hansen Medical, Inc. the RiO, provided by Mako Surgical or Carnegie Mellon's Micron, or John Hopkins University's Steady Hand. Robotic surgical systems such as (but not limited to) these examples may register the water jet apparatus to the target anatomy. Such capability enables both precise and safe movement water jet apparatus such that, when enabled, the fluid is focused in the desired jet cutting area and rapidly dispersed outside of that in order to treat the target tissue and spares injury to surrounding tissue. A number of robotic surgery systems are presently known, and others may be developed specifically for use with the water jet probes and methods described herein.


In other embodiments, methods and workflows for cataract extraction are discussed to facilitate the use of the previous apparatus and system embodiments. For example, the workflows depicted are efficient and replace typical steps in a common modern cataract extraction flow. For example, the common Hydro dissection, Nuclear fracture, and emsulfication steps are replaced with a single water jet emsulfication step. The improved workflows are depicted in connection with FIGS. 9-11.


In another aspect of the present invention, a method of utilizing the water jet apparatus treating a cataract in an eye may involve controlling a cutting jet area of the water jet based at least in part on a flow rate meter utilizing a feedback loop to a pump, as depicted in connection with FIG. 3.


In another aspect of the present invention, the water jet apparatus utilizes a nozzle that generates a jet cutting area and a dispersive area when pressurized water is passed through it into a fluid filled environment, a preferred embodiment uses saline. In one embodiment, the water jet apparatus could be coupled to a system that incorporates a flow rate meter, pressure vessel, and pump. A feedback loop from the flow meter to the pump is controlled by a computer or central processing unit, as depicted in connection with FIG. 3A.


Referring to FIGS. 1 and 2, one embodiment of a water jet apparatus 102 includes a tip with a nozzle 106 at a distal end and a instrument drive coupling mechanism 103 at a proximal end. The nozzle 106 is depicted in further detail in FIG. 2. In one embodiment, the instrument drive coupling mechanism 103 facilitates coupling to a instrument drive mechanism as depicted in connection with FIG. 5. For this embodiment, the apparatus may be controlled by a robotic system as depicted in connection with FIG. 6 or the previous embodiments depicted in connection with da Vinci® Surgical System, provided by Intuitive Surgical, Inc., or the Magellan™ Robotic System, provided by Hansen Medical, Inc., or Carnegie Mellon's Micron, or John Hopkins University's Steady Hand.


However, in another embodiment, the water jet apparatus 102 would not have a instrument drive coupling mechanism 103 and would be used in a manual and may have a different configuration at the proximal end.


In one embodiment, the water jet apparatus would consist of the probe 102. In another embodiment, the water jet apparatus could be configured to include or support the other block diagrams depicted in connection with FIGS. 3A, B, C, and D.


Referring to FIG. 2, a side-view a portion of a nozzle 106 of the water jet apparatus is depicted. In one embodiment, the nozzle 106 is a sapphire orifice manufactured by Swiss Jewel Company. In this embodiment, the nozzle 106 may have a plurality of different diameter measurements, thickness, angle, and Vee depth as depicted in the table in connection with FIG. 2. However, the claimed subject matter is not limited to neither the different measurements depicted nor configurations implied by the illustration. For instance one skilled in the art appreciates utilizing different measurements or configurations as needed for the particular application or other factors, such as, jet cutting area, dispersive area, pressure levels, exiting location or nozzle orientation.


However, the claimed subject matter is not limited to a sapphire orifice nozzle. One skilled in the art appreciates utilizing not only different nozzle configurations, but also different nozzle material, such as, but not limited to, diamond or stainless steel.


Referring to FIG. 3A, a block diagram of a water jet system 300 is depicted. As discussed earlier, the water jet apparatus 102 of FIG. 1 may incorporate or be coupled to block diagrams depicted in connection with FIGS. 3A, B, C, and D, such as, a pump, pressure vessel, throttle valve, aspiration pump, and flow rate meter.


In one embodiment for a robotic control system, the water jet apparatus 102 is controlled by a robotic system, because the water jet apparatus is coupled to an instrument drive mechanism. For this embodiment, the other blocks depicted, such as, flow rate meter, computer, feedback loop, pump, and pressure vessel, are coupled to the robotic arm while residing near the robotic arm.


In another embodiment, the water jet apparatus 102 includes a pressure vessel, and is controlled by a robotic system, because the water jet apparatus is coupled to an instrument drive mechanism. For this embodiment, the other blocks depicted, such as, flow rate meter, personal computer, feedback loop, and pump are coupled to the robotic arm while residing near the robotic arm.


In yet another embodiment, the water jet apparatus 102 is manually controlled and may be coupled to the other block diagrams via an interface.


In this water jet system 300, the fluid enters a pump 302 and is forwarded to a pressure vessel 304 via a tube. An output of the pressure vessel is forwarded to the flow rate meter 306. In one embodiment, an output of the flow rate meter is controlled by a feedback loop through a computer and a pump. The feedback loop facilitates the output of the flow rate meter based on a desired jet cutting area of an output of the nozzle 106 from the water jet apparatus.


In alternative embodiments, FIG. 3B depicts a throttle valve to help facilitate the flow rate based on a feedback loop. In this embodiment, the throttle valve receives the control signal from either a computer, central processing unit, microcontroller, ASIC, or other control circuitry. In yet another embodiment, FIG. 3C depicts a fluid reservoir coupled to the pump, wherein the feedback loop between the flow rate meter and pump is controlled by a computer, central processing unit, microcontroller, ASIC, or other control circuitry.


In yet another embodiment, FIG. 3D depicts an aspiration pump that controls removal of material from the operative site. It also has a feedback loop with a flow rate meter that is controlled by a computer, central processing unit, microcontroller, ASIC, or other control circuitry. The aspiration pump may be controlled by the Aspiration flow rate meter feedback signal and or the water jet flow rate meter feedback signal to maintain a desired absolute aspiration flow, or to track the water jet flow in order to maintain the material volume in an enclosed operative space like the interior of the eye. Similarly in this configuration the Water Jet flow may be moderated or interrupted automatically, using the throttle valve or pump control, based on the measured aspiration flow. This may be done in the event that the aspiration path is unable to match the desired flow rate due to blockage, pinched tube, or other mechanical failure.


Referring to FIGS. 3E-3G, multiple embodiments of water jet system configurations are depicted. The configuration on of FIG. 3E depicts a coaxially disposed configuration of a water jet fluid flush with an aspiration on either side. The configuration of FIG. 3F depicts an adjacently disposed water jet fluid flush and aspiration in a separate tube. In the embodiment of FIG. 3G, the water jet fluid flush and aspiration are separately disposed.


Referring to FIG. 4, a fluid output of the nozzle 106 is depicted as first a focused cutting jet area and eventually a dispersive area. In one embodiment, the cutting jet area and dispersive area are in a fluid medium 402, such as, a saline solution. As mentioned in connection with FIGS. 3A, B, C, and D, the feedback loops control the flow of fluid to the water jet apparatus 102. For example, if the jet cutting area needs to be increased, the flow rate meter could request an increase in pressure from the pump. Alternatively, if the jet cutting area needs to be decreased, the flow rate meter could request an decrease in pressure from the pump.


Referring to FIG. 5, an instrument drive mechanism to couple the water jet to a robotic system is depicted. In one embodiment, the instrument drive coupling mechanism 103 of FIG. 1 is used to facilitate coupling to the instrument drive mechanism depicted in FIG. 5. For this embodiment, the apparatus may be controlled by a robotic system as depicted in connection with FIG. 6 or the previous embodiments depicted in connection with da Vinci® Surgical System, provided by Intuitive Surgical, Inc., or the Magellan™ Robotic System, provided by Hansen Medical, Inc., or Carnegie Mellon's Micron, or John Hopkins University's Steady Hand.


However, the instrument drive mechanism is not limited to this embodiment. One skilled in the art appreciates modifications to facilitate coupling to different robotic arm configurations.



FIG. 6 is a robotic system to control the water jet apparatus or water jet system. As discussed earlier, the instrument drive mechanism described in FIG. 5 may be used to couple the water jet apparatus or system to facilitate control by this robotic system configuration.


In this embodiment for a robotic control system, two instrument drivers each of which contains an instrument interface that drives a medical instrument is depicted. However, the claimed subject matter is not limited to this particular robotic system and could support any robotic control system with one or more interfaces and one or more instrument drivers. As previously mentioned, various robotic systems facilitate control of the water jet apparatus within the eye. For example, the robotic systems could utilize known localization techniques, such as, 3D imaging, MRI, CT, Ultrasound, Intra operative (OCT), and the like.


Turning now to FIGS. 7A-7G, one embodiment of a method for treating a cataract is illustrated. For convenience, only a distal portion of the probe 102 is illustrated in these figures. Also, in various alternative embodiments of the method, the water jet 102 may either manual or coupled with a robotic surgery system. Thus, the present description may be applied to any delivery method, whether robotic or not. Any suitable imaging system may be incorporated as well, sometimes as part of the robotic system. Three dimensional imaging is but one example.


In FIG. 7A, a portion of an eye is shown in cross-section, including a cornea, lens and cataract, with an incision formed in the cornea. The water jet 102 (as described above or some alternative embodiment) may be inserted through the incision, as shown in FIG. 7B. Once the cataract is fully broken up or emulsified, as shown in FIG. 7C, the pieces of cataract may be aspirated. Alternatively, a separate aspiration device may be used. Once the cataract is removed, an intraocular lens (IOL) implant may be implanted, typically through the same incision.


Different instrument configurations for the water jet are depicted in FIG. 7D (bent tube 108 with a nozzle 106), FIG. 7E depicts a pattern of cuts for a circle configuration, as required for a capsulotomy, with a yaw rotation movement of the water jet. The depiction of a circle is for illustrative purposes only, one schooled in the art will realize that other shapes or patterns can be generated manually or under robotic control as required by the surgical procedure. FIG. 7F depicts an isometric view and a top view of a plurality of shaped tubes, axially translatable to vary articulation angle, and configured to reduce proximal motion of the instrument, while enabling complex distal tip motion. FIG. 7G depicts multiple potentially retractable tip configurations for the water jet apparatus.


In alternative embodiments, any other suitable type of articulation mechanism may be used to articulate the water jet apparatus. Examples include, but are not limited to, concentric shaped tubes, flexures, pivot joints, cam mechanisms, pull wire enabled bending, slotted tubes and the like.



FIGS. 9-11 depict a method for a workflow based at least in part on utilizing the previous examples of a water jet apparatus or water jet system in manual or robotic system control, according to one embodiment of the present invention. The figures include descriptive text to facilitate understanding of the different workflow as compared to FIG. 8.


Elements or components shown with any embodiment herein are exemplary for the specific embodiment and may be used on or in combination with other embodiments disclosed herein. While the invention is susceptible to various modifications and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. The invention is not limited, however, to the particular forms or methods disclosed, but to the contrary, covers all modifications, equivalents and alternatives thereof.

Claims
  • 1. A medical method comprising: providing a water jet system, wherein the water jet system comprises a water jet fluid flush tube and an aspiration tube, wherein the water jet fluid flush tube and the aspiration tube are adjacently disposed relative to one another;endoscopically inserting the water jet system into a patient;utilizing an ultrasound system to provide an image of the water jet system relative to the patient, the ultrasound system being separate from the water jet system;applying fluid from the water jet flush tube to create a cutting jet area to break apart tissue;robotically controlling at least one of a shape and a pattern of cuts by the water jet fluid flush tube to break apart the tissue;controlling, via a feedback loop, a flow rate of the fluid from the water jet flush tube to treat a target tissue to be broken apart and spare injury to surrounding tissue;and using the aspiration tube to remove the broken apart tissue via aspiration;wherein the cutting jet area is controlled based at least in part on a flow rate meter.
  • 2. The medical method of claim 1, wherein during aspiration, a distal tip of the aspiration tube is adjacently disposed relative to a distal tip of the water jet fluid tube.
  • 3. The medical method of claim 1, further comprising attaching the water jet system to an arm.
  • 4. The medical method of claim 3, wherein the arm is a robotic arm, and wherein the robotic arm is coupled to the water jet system via an instrument driver.
  • 5. The medical method of claim 1, wherein the flow rate meter utilizes the feedback loop to control a pump, wherein the feedback loop is controlled by a central processing unit.
  • 6. The medical method of claim 1, wherein the fluid comprises a saline solution.
  • 7. The medical method of claim 1, wherein the water jet system comprises a central processing unit for controlling the aspiration tube.
  • 8. The medical method of claim 1, further comprising moderating a flow of the fluid from the water jet flush tube based on a measured aspiration flow from the aspiration tube.
  • 9. The medical method of claim 8, wherein moderating the flow is based on a throttle valve or pump control.
  • 10. A medical method comprising: providing a water jet system, wherein the water jet system comprises a water jet fluid flush tube and an aspiration tube, wherein the water jet fluid flush tube and the aspiration tube are adjacently disposed relative to one another;endoscopically inserting the water jet system into a patient;utilizing ultrasound to provide an image of the water jet system relative to the patient;applying fluid from the water jet flush tube to create a cutting jet area to break apart tissue;robotically controlling at least one of a shape and a pattern of cuts by the water jet fluid flush tube to break apart the tissue;controlling, via a feedback loop, a flow rate of the fluid from the water jet flush tube to treat a target tissue to be broken apart and spare injury to surrounding tissue; andusing the adjacently disposed aspiration tube to remove the broken apart tissue via aspiration;wherein the cutting jet area is controlled at least in part on a flow rate meter.
  • 11. The medical method of claim 10, further comprising attaching the water jet system to a robotic arm.
  • 12. The medical method of claim 11, wherein the robotic arm is coupled to the water jet system via an instrument driver.
  • 13. The medical method of claim 10, wherein the flow rate meter utilizes the feedback loop to a pump, wherein the feedback loop is controlled by a central processing unit.
  • 14. The medical method of claim 10, further comprising moderating the flow rate of the fluid from the water jet flush tube based on a measured aspiration flow from the aspiration tube, wherein moderating the flow rate is based on a throttle valve or pump control.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/158,548 filed Jan. 17, 2014, which claims the benefit of U.S. Provisional Application No. 61/754,426, filed Jan. 18, 2013, the entire contents of which are incorporated herein by reference in their entirety.

US Referenced Citations (459)
Number Name Date Kind
3763860 Clarke Oct 1973 A
4040413 Ohshiro Aug 1977 A
4198960 Utsugi Apr 1980 A
4470407 Hussein Sep 1984 A
4532935 Wang et al. Aug 1985 A
4597388 Koziol et al. Jul 1986 A
4685458 Leckrone Aug 1987 A
4747405 Leckrone May 1988 A
4854301 Nakajima Aug 1989 A
4898574 Uchiyama et al. Feb 1990 A
4905673 Pimiskern Mar 1990 A
4983165 Loiterman Jan 1991 A
5029574 Shimamura et al. Jul 1991 A
5085659 Rydell Feb 1992 A
5196023 Martin Mar 1993 A
5217465 Steppe Jun 1993 A
5308323 Sogawa et al. May 1994 A
5318589 Lichtman Jun 1994 A
5325848 Adams et al. Jul 1994 A
5342381 Tidemand Aug 1994 A
5344395 Whalen et al. Sep 1994 A
5353783 Nakao et al. Oct 1994 A
5370609 Drasler et al. Dec 1994 A
5372124 Takayama et al. Dec 1994 A
5411016 Kume May 1995 A
5425735 Rosen et al. Jun 1995 A
5431649 Mulier et al. Jul 1995 A
5441485 Peters Aug 1995 A
5449356 Walbrink Sep 1995 A
5450843 Moll et al. Sep 1995 A
5472406 De La Torre et al. Dec 1995 A
5472426 Bonati et al. Dec 1995 A
5496267 Drasler Mar 1996 A
5501667 Verduin, Jr. Mar 1996 A
5520684 Imran May 1996 A
5545170 Hart Aug 1996 A
5562648 Peterson Oct 1996 A
5562678 Booker Oct 1996 A
5572999 Funda et al. Nov 1996 A
5573535 Viklund Nov 1996 A
5613973 Jackson et al. Mar 1997 A
5645083 Essig et al. Jul 1997 A
5653374 Young et al. Aug 1997 A
5658311 Baden Aug 1997 A
5662590 De La Torre et al. Sep 1997 A
5695500 Taylor et al. Dec 1997 A
5697949 Giurtino et al. Dec 1997 A
5710870 Ohm Jan 1998 A
5716325 Bonutti Feb 1998 A
5788667 Stoller Aug 1998 A
5792165 Klieman Aug 1998 A
5797900 Madhani Aug 1998 A
5810770 Chin et al. Sep 1998 A
5893869 Barnhart Apr 1999 A
5897491 Kastenbauer et al. Apr 1999 A
5924175 Lippitt Jul 1999 A
5989230 Frassica Nov 1999 A
6033371 Torre et al. Mar 2000 A
6071281 Burnside et al. Jun 2000 A
6093157 Chandrasekaran Jul 2000 A
6110171 Rydell Aug 2000 A
6120476 Fung et al. Sep 2000 A
6120498 Jani et al. Sep 2000 A
6156030 Neev Dec 2000 A
6174318 Bates et al. Jan 2001 B1
6206903 Ramans Mar 2001 B1
6183435 Bumbalough et al. Jun 2001 B1
6322557 Nikolaevich Nov 2001 B1
6326616 Andrien et al. Dec 2001 B1
6375635 Moutafis Apr 2002 B1
6394998 Wallace et al. May 2002 B1
6398792 O'Connor Jun 2002 B1
6405078 Moaddeb et al. Jun 2002 B1
6406486 De La Torre et al. Jun 2002 B1
6436107 Wang et al. Aug 2002 B1
6440061 Wenner et al. Aug 2002 B1
6508823 Gonon Jan 2003 B1
6522906 Salisbury et al. Feb 2003 B1
6554793 Pauker et al. Apr 2003 B1
6577891 Jaross et al. Jun 2003 B1
6638246 Naimark et al. Oct 2003 B1
6671581 Niemeyer et al. Dec 2003 B2
6676668 Mercereau et al. Jan 2004 B2
6685698 Morley et al. Feb 2004 B2
6706050 Giannadakis Mar 2004 B1
6736784 Menne et al. May 2004 B1
6763259 Hauger et al. Jul 2004 B1
7087061 Chernenko et al. Aug 2006 B2
7282055 Tsuruta Oct 2007 B2
7344528 Tu et al. Mar 2008 B1
7351193 Forman et al. Apr 2008 B2
7559934 Teague et al. Jul 2009 B2
7725214 Diolaiti May 2010 B2
7736356 Cooper et al. Jun 2010 B2
7882841 Aljuri Feb 2011 B2
7883475 Dupont et al. Feb 2011 B2
7963911 Turliuc Jun 2011 B2
7967799 Boukhny Jun 2011 B2
7987046 Peterman Jul 2011 B1
8002713 Heske Aug 2011 B2
8038598 Khachi Oct 2011 B2
8049873 Hauger et al. Nov 2011 B2
8092397 Wallace et al. Jan 2012 B2
8187173 Miyoshi May 2012 B2
8224484 Swarup et al. Jul 2012 B2
8257303 Moll et al. Sep 2012 B2
8414564 Goldshleger et al. Apr 2013 B2
8480595 Speeg Jul 2013 B2
8518024 Williams et al. Aug 2013 B2
8523762 Miyamoto et al. Sep 2013 B2
8540748 Murphy et al. Sep 2013 B2
8820603 Shelton et al. Sep 2014 B2
8827948 Romo et al. Sep 2014 B2
8882660 Phee et al. Nov 2014 B2
8945163 Voegele et al. Feb 2015 B2
8956280 Eversull et al. Feb 2015 B2
9173713 Hart et al. Nov 2015 B2
9254123 Alvarez et al. Feb 2016 B2
9345456 Tsonton et al. May 2016 B2
9460536 Hasegawa et al. Oct 2016 B2
9504604 Alvarez Nov 2016 B2
9561083 Yu et al. Feb 2017 B2
9592042 Titus Mar 2017 B2
9597152 Schaeffer Mar 2017 B2
9622827 Yu et al. Apr 2017 B2
9636184 Lee et al. May 2017 B2
9713509 Schuh et al. Jul 2017 B2
9727963 Mintz et al. Aug 2017 B2
9730757 Brudniok Aug 2017 B2
9737371 Romo et al. Aug 2017 B2
9737373 Schuh Aug 2017 B2
9744335 Jiang Aug 2017 B2
9763741 Alvarez et al. Sep 2017 B2
9788910 Schuh Oct 2017 B2
9844412 Bogusky et al. Dec 2017 B2
9867635 Alvarez et al. Jan 2018 B2
9918681 Wallace et al. Mar 2018 B2
9931025 Graetzel et al. Apr 2018 B1
9949749 Noonan et al. Apr 2018 B2
9955986 Shah May 2018 B2
9962228 Schuh et al. May 2018 B2
9980785 Schuh May 2018 B2
9993313 Schuh et al. Jun 2018 B2
10016900 Meyer et al. Jul 2018 B1
10022192 Ummalaneni Jul 2018 B1
10080576 Romo et al. Sep 2018 B2
10136959 Mintz et al. Nov 2018 B2
10145747 Lin et al. Dec 2018 B1
10149720 Romo Dec 2018 B2
10159532 Ummalaneni Dec 2018 B1
10159533 Moll et al. Dec 2018 B2
10169875 Mintz et al. Jan 2019 B2
10482599 Mintz et al. Nov 2019 B2
10517692 Eyre et al. Dec 2019 B2
10524866 Srinivasan Jan 2020 B2
10639114 Schuh May 2020 B2
20020019644 Hastings Feb 2002 A1
20020111608 Baerveldt Aug 2002 A1
20020111621 Wallace et al. Aug 2002 A1
20030004455 Kadziauskas Jan 2003 A1
20030040681 Ng et al. Feb 2003 A1
20030065358 Frecker Apr 2003 A1
20030109877 Morley Jun 2003 A1
20030109889 Mercereau Jun 2003 A1
20030158545 Hovda et al. Aug 2003 A1
20030208189 Payman Nov 2003 A1
20040030349 Boukhny Feb 2004 A1
20040143253 Vanney Jul 2004 A1
20040153093 Donovan Aug 2004 A1
20040158261 Vu Aug 2004 A1
20040186349 Ewers Sep 2004 A1
20040193146 Lee et al. Sep 2004 A1
20040210116 Nakao Oct 2004 A1
20040253079 Sanchez Dec 2004 A1
20050033270 Ramans et al. Feb 2005 A1
20050054900 Mawn Mar 2005 A1
20050070844 Chow et al. Mar 2005 A1
20050159645 Bertolero Jul 2005 A1
20050240178 Morley et al. Oct 2005 A1
20050261705 Gist Nov 2005 A1
20060015133 Grayzel Jan 2006 A1
20060058813 Teague Mar 2006 A1
20060116693 Weisenburgh Jun 2006 A1
20060135963 Kick Jun 2006 A1
20060156875 McRury et al. Jul 2006 A1
20060189891 Waxman et al. Aug 2006 A1
20070016164 Dudney et al. Jan 2007 A1
20070027443 Rose Feb 2007 A1
20070027534 Bergheim Feb 2007 A1
20070032906 Sutherland et al. Feb 2007 A1
20070106304 Hammack May 2007 A1
20070135763 Musbach et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070208375 Nishizawa Sep 2007 A1
20070213668 Spitz Sep 2007 A1
20070239178 Weitzner et al. Oct 2007 A1
20070250111 Lu Oct 2007 A1
20070299427 Yeung et al. Dec 2007 A1
20080015566 Livneh Jan 2008 A1
20080021440 Solomon Jan 2008 A1
20080033467 Miyamoto et al. Feb 2008 A1
20080046122 Manzo et al. Feb 2008 A1
20080065109 Larkin Mar 2008 A1
20080065111 Blumenkranz Mar 2008 A1
20080097293 Chin et al. Apr 2008 A1
20080114341 Thyzel May 2008 A1
20080125698 Greg et al. May 2008 A1
20080177285 Brock et al. Jul 2008 A1
20080187101 Gertner Aug 2008 A1
20080196533 Bergamasco Aug 2008 A1
20080228104 Uber et al. Sep 2008 A1
20090012507 Culbertson et al. Jan 2009 A1
20090030446 Measamer Jan 2009 A1
20090036900 Moll Feb 2009 A1
20090043305 Brodbeck Feb 2009 A1
20090062602 Rosenberg et al. Mar 2009 A1
20090082634 Kathrani et al. Mar 2009 A1
20090088774 Swarup et al. Apr 2009 A1
20090105723 Dillinger Apr 2009 A1
20090131885 Akahoshi May 2009 A1
20090161827 Gertner et al. Jun 2009 A1
20090171271 Webster et al. Jul 2009 A1
20090227998 Aljuri Sep 2009 A1
20090248041 Williams et al. Oct 2009 A1
20090248043 Tierney et al. Oct 2009 A1
20090264878 Carmel et al. Oct 2009 A1
20090268015 Scott et al. Oct 2009 A1
20090270760 Leimbach et al. Oct 2009 A1
20090287188 Golden et al. Nov 2009 A1
20090299352 Zerfas Dec 2009 A1
20090312768 Hawkins et al. Dec 2009 A1
20090326322 Diolaiti Dec 2009 A1
20100004642 Lumpkin Jan 2010 A1
20100010504 Simaan et al. Jan 2010 A1
20100011900 Burbank Jan 2010 A1
20100011901 Burbank Jan 2010 A1
20100036294 Mantell et al. Feb 2010 A1
20100073150 Olson et al. Mar 2010 A1
20100082017 Zickler Apr 2010 A1
20100114115 Schlesinger et al. May 2010 A1
20100179632 Bruszewski et al. Jul 2010 A1
20100204605 Blakley Aug 2010 A1
20100204646 Plicchi et al. Aug 2010 A1
20100217235 Thorstenson Aug 2010 A1
20100225209 Goldberg Sep 2010 A1
20100228191 Alvarez et al. Sep 2010 A1
20100228249 Mohr Sep 2010 A1
20100268211 Manwaring et al. Oct 2010 A1
20100280320 Alvarez et al. Nov 2010 A1
20100280525 Alvarez et al. Nov 2010 A1
20100312141 Keast et al. Dec 2010 A1
20100331858 Simaan et al. Dec 2010 A1
20110009779 Romano et al. Jan 2011 A1
20110015483 Barbagli Jan 2011 A1
20110015648 Alvarez et al. Jan 2011 A1
20110028887 Fischer et al. Feb 2011 A1
20110040404 Diolaiti et al. Feb 2011 A1
20110046441 Wiltshire et al. Feb 2011 A1
20110071541 Prisco et al. Mar 2011 A1
20110071543 Prisco et al. Mar 2011 A1
20110106102 Balicki et al. May 2011 A1
20110106146 Jeong May 2011 A1
20110125165 Simaan et al. May 2011 A1
20110152880 Alvarez et al. Jun 2011 A1
20110160713 Neuberger Jun 2011 A1
20110167611 Williams Jul 2011 A1
20110184391 Aljuri Jul 2011 A1
20110213362 Cunningham Sep 2011 A1
20110224660 Neuberger et al. Sep 2011 A1
20110238064 Williams et al. Sep 2011 A1
20110257641 Hastings et al. Oct 2011 A1
20110276085 Krzyzanowski Nov 2011 A1
20110306836 Ohline et al. Dec 2011 A1
20110313343 Milutinovic et al. Dec 2011 A1
20120069167 Liu et al. Mar 2012 A1
20120253277 Tah et al. Apr 2012 A1
20120138586 Webster et al. Jun 2012 A1
20120209315 Amat Aug 2012 A1
20120232342 Reydel Sep 2012 A1
20120253332 Moll Oct 2012 A1
20120259320 Loesel et al. Oct 2012 A1
20120283747 Popovic Nov 2012 A1
20120296318 Wellhofer et al. Nov 2012 A1
20130006144 Clancy Jan 2013 A1
20130035537 Wallace Feb 2013 A1
20130053877 BenMaamer Feb 2013 A1
20130066136 Palese et al. Mar 2013 A1
20130085442 Shtul et al. Apr 2013 A1
20130085486 Boutoussov et al. Apr 2013 A1
20130096422 Boctor Apr 2013 A1
20130096574 Kang et al. Apr 2013 A1
20130110042 Humphreys May 2013 A1
20130110107 Smith et al. May 2013 A1
20130116716 Bahls et al. May 2013 A1
20130144116 Cooper et al. Jun 2013 A1
20130144274 Stefanchik et al. Jun 2013 A1
20130144395 Stefanchik Jun 2013 A1
20130190796 Tilson et al. Jul 2013 A1
20130225997 Dillard et al. Aug 2013 A1
20130226161 Hickenbotham Aug 2013 A1
20130253267 Collins Sep 2013 A1
20130303876 Gelfand et al. Nov 2013 A1
20130310819 Neuberger et al. Nov 2013 A1
20130345686 Brown Dec 2013 A1
20140005681 Gee et al. Jan 2014 A1
20140012276 Alvarez Jan 2014 A1
20140039681 Bowling Feb 2014 A1
20140046308 Bischoff Feb 2014 A1
20140051985 Fan et al. Feb 2014 A1
20140058365 Bille Feb 2014 A1
20140058404 Hammack Feb 2014 A1
20140058428 Christopher Feb 2014 A1
20140100445 Stenzel Apr 2014 A1
20140142591 Alvarez et al. May 2014 A1
20140163318 Swanstrom Jun 2014 A1
20140194859 Ianchulev Jul 2014 A1
20140194905 Kappel Jul 2014 A1
20140243849 Saglam Aug 2014 A1
20140275956 Fan Sep 2014 A1
20140276594 Tanner et al. Sep 2014 A1
20140276723 Parihar Sep 2014 A1
20140276956 Crainich Sep 2014 A1
20140309649 Alvarez et al. Oct 2014 A1
20140309655 Gal et al. Oct 2014 A1
20140316203 Carroux et al. Oct 2014 A1
20140357984 Wallace et al. Dec 2014 A1
20140364870 Alvarez et al. Dec 2014 A1
20150051592 Kintz Feb 2015 A1
20150080879 Trees Mar 2015 A1
20150119638 Yu et al. Apr 2015 A1
20150127045 Prestel May 2015 A1
20150133960 Lohmeier May 2015 A1
20150164522 Budiman Jun 2015 A1
20150164594 Romo et al. Jun 2015 A1
20150164596 Romo Jun 2015 A1
20150201917 Snow Jul 2015 A1
20150202085 Lemonis Jul 2015 A1
20150314110 Park Nov 2015 A1
20150335480 Alvarez et al. Nov 2015 A1
20160001038 Romo et al. Jan 2016 A1
20160022289 Wan Jan 2016 A1
20160022466 Pedtke Jan 2016 A1
20160030073 Lsakov Feb 2016 A1
20160045208 Ciulla Feb 2016 A1
20160051318 Manzo et al. Feb 2016 A1
20160066935 Nguyen et al. Mar 2016 A1
20160151122 Alvarez et al. Jun 2016 A1
20160158490 Leeflang Jun 2016 A1
20160183841 Duindam et al. Jun 2016 A1
20160199984 Lohmeier et al. Jul 2016 A1
20160235495 Wallace et al. Aug 2016 A1
20160249932 Rogers et al. Sep 2016 A1
20160270865 Landey et al. Sep 2016 A1
20160279394 Moll et al. Sep 2016 A1
20160287279 Bovay et al. Oct 2016 A1
20160303743 Rockrohr Oct 2016 A1
20160331358 Gordon Nov 2016 A1
20160367324 Sato et al. Dec 2016 A1
20160374541 Agrawal et al. Dec 2016 A1
20170007337 Dan Jan 2017 A1
20170049471 Gaffney et al. Feb 2017 A1
20170065227 Marrs Mar 2017 A1
20170095234 Prisco et al. Apr 2017 A1
20170095295 Overmyer Apr 2017 A1
20170100199 Yu et al. Apr 2017 A1
20170119413 Romo May 2017 A1
20170119481 Romo et al. May 2017 A1
20170135706 Frey May 2017 A1
20170151416 Kutikov Jun 2017 A1
20170165011 Bovay et al. Jun 2017 A1
20170172553 Chaplin Jun 2017 A1
20170172673 Yu et al. Jun 2017 A1
20170202627 Sramek et al. Jul 2017 A1
20170209073 Sramek et al. Jul 2017 A1
20170252096 Felder Sep 2017 A1
20170265923 Privitera Sep 2017 A1
20170290631 Lee et al. Oct 2017 A1
20170319289 Neff et al. Nov 2017 A1
20170333679 Jiang Nov 2017 A1
20170340396 Romo et al. Nov 2017 A1
20170367782 Schuh et al. Dec 2017 A1
20180000563 Shanjani et al. Jan 2018 A1
20180025666 Ho et al. Jan 2018 A1
20180049824 Harris Feb 2018 A1
20180177383 Noonan et al. Jun 2018 A1
20180177556 Noonan et al. Jun 2018 A1
20180193049 Heck et al. Jul 2018 A1
20180214011 Graetzel et al. Aug 2018 A1
20180221038 Noonan et al. Aug 2018 A1
20180221039 Shah Aug 2018 A1
20180250083 Schuh et al. Sep 2018 A1
20180271616 Schuh et al. Sep 2018 A1
20180279852 Rafii-Tari et al. Oct 2018 A1
20180280660 Landey et al. Oct 2018 A1
20180289243 Landey et al. Oct 2018 A1
20180289431 Draper et al. Oct 2018 A1
20180296285 Simi et al. Oct 2018 A1
20180325499 Landey et al. Nov 2018 A1
20180333044 Jenkins Nov 2018 A1
20180360435 Romo Dec 2018 A1
20190000559 Berman et al. Jan 2019 A1
20190000560 Berman et al. Jan 2019 A1
20190000566 Graetzel et al. Jan 2019 A1
20190000568 Connolly et al. Jan 2019 A1
20190000576 Mintz et al. Jan 2019 A1
20190083183 Moll et al. Mar 2019 A1
20190099231 Bruehwiler Apr 2019 A1
20190105776 Ho et al. Apr 2019 A1
20190105785 Meyer Apr 2019 A1
20190107454 Lin Apr 2019 A1
20190110839 Rafii-Tari et al. Apr 2019 A1
20190110843 Ummalaneni et al. Apr 2019 A1
20190167366 Ummalaneni Jun 2019 A1
20190175009 Mintz Jun 2019 A1
20190175062 Rafii-Tari et al. Jun 2019 A1
20190175287 Hill Jun 2019 A1
20190175799 Hsu Jun 2019 A1
20190183585 Rafii-Tari et al. Jun 2019 A1
20190183587 Rafii-Tari et al. Jun 2019 A1
20190216548 Ummalaneni Jul 2019 A1
20190216576 Eyre Jul 2019 A1
20190223974 Romo Jul 2019 A1
20190228525 Mintz et al. Jul 2019 A1
20190239890 Stokes Aug 2019 A1
20190246882 Graetzel et al. Aug 2019 A1
20190262086 Connolly et al. Aug 2019 A1
20190269468 Hsu et al. Sep 2019 A1
20190274764 Romo Sep 2019 A1
20190290109 Agrawal et al. Sep 2019 A1
20190298160 Ummalaneni et al. Oct 2019 A1
20190298460 Al-Jadda Oct 2019 A1
20190298465 Chin Oct 2019 A1
20190314616 Moll et al. Oct 2019 A1
20190328213 Landey et al. Oct 2019 A1
20190336238 Yu Nov 2019 A1
20190365209 Ye et al. Dec 2019 A1
20190365479 Rafii-Tari Dec 2019 A1
20190365486 Srinivasan et al. Dec 2019 A1
20190374297 Wallace et al. Dec 2019 A1
20190375383 Alvarez Dec 2019 A1
20190380787 Ye Dec 2019 A1
20190380797 Yu Dec 2019 A1
20200000530 DeFonzo Jan 2020 A1
20200000533 Schuh Jan 2020 A1
20200022767 Hill Jan 2020 A1
20200039086 Meyer Feb 2020 A1
20200046434 Graetzel Feb 2020 A1
20200054408 Schuh Feb 2020 A1
20200060516 Baez Feb 2020 A1
20200093549 Chin Mar 2020 A1
20200093554 Schuh Mar 2020 A1
20200100845 Julian Apr 2020 A1
20200100853 Ho Apr 2020 A1
20200100855 Leparmentier Apr 2020 A1
20200101264 Jiang Apr 2020 A1
20200107894 Wallace Apr 2020 A1
20200121502 Kintz Apr 2020 A1
20200146769 Eyre May 2020 A1
20200163726 Tanner May 2020 A1
Foreign Referenced Citations (15)
Number Date Country
101443069 May 2009 CN
100515347 Jul 2009 CN
103298414 Sep 2013 CN
205729413 Nov 2016 CN
1 321 106 Jun 2003 EP
1 849 423 Oct 2007 EP
09-224951 Sep 1997 JP
2005-270464 Oct 2005 JP
WO 03096871 Nov 2003 WO
WO 04105849 Dec 2004 WO
WO 11161218 Dec 2011 WO
WO 13107468 Jul 2013 WO
WO 13130895 Sep 2013 WO
WO 17114855 Jul 2017 WO
WO 18069679 Apr 2018 WO
Non-Patent Literature Citations (10)
Entry
Balicki, et al. Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery. Medical Image Computing and Computer-Assisted Intervention. MICCAI 2009. Springer Berlin Heidelberg, 2009. 108-115.
Ehlers, et al. Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging. Investigative Ophthalmology and Visual Science 52.6. 2011; 3153-3159.
Hubschman. Robotic Eye Surgery: Past, Present, and Future. Journal of Computer Science and Systems Biology. 2012.
Stoyanov, Oct. 20, 2011, Surgical Vision, Annals of Biomedical Engineering 40(2):332-345.
Verdaasdonk et al., Jan. 23, 2012, Effect of microsecond pulse length and tip shape on explosive bubble formation of 2.78 pm Er,Cr;Ysgg and 2.94 μm Er:YAG laser, Proceedings of SPIE, vol. 8221, 12.
European search report and search opinion dated Jul. 2, 2015 for EP Application No. 12856685.8.
International search report dated Jun. 16, 2014 for PCT/US2014/022424.
International search report and written opinion dated Mar. 29, 2013 for PCT/US2012/069540.
International search report and written opinion dated Jan. 27, 2015 for PCT Application No. PCT/US2014/062284.
International Search Report dated Nov. 7, 2014 in PCT/US2014/041990.
Related Publications (1)
Number Date Country
20190151148 A1 May 2019 US
Provisional Applications (1)
Number Date Country
61754426 Jan 2013 US
Continuations (1)
Number Date Country
Parent 14158548 Jan 2014 US
Child 16257980 US