The disclosure relates to method, apparatus and system for single-molecule polymerase biosensor having transition metal dichalcogenide nanobridge for sequencing, information storage and reading. In an embodiment, the present disclosure relates to nanofabrication of biomolecular sensing devices and to the fabrication of devices for analyzing DNA and related biomolecules. In still another embodiment, the disclosure relates to a DNA-based memory system.
Analysis of biomolecules including DNAs and genomes has received an increasing amount of attention in recent years in various fields of precision medicine or nanotechnology. The seminal work of Maclyn McCarty and Oswald T. Avery in 1946, (see, “Studies On The Chemical Nature Of The Substance Inducing Transformation Of Pneumococcal Types II. Effect Of Desoxyribonuclease On The Biological Activity Of The Transforming Substance,” The Journal of Experimental Medicine 83(2), 89-96 (1946)), demonstrated that DNA was the material that determined traits of an organism. The molecular structure of DNA was then first described by James D. Watson and Francis HC Crick in 1953, (see a published article, “Molecular structure of nucleic acids.”, Nature 171,737-738 (1953)), for which they received the 1962 Nobel Prize in Medicine. This work made it clear that the sequence of chemical letters (bases) of the DNA molecules encode the fundamental biological information. Since this discovery, there has been a concerted effort to develop means to actually experimentally measure this sequence. The first method for systematically sequencing DNA was introduced by Sanger, et al in 1978, for which he received the 1980 Nobel Prize in Chemistry. See an article, Sanger, Frederick, et al., “The nucleotide sequence of bacteriophage φX174.” Journal of molecular biology 125, 225-246 (1978).
Sequencing techniques for genome analysis evolved into utilizing automated commercial instrument platform in the late 1980's, which ultimately enabled the sequencing of the first human genome in 2001. This was the result of a massive public and private effort taking over a decade, at a cost of billions of dollars, and relying on the output of thousands of dedicated DNA sequencing instruments. The success of this effort motivated the development of a number of “massively parallel” sequencing platforms with the goal of dramatically reducing the cost and time required to sequence a human genome. Such massively parallel sequencing platforms generally rely on processing millions to billions of sequencing reactions at the same time in highly miniaturized microfluidic formats. The first of these was invented and commercialized by Jonathan M. Rothberg's group in 2005 as the 454 platform, which achieved thousand fold reductions in cost and instrument time. See, an article by Marcel Margulies, et al., “Genome Sequencing in Open Microfabricated High Density Picoliter Reactors,” Nature 437, 376-380 (2005). However, the 454 platform still required approximately a million dollars and took over a month to sequence a genome.
The 454 platform was followed by a variety of other related techniques and commercial platforms. See, articles by M. L. Metzker, “Sequencing Technologies—the Next Generation,” Nature reviews genetics 11(1), 31-46 (2010), and by C. W. Fuller et. al, “The Challenges of Sequencing by Synthesis,” Nature biotechnology 27(11), 1013-1023 (2009). This progress lead to the realization of the long-sought “$1,000 genome” in 2014, in which the cost of sequencing a human genome at a service lab was reduced to approximately $1,000, and could be performed in several days. However, the highly sophisticated instrument for this sequencing cost nearly one million dollars, and the data was in the form of billions of short reads of approximately 100 bases in length. The billions of short reads often further contained errors so the data required interpretation relative to a standard reference genome with each base being sequenced multiple times to assess a new individual genome.
Thus, further improvements in quality and accuracy of sequencing, as well as reductions in cost and time are still needed. This is especially true to make genome sequencing practical for widespread use in precision medicine (see the aforementioned article by Fuller et al), where it is desirable to sequence the genomes of millions of individuals with a clinical grade of quality.
While many DNA sequencing techniques utilize optical means with fluorescence reporters, such methods can be cumbersome, slow in detection speed, and difficult to mass produce to further reduce costs. Label-free DNA or genome sequencing approaches provide advantages of not having to use fluorescent type labeling processes and associated optical systems, especially when combined with electronic signal detection that can be achieved rapidly and in an inexpensive way.
In this regard, certain types of molecular electronic devices can detect single molecule, biomolecular analytes such as DNAs, RNAs, proteins, and nucleotides by measuring electronic signal changes when the analyte molecule is attached to a circuit, for example, a field effect transistor device. Such methods are label-free and thus avoid using complicated, bulky and expensive fluorescent type labeling apparatus. These methods can be useful for lower cost sequencing analysis of DNA, RNA and genome.
Certain types of molecular electronic devices can detect the biomolecular analytes such as DNAs, RNAs, proteins, and nucleotides by measuring electronic signal changes when the analyte molecule is attached to the circuit comprising a pair of conductive electrodes. Such methods are label-free and thus avoids using complicated, bulky and expensive fluorescent type labeling apparatus. One example of sequencing-by-synthesis approach is to utilize a single molecule polymerase with incorporated DNAs, the sequence of which is detected through a current pulse signal when each type of the nucleotides (A, T, C, G) is attached to the polymerase complex with a distinct electrical signal.
While current molecular electronic devices can electronically measure molecules for various applications, they lack the reproducibility as well as scalability and manufacturability needed for rapidly sensing many analytes at a scale of up to millions in a practical manner. Such highly scalable methods are particularly important for DNA sequencing applications, which often need to analyze millions to billions of independent DNA molecules. In addition, the manufacture of current molecular electronic devices is generally costly due to the high level of precision needed.
Disclosed herein are principles that provide new and improved sequencing apparatuses, structures and methods using two-dimensional layer structured semiconductors, which can provide reliable DNA genome analysis performance and are amenable to scalable manufacturing.
Two dimensional (2D) layered transition metal dichalcogenides (TMDs) materials and devices have attracted a great deal of interest due to their novel electronic, physical and chemical characteristics. One example is MoS2 which can be incorporated as a sensor device. MoS2 type 2D materials can be a single layered material or several layered material, and can be obtained by various techniques, such as e.g., by isolation of very thin MoS2 layer through mechanical exfoliation, physical or chemical vapor deposition, molecular beam epitaxy (MBE) type construction or sulfurization of transition metal layer such as Mo or W.
Transition metal dichalcogenide (TMD) monolayers are in general atomically thin semiconductors of the type MX2, which M a transition metal atom (notably Mo, W, or Ti, Zr, Hf, V, Nb, Ta, Tc, Re, Co, Rh, Ir, Ni, Pd, Pt) and X a chalcogen atom (S, Se, or Te). One layer of M atoms is sandwiched between two layers of X atoms. A MoS2 monolayer can be about 6.5 Å thick. TMD monolayers of e.g., MoS2, WS2, MoSe2, WSe2, MoTe2 have a direct band gap, and can be used in electronics as transistors or sensors. Either monolayer TMD or few layer TMD can be structurally modified, to be utilized as solid state DNA or genome sensors. Being an ultrathin direct bandgap semiconductor, a transition metal dichalcogenide such as single-layer MoS2 may have potential for widespread applications in nanoelectronics, optoelectronics, and energy harvesting.
The layered TMDs typically have a hexagonal type structure with space group P63/mmc. It should be noted that monolayers of TMD materials are not just one atom thick as graphene, but are made up with tri-atomic thick layers consisting of metal atoms (such as Mo or W) sandwiched between two layers of chalcogen atoms (such as S, Se, or Te). The atoms in-plane in MoS2 type 2D materials are put together and bonded by strong covalent bonds. The adjacent layers of TMD like MoS2 along the thickness direction are joined together by a weak van der Wall force binding. This force is strong enough to hold the layers together with mechanical integrity. The TMD materials provide interesting and unique possibilities to design electronic devices involving hetero structures. The direct band gap of TMD monolayers is tunable with the application of the mechanical strain.
Single nucleotide identification and DNA sequencing have already been demonstrated with biological nanopores or solid state nanopores such as those in graphene and MoS2 layers. A DNA type molecule is threaded through a nanopore under an applied electric field, so that the sequence of nucleotides is read by monitoring small changes in the ionic current flowing through the pore, which are induced by individual nucleotides temporarily residing within the pore during threading. However, the fragility of such pores, together with difficulties related to reproducible and low noise measurement of detection signals in nanopore sequencing methods in general are some of the current issues that need to be addressed.
The disclosed principles provide, among others, new biomolecular sensor devices and associated methods, employing transition metal dichalcogenide nanoribbons as a component of molecular bridge, which in turn comprises an attached, preferably single molecule polymerase to analyze DNA lines or fragments by step by step attachments of nucleotides or short DNA fragments.
Various embodiments are disclosed herein regarding specially processed, 2D layer-containing enzyme polymerase sensor device structures and methods of manufacture for a multitude of devices for use in electronic DNA, RNA or genome sequencing systems. Unique geometrical modifications are made so as to enable a construction of sensor device comprising only a single molecule polymerase enzyme for more accurate electronic analysis. Such label-free, single molecule based sequencing analysis systems utilize preferably a nanoscale dimension-controlled, transition metal dichalcogenide (TMD) micro-ribbon or nano-ribbon bridge. The electronic system may also be used in analyzing other types of biomolecules, such as proteins, depending on how the molecular sensors are functionalized to interact with biomolecule sensing targets. The TMD-based sequencing systems disclosed here can be assembled into a massively parallel configuration for rapid analysis of targets including nucleotides, in particular for applications to sequencing of a DNA molecule, or a collection of such molecules constituting an entire human genome. Such systems in the present disclosure can also be used for DNA-based information storage, for example, for archival storage of huge volume of information in human society.
The features and advantages of the embodiments of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings. The drawings and the associated descriptions are provided to illustrate embodiments of the disclosure and not to limit the scope of what is claimed.
The drawings are illustrative of the disclosed principles and not limiting thereof.
The disclosed embodiments generally provide a sequencing apparatus, structures, and methods for using two-dimensional, layer structured semiconductors to provide DNA and genome analysis performance. The disclosed embodiments are amenable to scalable manufacturing.
Two dimensional (2D) layered materials such as transition metal dichalcogenides (TMDs) materials and devices have received much attention in recent years by virtue of their unique electronic, physical and chemical properties. One example is molybdenum dichalcogenide MoS2 which can be incorporated as a sensor device. MoS2 type 2D materials can be a single layered material or several layered material. The 2D layer materials such as MoS2 can be produced by various known techniques, e.g., by isolation of very thin MoS2 layer through mechanical exfoliation, physical or chemical vapor deposition, molecular beam epitaxy (MBE) type construction, or sulfurization of a transition metal layer such as Mo or W.
As used herein, “Nucleotide” means either the native dNTPs like A, T, C, G (i.e., dATP, dTTP, dCTP and dGTP), or collectively refers to various types of modified dNTPs as described above.
As used herein, “Polymerase” means an enzyme that synthesizes long chains or polymers of nucleic acids. For example, DNA polymerase and RNA polymerase can copy a DNA or RNA template strand, respectively, using base-pairing interactions, which is utilized to assemble DNA and RNA molecules.
In some embodiments, a TMD layer is incorporated as a part of sensor bridge structure to attach an enzyme type biomolecule to attract various types of nucleotides for electronic detection signals.
Two dimensional transition metal dichalcogenide (TMD) monolayers are in general atomically thin semiconductors of the type MX2, with M a transition metal atom (notably including Mo, W, or Ti, Zr, Hf, V, Nb, Ta, Tc, Re, Co, Rh, Ir, Ni, Pd, Pt) and X a chalcogen atom (such as S, Se, or Te.). One layer of M atoms is sandwiched between two layers of X atoms. Both the transition metal and the chalcogenide element can be partly replaced (or doped) with other elements. Therefore, the two dimensional TMD layer incorporated into the molecular sensor bridge construction can have various modified or altered composition ranges, including the following:
(i) MoS2, WS2, or TiS2, ZrS2, HfS2, VS2, NbS2, TaS2, TcS2, ReS2, CoS2, RhS2, IrS2, NiS2, PdS2, PtS2 and their modifications or combinations, including modified stoichiometry of sulfur contents having MX(2−x) or MX(2+x) with the desired value of x in the range of 0-1.0, preferably in the range of 0-0.5, even more preferably 0-0.3. For some embodiments, the sulfur stoichiometry is intentionally altered so as to provide vacancy defects, interstitial defects, and aggregated defects so as to increase the surface energy and enhance the adhesion of biomolecule to the bridge sensor. Such defects can also increase the bandgap for stronger sensor signals;
(ii) MoSe2, WSe2, or TiSe2, ZrSe2, HfSe2, VSe2, NbSe2, TaSe2, TcSe2, ReSe2, CoSe2, RhSe2, IrSe2, NiSe2, PdSe2, PtSe2 and their modifications or combinations, including modified stoichiometry of selenium contents having MX(2−x) or MX(2+x) with the desired value of x in the range of 0-1.0, preferably in the range of 0-0.5, even more preferably 0-0.3. For some embodiments, the selenium stoichiometry is intentionally altered so as to provide vacancy defects, interstitial defects, and aggregated defects so as to increase the surface energy and enhance the adhesion of biomolecule to the bridge sensor. Such defects can also increase the bandgap for stronger sensor signals;
(iii) MoTe2, WTe2, or TiTe2, ZrTe2, HfTe2, VTe2, NbTe2, TaTe2, TcTe2, ReTe2, CoTe2, RhTe2, IrTe2, NiTe2, PdTe2, PtTe2 and their modifications or combinations, including modified stoichiometry of tellurium contents having MX(2−x) or MX(2+x) with the desired value of x in the range of 0-1.0, preferably in the range of 0-0.5, even more preferably 0-0.3. For some embodiments, the tellurium stoichiometry is intentionally altered so as to provide vacancy defects, interstitial defects, and aggregated defects so as to increase the surface energy and enhance the adhesion of biomolecule to the bridge sensor. Such defects can also increase the bandgap for stronger sensor signals;
(iv) Mixed TMD compounds in which the MX2 compound has mixed metals and/or mixed chalcogenide. For example Mo(SxSeyTez)2, W(SxSeyTez)2, or Ti(SxSeyTez)2, Zr(SxSeyTez)2, Hf(SxSeyTez)2, V(SxSeyTez)2, Nb(SxSeyTez)2, Ta(SxSeyTez)2, Tc(SxSeyTez)2, Re(SxSeyTez)2, Co(SxSeyTez)2, Rh(SxSeyTez)2, Ir(SxSeyTez)2, Ni(SxSeyTez)2, Pd(SxSeyTez)2, Pt(SxSeyTez)2 where the combined (x+y+z) is 1-3, preferably 0.5-1.5, even more preferably 0.7-1.3. Alternatively two or more metals can be combined for sulfur containing, Se-containing or Te-containing TMD layers, e.g., (MoxWyCoz)S2, (HfxWyCoz)Te2 and so forth; or
(v) M(1−w)NyX(2−z)Yz structure in which the transition metal M is partially substituted with non-transition elements N, with a concentration of w and the N element selected from one or more of Al, Si, Ga, Ge, In, Sn, Sb, Bi, Al, Na, K, Ca, Mg, Sr, Ba, with the w value in the range of 0-0.3, and the chalcogenide element X partially substituted with a non-chalcogenide element Y, with the Y element selected from one or more of Li, B, C, N, O, P, F, Cl, I, with the z value in the range of 0-0.3.
In some embodiments, the thickness of a MoS2 monolayer can be about 6.5 Å. The TMD materials in their simplest monolayer structure, e.g., MoS2, WS2, MoSe2, WSe2, MoTe2, have a direct band gap, and hence can be used in electronics as transistors or sensors. Either monolayer TMD or few layer TMD can be structurally modified, to be utilized as solid state DNA or genome sensors, without labeling with optical capability. Being an ultrathin direct bandgap semiconductor, a transition metal dichalcogenide such as single-layer MoS2 has found some useful applications in nanoelectronics, optoelectronics, and energy harvesting. However, not many sensor applications have been attempted or demonstrated with proper characteristics, especially for DNA or genome sequencing purposes.
Disclosed herein are label-free DNA or RNA sequencing device structures utilizing a TMD-based frame with an enzyme polymerase for detection of electronic signals when an individual nucleotide is attached onto a nucleic acid template. In some embodiments, two dimensional semiconductors of processed, defective or nanoporous Transition Metal Dichalcogenide (TMD) layer material are employed so as to utilize altered bandgaps of the TMD layer and enhanced attachment of single biomolecules. In some embodiments, the TMD-based sequencing systems invented here can be assembled into a massively parallel configuration for rapid analysis of targets including nucleotides, in particular for applications of sequencing of a DNA molecule, or a collection of such molecules constituting an entire genome. Such systems are also useful for DNA-based information storage, for which the writing is performed by encoding specific nucleotide-based arrangements or sequences and the reading is carried out by sequencing analysis using TMD-bridge based molecular sensor array.
In some embodiments, a sequencing device is provided comprising: (a) an electrode array of conducting electrode pairs, each pair of electrodes comprising a source and a drain electrode separated by a nanogap, said electrode array deposited and patterned on a dielectric substrate, and optionally comprising a third electrode as a gated system; (b) a single-layer or few-layer thick transition metal dichalcogenide (TMD) layer disposed on each pair of electrodes, connecting each source and drain electrode within each pair, and bridging each nanogap of each pair; (c) a dielectric masking layer disposed on the TMD layer and comprising size-limited openings that define exposed TMD regions, each opening sized so as to allow only a single enzyme biomolecule to fit therein and to attach onto the exposed TMD region defined by each opening; (d) an enzyme molecule attached to each exposed TMD region such that only one enzyme molecule is found within each opening; and (d) a microfluidic system encasing the electrode array, wherein attachment or detachment of a biomolecule selected from the group consisting of a nucleotide monomer, a protein, and a DNA segment, onto the enzyme molecule, one at a time, can be monitored as a uniquely identifiable electrical signal pulse to determine the specific nature of the biomolecule attaching or detaching.
In some embodiments, the dielectric substrate comprises SiO2. In some embodiments, the dielectric substrate comprises SiO2 or Al2O3.
In some embodiments, the TMD is selected from MoS2, WS2, TiS2, ZrS2, HfS2, VS2, NbS2, TaS2, TcS2, ReS2, CoS2, RhS2, IrS2, NiS2, PdS2, PtS2 and their modifications or combinations. In some embodiments, the TMD is MoS2. In some embodiments, the TMD is WS2
In some embodiments, the TMD is selected from MoS2, WS2, TiS2, ZrS2, HfS2, VS2, NbS2, TaS2, TcS2, ReS2, CoS2, RhS2, IrS2, NiS2, PdS2, PtS2 and their modifications or combinations, including modified stoichiometry of sulfur contents having MX(2−x) or MX(2+x) wherein xis in the range of 0-1.0, preferably in the range of 0-0.5, even more preferably 0-0.3. In some embodiments, the TMD is selected from MoS2, WS2, TiS2, ZrS2, HfS2, VS2, NbS2, TaS2, TcS2, ReS2, CoS2, RhS2, IrS2, NiS2, PdS2, PtS2 and their modifications or combinations and the stoichiometry of sulfur is not modified.
In some embodiments, the TMD is selected from MoSe2, WSe2, or TiSe2, ZrSe2, HfSe2, VSe2, NbSe2, TaSe2, TcSe2, ReSe2, CoSe2, RhSe2, IrSe2, NiSe2, PdSe2, PtSe2 and their modifications or combinations, including modified stoichiometry of selenium contents having MX(2−x) or MX(2+x) with the desired value of x in the range of 0-1.0, preferably in the range of 0-0.5, even more preferably 0-0.3. In some embodiments, the TMD is selected from MoSe2, WSe2, or TiSe2, ZrSe2, HfSe2, VSe2, NbSe2, TaSe2, TcSe2, ReSe2, CoSe2, RhSe2, IrSe2, NiSe2, PdSe2, PtSe2 and their modifications or combinations and the stoichiometry of selenium is not modified.
In some embodiments, defects are artificially introduced into TMD. In some embodiments, the defects are introduced to increase bandgap. In some embodiments, the defects are introduced to provide active site edge locations for strong adhesion of bridge structures or biomolecules such as enzyme molecules.
In some embodiments, TMD is selected from MoTe2, WTe2, or TiTe2, ZrTe2, Hffe2, VTe2, NbTe2, TaTe2, TcTe2, ReTe2, CoTe2, RhTe2, IrTe2, NiTe2, PdTe2, PtTe2 and their modifications or combinations.
In some embodiments, TMD is selected from MoTe2, WTe2, or TiTe2, ZrTe2, HfTe2, VTe2, NbTe2, TaTe2, TcTe2, ReTe2, CoTe2, RhTe2, IrTe2, NiTe2, PdTe2, PtTe2 and their modifications or combinations, including modified stoichiometry of Tellurium contents having MX(2−x) or MX(2+x) with the desired value of x in the range of 0-1.0, preferably in the range of 0-0.5, even more preferably 0-0.3. In some embodiments, TMD is selected from MoTe2, WTe2, or TiTe2, ZrTe2, HfTe2, VTe2, NbTe2, TaTe2, TcTe2, ReTe2, CoTe2, RhTe2, IrTe2, NiTe2, PdTe2, PtTe2 and their modifications or combinations and the stoichiometry of tellurium is not modified.
In some embodiments, the tellurium stoichiometry is intentionally altered so as to provide vacancy defects, interstitial defects, and aggregated defects in order to increase the surface energy of the TMD layer and enhance the adhesion of biomolecule to the bridge sensor for stronger sensor signals.
In some embodiments, the TMD comprises a mixed TMD selected from TMD compounds in which the MX2 compound has mixed metals and/or mixed chalcogenide, selected from the group consisting of Mo(SxSeyTez)2, W(SxSeyTez)2, Ti(SxSeyTez)2, Zr(SxSeyTez)2, Hf(SxSeyTez)2, V(SxSeyTez)2, Nb(SxSeyTez)2, Ta(SxSeyTez)2, Tc(SxSeyTez)2, Re(SxSeyTez)2, Co(SxSeyTez)2, Rh(SxSeyTez)2, Ir(SxSeyTez)2, Ni(SxSeyTez)2, Pd(SxSeyTez)2, and Pt(SxSeyTez)2 wherein the combined (x+y+z) is 1-3, 0.5-1.5, or 0.7-1.3.
In some embodiments, two or more metals are combined for sulfur containing, Se-containing or Te-containing TMD layers.
In some embodiments, the TMD layer comprises MoxWyCoz)S2 or (HfxWyCoz)Te2.
In some embodiments, the TMD comprises a M(1−w)NφX(2−z)Yz structure in which the transition metal M is partially substituted with non-transition elements N, with a concentration of w and the N element selected from one or more of Al, Si, Ga, Ge, In, Sn, Sb, Bi, Al, Na, K, Ca, Mg, Sr, Ba, with the w value in the range of 0-0.3, and the chalcogenide element X partially substituted with a non-chalcogenide element Y, with the Y element selected from one or more of Li, B, C, N, O, P, F, Cl, I, with the z value in the range of 0-0.3. In some embodiments, the w value is greater than 0.3, for example, greater than 0.4, greater than 0.5, greater than 0.6, greater than 0.7, greater than 0.8, greater than 0.9, or greater than 1.0. In some embodiments, the z value is greater than 0.3, for example, greater than 0.4, greater than 0.5, greater than 0.6, greater than 0.7, greater than 0.8, greater than 0.9, or greater than 1.0.
In some embodiments, the metallic conducting electrode pair is selected from Au, Pt, Ag, Pd, Rh, Ru, or their alloys.
In some embodiments, the nanogap is 5-20 nm. In some embodiments, the nanogap is less than 5 nm, for example less than 3 nm, less than 1.0 nm. In some embodiments, the nanogap is greater than 20 nm, for example, greater than 25 nm, greater than 30 nm, greater than 35 nm, greater than 40 nm, greater than 45 nm, or greater than 50 nm.
In some embodiments, the size-limiting openings are preferably less than 30 nm average equivalent diameter each, more preferably less than 20 nm equivalent diameter, even more preferably less than 10 nm equivalent diameter, by lithographically or nanofabrication defined coverage of dielectric material layer of polymer or ceramic outside a specific region intended for attaching only a single molecule. Polymerase molecules as well as streptavidin type link molecules often have a dimension on the order of −5 nm regime.
Various aspects of the invention items including the biosensor structures, materials, geometries, as well as fabrication methods and application methods are described below.
With reference now to
With reference to
This application claims priority to, and the benefit of, U.S. Provisional Patent Application Ser. No. 62/830,231, filed on Apr. 5, 2019, and entitled “SINGLE-MOLECULE POLYMERASE BIOSENSOR COMPRISING TRANSITION METAL DICHALCOGENIDE NANOBRIDGE FOR SEQUENCING, INFORMATION STORAGE AND READING,” the contents of which are incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62830231 | Apr 2019 | US |