The present invention relates to the field of signal processing. More specifically, the present invention relates to a method, apparatus, and system for efficient rate control in audio encoding.
As technology continues to advance and the demand for video and audio signal processing continues to increase at a rapid rate, effective and efficient techniques for signal processing and data transmission have become more and more important in system design and implementation. Various standards or specifications for audio signal processing have been developed over the years to standardize and facilitate various coding schemes relating to audio signal processing. In particular, a group known as the Moving Pictures Expert Group (MPEG) was established to develop a standard or specification for the coded representation of moving pictures and associated audio stored on digital storage media. As a result, a standard known as the ISO/IEC 11172-3 (Part 3—Audio) CODING OF MOVING PICTURES AND ASSOCIATED AUDIO FOR DIGITAL STORAGE MEDIA AT UP TO ABOUT 1.5 MBITS/S (also referred to as the MPEG standard or MPEG specification herein), published August, 1993, was developed which standardizes various coding schemes for audio signals, e.g., MPEG-1 or MPEG-2 Layers I, II, and III. ISO stands for International Organization for Standardization and IEC stands for International Electrotechnical Commission, respectively. Generally, the MPEG audio specification does not standardize the encoder but rather the type of information that an encoder needs to produce and write to an MPEG compliant bitstream, as well as the way in which the decoder needs to parse, decompress, and resynthesize this information to regain the encoded audio signals. In particular, MPEG standard is developed for perceptual audio coding rather than lossless coding. In lossless coding, redundancy in the waveform is reduced to compress the sound signal and the decoded sound wave does not differ from the original sound wave. In contrast, in perceptual audio coding, the aim is not to regain the original signal exactly after encoding and decoding but rather to eliminate those parts of the audio signal that are irrelevant to the human ear (e.g., that are not heard).
An audio encoder typically includes a bit allocation module or unit (also called the bit allocator herein) whose role is to allocate more bits to those frequencies where quantization noise is audible to a listener and allocate fewer bits to those frequencies where quantization noise is masked and is inaudible to the listener. Also, the bit allocator needs to ensure that the total number of bits used for a specific audio block or frame does not exceed the maximum number of bits available as determined by the specified output bit rate. Currently, the methods for performing the bit allocation, as described in the MPEG standard includes two processing loops: (1) an outer or distortion control loop; and (2) an inner or rate control loop. One of the problems or disadvantages associated with the current methods described in the ISO/IEC 11272-3 MPEG standard is their inefficiency due to numerous iterations involved in determining or computing the optimum quantization parameters that will satisfy the rate criteria.
The features of the present invention will be more fully understood by reference to the accompanying drawings, in which:
In the following detailed description numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be appreciated by one skilled in the art that the present invention may be understood and practiced without these specific details. Furthermore, while the teachings of the present invention are applicable to MPEG Layer III (commonly known as MP3) audio encoding, it should be appreciated and understood by one skilled in the art that the present invention is not limited to MPEG Layer III audio encoding and can be applied to any method, apparatus, and system for efficient bit allocation to accomplish bit rate reduction in audio processing.
where ix corresponds to the quantized spectral values for frequency line i, and xr corresponds to the original spectral value. Since the quantized values will be further encoded using Huffman tables, the global_gain parameter first is adjusted so that the maximum quantized value falls below the maximum limit of the corresponding Huffman look-up tables described in ISO/IEC specification. This is done according to the ISO/IEC spec by continuously increasing the global_gain value until the maximum quantized value is less or equal to the maximum Huffman lookup table (LUT) index (e.g. 8191 for MP3 encoding). After selecting the minimum global_gain to allow Huffman table look-up, the next task is to ensure that the number of bits used for Huffman encoding does not exceed the maximum number of bits allocated for the block of spectral values. This is done according to the ISO/IEC spec by continuously increasing the global_gain value until the number of bits used for encoding is equal or less than the maximum number of bits allocated for the block. As shown in
As mentioned above, a disadvantage associated with the methods disclosed in the ISO/IEC document is their inefficiency due to the numerous iterations involved in computing the global_gain value to satisfy the rate criteria. As described in more details below, according to the teachings of the present invention, a new method is provided for efficient bit allocation of spectral values obtained from a sub-band filter. In one embodiment of the present invention, the method as described herein is directed to improving the efficiency of the rate control loop (also called rate control process herein). The method as described herein includes the following:
Accordingly, at a high level, the present invention includes two parts or two components as follows: (1) efficient determination of a minimum global_gain value to meet the maximum Huffman look-up criteria; and (2) efficient determination of a global_gain value to meet the rate criteria within the rate control loop.
Determining the Minimum Global Gain Value to Meet the Maximum Huffman Look-up Criteria
Huffman tables that are used in a typical audio encoder are limited to a maximum quantized value that can be looked up using the table index. For example, Huffman tables that are used in a typical MP3 encoder are limited to a maximum quantized value of 8191 that corresponds to 13 bits of precision (213 entries). Therefore, the maximum quantized value for the block of spectral values needs to be bounded to the maximum index into the corresponding Huffman tables. For illustration and generalization purposes, the maximum quantized value is called α. In the case of MP3 encoding, α=8191. Equation (2) below can be obtained using equation (1) shown above:
Removing the nint[] function (standing for nearest integer), the following equation (3) can be obtained:
where ε is the error introduced by quantizing to the nearest integer, and therefore:
|ε|≦0.5 (4)
In one embodiment, using =0.5 and setting |xr(i)|=MAX|xr(i)| will result in the largest value for the left hand side of equation (3), where MAX|xr(i)| represents the largest spectral value magnitude across the frequency lines indexed by i. Therefore, equation (3) can be re-written as:
The following equations (6)-(10) are used to solve equation (5) for the variable global_gain. Equation (5) can be rewritten as follows:
Taking the 4/3 root on both sides of equation (6), equations (7) is obtained as shown below:
Solving for 2global
Taking the logarithm base 2 of both sides of equation (7), the following equation is obtained:
Solving for global_gain results in equation (10) shown below:
Since global_gain needs to be an integer number, take the ceiling of equation (10) to obtain the following equation:
where ┌x┐ corresponds to the nearest integer that is greater than or equal to x. Therefore, the minimum global_gain value required to meet the maximum Huffman table entry α, can be computed from equation (11).
Efficient Determination of a Global Gain Value to Meet the Rate Criteria
In one embodiment of the present invention, a modified Newtonian search process or algorithm is developed as described in more details below to find the roots of the following equation:
total_bits=fHuffman(ix)=fHuffman(global_gain)≦target_bits (12)
where fHuffman(.) corresponds to the total number of bits used during Huffman encoding of the quantized values ix, which as shown in equation (12) is a function of global_gain. The value target_bits correspond the maximum number of bits to be encoded per audio frame. In one embodiment, this value is dependent on a desired compression ratio or output bit rate and the input audio frame. For example, in MP3 encoding, the input audio frames include 1152 PCM samples per channel. If the input sampling rate of the audio signal is 44.1 KHz (or 44100 samples/sec), and the encoding is to be done at 128 Kbits/sec, then the target_bits for one channel of an audio frame can be computed as follows:
In general, a Newtonian search process works by calculating the line tangent to an “unknown” surface and using the intercept of this line as a new guess for the root of the surface or function.
Generally, the Newton search algorithm or process is a special case of a class of root finding techniques based on Nth-order polynomials. Specifically, the Newton search corresponds to a 1st order polynomial. This root finding technique derives from the Taylor Series of a function f(x) at some δ interval from x as follows:
where fn(x) corresponds to the nth derivative of function f(x).
For relatively smooth functions, derivatives of 2nd order and above may be negligible, and therefore, f(x+δ) may be approximated by:
f(x+δ)√f(x)+f′(x)δ (14)
In trying to find the value of x for which the function is equal to some value c, set f(x+δ)=c, and obtain the following:
Equation (15) corresponds to the Newton approximation. For the bit allocation problem as described herein, x is substituted with the global_gain; f(x) is substituted with the total Huffman bits, fHuffman(global_gain); c is the desired root, in this case target_bits; and δ corresponds to the step size to be used to obtain a new global_gain. For clarity purposes, the f(global_gain) is used to represent fHuffman(global_gain) from now on. Therefore, equation (15) becomes:
The derivative, f′(global_gain), at iteration i, can be numerically approximated as follows:
The estimation of the function's derivative uses the previously computed global_gain. This estimation of the derivative is sometimes called in literature as the Secant method for finding roots. Generally, this technique is simple and works well with well-behaved functions as in the case of Huffman tables. However, it should be understood and appreciated by one skilled in the art that any derivative estimation technique can be used in accordance with the teachings of the present invention.
In one embodiment, the assumption in the use of a 1st order polynomial is that the function to be searched is relatively smooth and its derivative is close to a straight line. For example, the Huffman tables used for MPEG encoding are designed so that the total number of bits decreases progressively towards 0 as the global_gain is increased. Therefore, this implies that the function f(global_gain) is well behaved, and a 1st order polynomial will suffice. In one embodiment, the straight line for the derivative is then used to estimate a new global_gain, i.e., global_gainn+1.
Two issues may arise when using a Newtonian search with equation (12):
In one embodiment of the present invention, the first issue was addressed by allowing the search process to back-track to a smaller value of global_gain after it reaches a global_gain that satisfies the condition in equation (12). In one embodiment, this back-tracking can be repeated more than once. Then, the global_gain that results in a total_bits closer to target_bits is selected. Usually, the selection may not be necessary, since the last global_gain after N times is the closer one to the target_bits. The times the process is allowed to reach a total_bits that satisfies equation (12) is denominated as “go_up” in the flow diagram shown in
In one embodiment, the second issue was addressed by forcing the global_gain during each iteration to be updated by at least a positive integer (e.g., +1) or a negative integer (e.g., −1), depending on the direction of the search. A positive integer such as +1 is used if the process is still progressing down towards target_bits, and a negative integer such as −1 is used when the process reaches a total_bits below target_bits and the search is continued.
In one embodiment of the present invention, the global_gain parameter is stored in memory to be used as an initial estimate for the next block of spectral values. Two initial values of total_bits (tb0 and tb1) computed from two initial global_gains (gg0 and gg1 respectively) are used to start the iteration. In one embodiment, gg0 is taken as the global_gain pre-computed as described above and gg1 can be computed as follows:
gg1=max(gg0+β,global_gain from previous block) (18)
where β can be a predetermined positive integer that can be optimized to increase the convergence rate. For example, a value of 5 for β can be used. In one embodiment, the global_gain of the previous block is compared with gg0 to ensure that the criteria of equation (11) is met for gg1.
As described above, several other root finding techniques can also be used in place of the Newtonian search. The theory behind some of the various techniques is discussed below.
Higher Order Polynomials
Higher order polynomials may be used to estimate the root of the function. For an Nth order polynomial, equation (13) is truncated after the Nth derivative. For example, a 2nd order polynomial will correspond to:
In order to obtain the value of δ that will satisfy the root condition, the following quadratic equation needs to be solved:
Also, it is required to estimate the 2nd derivative of the function f(x). If equation (17) is used to estimate the 2nd derivative, the following is obtained:
which requires storing of the derivative at iteration i−1.
The technique of using a 2nd order polynomial, and using equation (21) to estimate the 2nd derivation of the function is commonly known in the art as the Muller's method.
Initial Global Gain Estimation
In one embodiment of the present invention, more than one global_gain values are stored in memory for the estimation of the initial Newton search conditions. In one embodiment, gg0 is computed according to equation (11) and gg1 is computed according to the following equation:
where m corresponds to the current audio frame under iteration and ck are empirically determined coefficients. The coefficients ck could be determined by executing a regression of global_gain in audio frame m against the global_gain values from the previous N frames. Any other error minimization technique could also be used to estimate the global_gain coefficients.
The invention has been described in conjunction with the preferred embodiment. It is evident that numerous alternatives, modifications, variations and uses will be apparent to those skilled in the art in light of the foregoing description.
This application is a Continuation of application Ser. No. 09/967,440 filed Sep. 27, 2001 now U.S. Pat. No. 6,732,071.
Number | Name | Date | Kind |
---|---|---|---|
4815134 | Picone | Mar 1989 | A |
5226084 | Hardwick et al. | Jul 1993 | A |
5481614 | Johnston | Jan 1996 | A |
5590108 | Mitsuno et al. | Dec 1996 | A |
5627938 | Johnston | May 1997 | A |
5664057 | Crossman | Sep 1997 | A |
5682463 | Allen et al. | Oct 1997 | A |
5978762 | Smyth et al. | Nov 1999 | A |
6363338 | Ublae | Mar 2002 | B1 |
6510407 | Wang | Jan 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20040162723 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09967440 | Sep 2001 | US |
Child | 10783556 | US |