1. Field of the Invention
The present invention is directed generally to computer readable media, apparatuses, systems, and methods that concern image guided medical procedures.
2. Description of Related Art
Image guided surgery (IGS), also known as image guided intervention (IGI), has become an established and proven technology field that enhances a physician's understanding of the location of his instruments within anatomy during therapy delivery. IGI has grown to include 2-dimensional (2-D) and 3-dimensional (3-D) applications. Virtual fluoroscopy as described in U.S. Pat. No. 6,470,207, Navigational Guidance via Computer Assisted Fluoroscopic Imaging, Simon et al., which is expressly incorporated by reference, discloses how to register the coordinate system of anatomy in a live operating theatre to that of a 2-D fluoroscopic image and then superimpose the real-time movements of instruments on that image as icons. U.S. Pat. No. 6,490,467, Surgical Navigation Systems Including Reference and Localization Frames, Bucholz et al., which is also expressly incorporated by reference, discloses how to register the coordinate system of anatomy in a live operating theatre to that of a 3-D magnetic resonance imaging (MRI) or computed tomography (CT) image volume and then superimpose the real-time movements of instruments on that image volume as icons. The techniques disclosed in these patents combined with other state of the art technologies have worked well in procedures involving static anatomy. Static anatomy is anatomy that does not move or has very minimal movement with respect to heart beat and respiration, such as the sinuses, long bones, brain, and individual vertebral bodies of the spine. The use of image guidance is fast approaching the standard of care in neurosurgical tumor resection, spinal implant placement, ear-nose-and-throat (ENT) surgery, and orthopedics.
However, IGI has not made significant inroads into medical procedures involving dynamic anatomy. Dynamic anatomy is anatomy that moves significantly with respect to heart beat and respiration, such as the heart, lungs, kidneys, liver, and blood vessels. IGI to date is limited mostly to use in static anatomy medical procedures primarily due to its usage of static imaging modalities such as single frame fluoroscopy, and single volume MRI and CT.
Imaging modalities do exist to capture dynamic anatomy. Modalities such as electrocardiogram (ECG)-gated MRI, ECG-gated CT and cinematography (CINE) fluoroscopy (e.g., looped CINE fluoroscopy) are readily available in hospitals worldwide. These dynamic imaging modalities can capture anatomy over an entire periodic cycle of movement by sampling the anatomy at several instances during its characteristic movement and then creating a set of image frames or volumes. The use of dynamic imaging modalities in IGI will allow IGI to transcend the boundaries of static anatomy and administer efficacy benefits to even more medical procedures.
U.S. Pat. No. 6,473,635, A Method of and Device for Determining the Position of A Medical Instrument, Rasche, which is expressly incorporated by reference, proposes using the ECG waveform emanating from a live patient in the operating theatre to continuously select from a set of images that were gated to ECG data. However, Rasche's proposal will not work when the patient exhibits an irregular ECG pattern due to the medical therapies that are being applied to him. Examples of induced ECG irregularity would occur during pacemaker and implantable cardioverter defibrillator lead placement and radiofrequency ablation of myocytes to cure tachycardia.
One embodiment is a method that includes creating a dataset that includes images, at least one of those images depicting a non-tissue internal reference marker, being linked to non-tissue internal reference marker positional information, and being at least 2-dimensional.
Another embodiment is a method that includes receiving a position of an instrument reference marker coupled to an instrument; transforming the position into image space using a position of a non-tissue internal reference marker implanted in a patient; and superimposing a representation of the instrument on an image in which the non-tissue internal reference marker appears.
Other embodiments of the present methods are disclosed below.
Other embodiments include computer readable media that include machine readable instructions for carrying out the steps of any of the present methods. Still other embodiments include apparatuses, such as integrated circuits, configured to carry out the steps of any of the present methods. Other embodiments include systems that include devices configured to carry out steps of the present methods.
The following drawings demonstrate aspects of some of the present methods, apparatuses, and systems. They illustrate by way of example and not limitation. Like reference numbers refer to similar elements.
The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “contain” (and any form of contain, such as “contains” and “containing”), and “include” (and any form of include, such as “includes” and “including”) are open-ended linking verbs. Thus, a method, an apparatus, or a system that “comprises,” “has,” “contains,” or “includes” one or more items possesses at least those one or more items, but is not limited to possessing only those one or more items. For example, a method that comprises receiving a position of an instrument reference marker coupled to an instrument; transforming the position into image space using a position of a non-tissue internal reference marker implanted in a patient; and superimposing a representation of the instrument on an image in which the non-tissue internal reference marker appears possesses at least the receiving, transforming, and superimposing steps, but is not limited to possessing only those steps. Accordingly, the method also covers instances where the transforming includes transforming the position into image space using a transformation that is based, in part, on the position of the non-tissue internal reference marker implanted in the patient, and calculating the transformation using image space coordinates of the internal reference marker in the image. The term “use” should be interpreted the same way. Thus, a calculation that uses certain items uses at least those items, but also covers the use of additional items.
Individuals elements or steps of the present methods, apparatuses, and systems are to be treated in the same manner. Thus, a step that calls for creating a dataset that includes images, one of the images (a) depicting a non-tissue internal reference marker, (b) being linked to non-tissue internal reference marker positional information, and (c) being at least 2-dimensional covers the creation of at least such a dataset, but also covers the creation of a dataset that includes images, where each image (a) depicts the non-tissue internal reference marker, and (b) is linked to non-tissue internal reference marker positional information.
The terms “a” and “an” are defined as one or more than one. The term “another” is defined as at least a second or more. The term “coupled” encompasses both direct and indirect connections, and is not limited to mechanical connections.
Those of skill in the art will appreciate that in the detailed description below, certain well known components and assembly techniques have been omitted so that the present methods, apparatuses, and systems are not obscured in unnecessary detail.
Broadly, embodiments of the present methods, apparatuses, and systems enable the use of dynamic imaging modalities in 2-D and 3-D IGI. Specifically, the various embodiments of the present embodiments of the present methods, apparatuses, and systems are useful for allowing a particular image from a set of images depicting dynamic anatomy to be selected, such that the selected image is the most accurate representation of the instantaneous position and orientation of the live anatomy in the operating theatre. The locations of the present reference markers (in the form of vectors, for example) may be synchronized to each image in the set of images, and the positional information of the markers allows a transformation to be calculated between the real world coordinate space and the image space for the purpose of superimposing the live position of one or more instruments onto the selected image. Dynamic anatomy is anatomy that moves significantly with respect to heart beat and/or respiration, such as the heart, lungs, kidneys, liver, and blood vessels.
More specifically, embodiments of the present methods, apparatuses, and systems are useful for the placing and tracking one or more non-tissue internal reference markers within a gross anatomic region of interest that moves periodically with heart beat and respiration, synchronizing the location or locations of those marker locations with images that best describe the specific anatomy of interest in a particular orientation, selecting the image that best describes the anatomy of interest at any given moment in the operating or procedure room, and superimposing iconic representation of one or more instruments on the most accurate image selected after making the appropriate transformation from the tracking space of the instrument to image space. A “non-tissue internal reference marker” is a reference marker, which is sometimes referred to in the art as a “fiducial,” that is positioned inside of a patient (e.g., any living being, human or otherwise) and that is not made from the patient's tissue or other living matter. Embodiments of the present methods, apparatuses, and systems may be used in the delivery of various medical therapies including, but not limited to, pacemaker lead placement, coronary stent placement, cardiac radio frequency ablation, lung biopsy, renal stent placement, transjugular intrahepatic porto-systemic shunting, and percutaneous radio frequency ablation of renal masses.
IGI has not made significant inroads into medical procedures involving dynamic anatomy. IGI is suited to, and has been used primarily in, static anatomy medical procedures due to its usage of static imaging modalities such as single frame fluoroscopy, and single volume MRI and CT. While Rasche (i.e., U.S. Pat. No. 6,473,635) discloses certain IGI with dynamic anatomy, his proposed method depends on the patient's ECG data during the operation. That is, Rasche's method involves collecting ECG data as the operation is taking place and, based on a given phase of that ECG data, displaying an image for viewing by the physician. Such an approach will not work if the patient exhibits an irregular ECG pattern due to the medical therapies that are being applied to him. Examples of induced ECG irregularity would occur during pacemaker and implantable cardioverter defibrillator lead placement and radiofrequency ablation of myocytes to cure tachycardia. The present methods, apparatuses, and systems do not rely on ECG data that is taken as an operation takes place in order to select the appropriate pre-operative image to display for the physician.
Further, Rasche requires the use of an external reference probe in calculating “a simple co-ordinate transformation” between actual spatial and image coordinate systems. An external reference marker will never produce the transformation accuracy of an internal reference marker positioned close to the anatomy of interest—as used by the present methods, apparatuses, and systems—due to a moment arm escalation of error.
1. Use of a Gated Image Dataset
Specifically,
An external reference marker 22 can be placed in a location close to the region of the patient where the procedure is to be performed, yet in a stable location that will not move (or that will move a negligible amount) with the patient's heart beat and respiration. If patient 10 is securely fixed to table 12 for the procedure, external reference marker 22 (which may be described as “static”) can be affixed to table 12. If patient 10 is not completely secured to table 12, external reference marker 22 can be placed on region of the back of patient 10 exhibiting the least amount of movement. Tracker 20 can be configured to track external reference marker 22.
One or more non-tissue internal reference markers 24 can be placed in the gross region where the image guided navigation will be carried out. Non-tissue internal reference marker(s) 24 should be placed in an anatomic location that exhibits movement that is correlated with the movement of the anatomy intended for image guided navigation. This location will be internal to the patient, in the gross location of the anatomy of interest.
Medical instrument 16, instrument reference marker(s) 18, external reference marker 22, and non-tissue internal reference marker(s) 24 can be coupled to converter 26 of system 100. Converter 26, one example of which may be referred to in the art as a break-out box, can be configured to convert analog measurements received from the reference markers and tracker 20 into digital data understandable by image guidance computing platform 30, and relay that data to image guidance computing platform 30 to which converter 26 can be coupled. Image guidance computing platform 30 can take the form of a computer, and may include a monitor on which a representation of one or more instruments used during the IGI can be displayed over an image of the anatomy of interest.
System 100 also includes a periodic human characteristic signal monitor, such as ECG monitor 32, which can be configured to receive a periodic human characteristic signal. For example, ECG monitor 32 can be configured to receive an ECG signal in the form of the ECG data transmitted to it by ECG leads 34 coupled to patient 10. The periodic human characteristic signal monitor (e.g., ECG monitor 32) can also be configured to relay a periodic human characteristic signal (e.g., ECG data) to image guidance computing platform 30, to which it can be coupled.
Prior to the start of the image guided intervention, non-tissue internal reference marker(s) 24—but not necessarily static external reference marker 22—should be placed in the gross region of interest for the procedure. After placement of non-tissue internal reference marker(s) 24, patient 10 is to be scanned with an imaging device, such as gated scanner 40, and the resulting gated image dataset transferred to image guidance computing platform 30, to which the imaging device is coupled and which can reside in the operating or procedure theatre. Examples of suitable imaging devices, and more specifically suitable gated scanners, include ECG-gated MRI scanners and ECG-gated CT scanners. A hospital network 50 may be used to couple gated scanner 40 to image guidance computing platform 30.
The imaging device (e.g., gated scanner 40) can be configured to create a gated dataset that includes pre-operative images, one or more of which (up to all) are taken using the imaging device and are linked to a sample of a periodic human characteristic signal (e.g., a sample, or a phase, of an ECG signal). Once patient 10 is scanned using the imaging device and the gated dataset is transferred to and received by image guidance computing platform 30, patient 10 can be secured to operating table 12 and the equipment making up system 100 (e.g., tracker 20, converter 26, image guidance computing platform 30, ECG monitor 32, and gated scanner 40) set up as shown in
At this point, a gated dataset created by gated scanner 40 resides on image guidance computing platform 30.
After the gated scanning has occurred and the system 100 components are coupled to each other as shown in
The final step of Calibration State 60 is a transformation calculation step. The software will file through each dataset vector in the look-up table, as noted by element 75, and examine each mapped image. At step 76, the image space coordinates of non-tissue internal reference marker(s) 24 in each image (Ii) will be determined. For example, each image (Ii) can undergo a thresh-holding segmentation that will allow the software to find the image space coordinates of non-tissue internal reference marker(s) 24 in that image. Once the image space coordinates (e.g., voxel, volumetric pixel, coordinates) of non-tissue internal reference marker(s) 24 are known, the positions (e.g., the tracking space positions) of the external reference marker 22 and the non-tissue internal reference marker(s) 24 received at step 70 can be used to calculate a transformation (using a least squares method) between the tracking space and the image space. Step 78 is the calculation of such a transformation (Ti), and step 80 is the linking of the transformation (Ti) to the image (Ii) in question. As a result of that linking, the look-up table will comprise a dataset that includes pre-operative images, at least one the images (and, moreover, each image) depicting non-tissue internal reference marker(s) 24, being linked to a dataset vector and a transformation, and being at least 2-dimensional.
After completion of Calibration State 60, the software moves the system into Navigate State 90 as depicted in
The Navigation State 90 steps can be repeated continuously and their performance will provide physician 14 with a live representation of his instruments with respect to the instantaneous position and orientation of the anatomy in question as he image guides those instruments to their correct locations to deliver medical therapy.
A basic embodiment of the present methods that may be achieved using the system 100 software described above is a method that includes creating a dataset that includes images, at least one of the images: depicting a non-tissue internal reference marker, being linked to non-tissue internal reference marker positional information (such as a dataset vector), and being at least 2-D. In another embodiment, and as described above, each image in the dataset depicts a non-tissue internal reference marker (e.g., marker(s) 24), and is linked to non-tissue internal reference marker positional information. The non-tissue internal reference marker positional information may, for example, take the form of positional coordinates or a dataset vector. The images may be 3-D CT images or 3-D MRI images. Other embodiments of the present methods include taking one or more additional steps from among those steps described above. Thus, and by way of example, another embodiment of the present methods includes loading a gated dataset into memory that includes the images, at least one of the images depicting the non-tissue internal reference marker and being linked to a sample of a periodic human characteristic signal. In still another embodiment, each image in the gated dataset depicts the non-tissue internal reference marker and is linked to a sample of the periodic human characteristic signal.
Another basic embodiment of the present methods that may be achieved using the system 100 software described above is a method that includes receiving a position of an instrument reference marker coupled to an instrument (e.g., a medical instrument); transforming the position into image space using a position of a non-tissue internal reference marker implanted in a patient; and superimposing a representation of the instrument on an image in which the non-tissue internal reference marker appears. In another embodiment, the transforming includes transforming the position into image space using a transformation that is based, in part, on the position of the non-tissue internal reference marker implanted in the patient. And in yet another embodiment, the method also includes calculating the transformation using image space coordinates of the internal reference marker in the image. Other embodiments of the present methods include taking one or more additional steps from among those steps described above.
Periodic human characteristic signals other than ECG signals may be used consistently with the steps described above. For example, respiration or hemodynamic characteristics of patient 10 could just as easily be used as periodic human characteristic signals. If such signals are used, appropriate periodic human characteristic signal monitors should be used as well. Furthermore, any imaging modality (not just CT or MRI) that can be gated to a periodic human characteristic signal may be used consistently with the steps described above, including positron emission tomography (PET), ultrasound, and functional MRI (fMRI).
2. Use of CINE Fluoroscopy
One advantage of using CINE fluoroscopy as an image guidance modality is that it can be captured during the procedure in the operating or procedure theatre. As a result, the physician may dispense with the gating of a periodic human characteristic signal to pre-operative images. Generally speaking,
To begin the image guided intervention, patient 10 will be placed upon operating table 12 and an ECG monitor 32 will likely be connected to patient 10 for diagnostic purposes unrelated to performing image guidance. Fluoroscope 215 can be positioned to allow images to be captured of patient 10 (likely in an orientation that physician 14 is most comfortable with, such as a Right Anterior Oblique (RAO) view). Physician 14 can place an external reference marker 22 as discussed above (e.g., in the procedural field on a location that does not move with respect to heartbeat and respiration). One or more non-tissue internal reference marker(s) 24 can be placed in the gross region of the anatomy intended for image guidance. Fluoroscope calibration jig 214 can be coupled to fluoroscope receiver unit 212. All connections between fluoroscope 215, reference markers 22 and 24, converter 26, and image guidance computing platform 30 can be fulfilled as depicted in
At this time, system 200 is ready to enter the Calibration State 250 as depicted in
While fluoroscope 215 is acquiring the CINE loop, as noted with element 252, the software can, as step 254 notes, sample the live video feed. Sampling consistent with step 254 can occur at a rate greater than 30 Hz so as capture enough images (e.g., image frames) such that they will, when pieced together, appear to be real time to the human eye. As computing power makes faster sampling rates for more feasible, a sampling rate greater than 60 Hz can be implemented in accordance with Nyquist's Law.
The software can create an image (e.g., an image frame) (Ii) as denoted in
After completion of Calibration State 250, the software moves the system into Navigate State 350. In this state, the software can enter an infinite loop of events, as designated by element 352. In the first step in the loop, step 354, image guidance computing platform 30 polls the tracker 20 via converter 26 in order to obtain the current position of external reference marker 22 and the current position of non-tissue internal reference marker(s) 24. (It should be understood that “current” in this context is not limiting, and does not mean “instantaneous” or the like; instead, “current” is simply an adjective used to differentiate between the positions received at this step in the present methods from the positions received earlier, for example.) The software can then, at step 356, construct a current vector (here, again, “current” is non-limiting) using the current positions received at step 354. At step 358, the software can compare the current vector to the dataset vectors (V1 . . . Vn) (or will compare just the current positions to the tracking space coordinates) in search of the dataset vector closest to the current vector in question. Upon finding, at step 360, a match dataset vector—defined as the dataset vector (Vi) (or tracking space coordinates) most similar to the current vector (or current positions, or coordinates)—the software can, at step 362, load (e.g., into memory) the image (Ii) from dataset 300 pointed to by the matching look-up table dataset vector (Vi). At step 364, the software can also load (e.g., into memory) the transformation (Ti) associated with the dataset vector (Vi) and the correlated image (Ii). At step 366, the system can poll tracker 20 to obtain, via converter 26, the position of instrument reference marker(s) 18. The software can, at step 368, apply the transformation (Ti) to the position of the instrument reference marker(s) 18 to transform that position into image space. At step 370, the software can superimpose (e.g., render, draw, etc.) a representation (e.g., an iconic representation) of instrument 16 (or instruments, as the case may be) on the selected image (Ii) to be displayed on a monitor of image guidance computing platform 30.
The Navigation State 350 steps can be repeated continuously and their performance will provide physician 14 with a live representation of his instruments with respect to the instantaneous position and orientation of the anatomy in question as he image guides those instruments to their correct locations to deliver medical therapy.
A basic embodiment of the present methods that may be achieved using the system 200 software described above is a method that includes creating a dataset that includes images, at least one of the images: depicting a non-tissue internal reference marker, being linked to non-tissue internal reference marker positional information (such as a vector), and being at least 2-D. In another embodiment, and as described above, each image in the dataset depicts a non-tissue internal reference marker (e.g., marker(s) 24), and is linked to non-tissue internal reference marker positional information. The non-tissue internal reference marker positional information may, for example, take the form of positional coordinates or a dataset vector. The images may be 2-D fluoroscopy images (e.g., CINE fluoroscopy images). Other embodiments of the present methods include taking one or more additional steps from among those steps described above. Thus, and by way of example, another embodiment of the present methods includes calculating a dataset vector using a position of an external reference marker and a position of a non-tissue internal reference marker.
Another basic embodiment of the present methods that may be achieved using the system 200 software described above is a method that includes receiving a position of an instrument reference marker coupled to an instrument (e.g., a medical instrument); transforming the position into image space using a position of a non-tissue internal reference marker implanted in a patient; and superimposing a representation of the instrument on an image in which the non-tissue internal reference marker appears. In another embodiment, the transforming includes transforming the position into image space using a transformation that is based, in part, on the position of the non-tissue internal reference marker implanted in the patient. And in yet another embodiment, the method also includes calculating the transformation using image space coordinates of the internal reference marker in the image. Other embodiments of the present methods include taking one or more additional steps from among those steps described above.
3. Non-Tissue Internal Reference Marker
An example of a non-tissue internal reference marker suitable for use as non-tissue internal reference marker 24 for use with system 100 is shown in
When apparatus 400—as a non-tissue internal reference marker—is implanted prior to imaging, chamber 412 can remain empty. The patient into which the apparatus is implanted can be scanned with apparatus 400 implanted and segment 418 in place, which can extend outside of the patient (e.g., outside of the patient's skin). Upon successful completion of the scan, one or more ferrous tracking sensors 420 that are configured for placement in chamber 412 and their ferrous connecting leads 422 (e.g., wires) can be introduced into chamber 412 via segment 416 and locked into place. This apparatus, therefore, alleviates the need for the tracking sensors to be non-ferrous.
As will be understood by those having skill in the art and the benefit of this disclosure, the steps disclosed above, and the techniques for carrying them out, may be implemented in any number of various media or devices. While described above in terms of software, it should be understood that the referenced software may take the form of machine (e.g., computer) readable instructions on computer readable media. The computer-readable, or machine-readable media, may take many forms, including any data storage device that can store data that can afterwards be read by a computer or a computer system, including a disk, such as a floppy disk, a zip disk, or the like; a server, read-only memory; random access memory; CD-ROMs; a memory card; magnetic tape; optical data storage devices, SMARTMEDIA® cards; flash memory; compact flash memory; and the like. The computer readable medium can also be distributed over network-coupled computer systems so that the computer readable instructions are stored and executed in a distributed fashion. For example, the computer readable medium may take the form of a carrier wave such as, for example, signals on a wire (e.g., signals downloaded from the Internet) or those that are transmitted electromagnetically or through infra red means. Furthermore, when the machine readable instructions in question have been loaded onto a given machine, that machine can be described as configured to take whatever actions are defined by the instructions.
In another embodiment, any of the present methods may be embodied in an integrated circuit, such as application specific integrated circuit (ASIC), or in a field programmable gate array (FPGA). In another embodiment, any of the present methods may be embodied by a combination of hardware and software; for instance, certain instructions may be executed by a chip running appropriate firmware. In another embodiment, any of the present methods may be embodied by a kit, such as a software developer's kit. Such a kit may include not only software, but also any corresponding hardware to execute the software. For instance, a kit may include a computer board along with drivers and software to be run by that board. Those having skill in the art will recognize that the present methods may be implemented by other means known in the art to achieve an identical or similar result. All such means are considered to be within the scope of the present methods and systems that include devices configured to carry out the present methods.
The claims are not to be interpreted as including means-plus- or step-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase(s) “means for” or “step for,” respectively.
This application claims priority to U.S. Provisional Patent Application Ser. No. 60/494,268, filed Aug. 11, 2003 by Jerome R. Edwards, entitled “METHODS, APPARATUSES, AND SYSTEMS USEFUL IN CONDUCTING IMAGE GUIDED INTERVENTIONS,” the entire contents of which are expressly incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3788324 | Lim | Jan 1974 | A |
4583538 | Onik et al. | Apr 1986 | A |
5053042 | Bidwell | Oct 1991 | A |
5158088 | Nelson et al. | Oct 1992 | A |
5186174 | Schlondorff et al. | Feb 1993 | A |
5251165 | James, III | Oct 1993 | A |
5251635 | Dumoulin et al. | Oct 1993 | A |
5265610 | Darrow et al. | Nov 1993 | A |
5348011 | NessAiver | Sep 1994 | A |
5377678 | Dumoulin et al. | Jan 1995 | A |
5391199 | Ben-Haim | Feb 1995 | A |
5437292 | Kipshidze et al. | Aug 1995 | A |
5483691 | Heck et al. | Jan 1996 | A |
5483961 | Kelly et al. | Jan 1996 | A |
5577502 | Darrow et al. | Nov 1996 | A |
5581163 | Lindstedt et al. | Dec 1996 | A |
5644612 | Moorman et al. | Jul 1997 | A |
5671739 | Darrow et al. | Sep 1997 | A |
5718241 | Ben-Haim et al. | Feb 1998 | A |
5730129 | Darrow et al. | Mar 1998 | A |
5740808 | Panescu et al. | Apr 1998 | A |
5765561 | Chen et al. | Jun 1998 | A |
5769789 | Wang et al. | Jun 1998 | A |
5769861 | Vilsmeier | Jun 1998 | A |
5771306 | Stork et al. | Jun 1998 | A |
5787886 | Kelly et al. | Aug 1998 | A |
5803089 | Ferre et al. | Sep 1998 | A |
5814022 | Antanavich et al. | Sep 1998 | A |
5814066 | Spotnitz | Sep 1998 | A |
5840025 | Ben-Haim | Nov 1998 | A |
5868673 | Vesely | Feb 1999 | A |
5978696 | VomLehn et al. | Nov 1999 | A |
6016439 | Acker | Jan 2000 | A |
6019724 | Gronningsaeter et al. | Feb 2000 | A |
6026173 | Svenson et al. | Feb 2000 | A |
6078175 | Foo | Jun 2000 | A |
6122538 | Sliwa, Jr. et al. | Sep 2000 | A |
6122541 | Cosman et al. | Sep 2000 | A |
6132396 | Antanavich et al. | Oct 2000 | A |
6144875 | Schweikard et al. | Nov 2000 | A |
6167296 | Shahidi | Dec 2000 | A |
6173201 | Front | Jan 2001 | B1 |
6198959 | Wang | Mar 2001 | B1 |
6201987 | Dumoulin | Mar 2001 | B1 |
6226543 | Gilboa et al. | May 2001 | B1 |
6226548 | Foley et al. | May 2001 | B1 |
6233476 | Strommer et al. | May 2001 | B1 |
6235038 | Hunter et al. | May 2001 | B1 |
6236875 | Bucholz et al. | May 2001 | B1 |
6246896 | Dumoulin et al. | Jun 2001 | B1 |
6246898 | Vesely et al. | Jun 2001 | B1 |
6267769 | Truwit | Jul 2001 | B1 |
6275560 | Blake et al. | Aug 2001 | B1 |
6282442 | DeStefano et al. | Aug 2001 | B1 |
6285902 | Kienzie et al. | Sep 2001 | B1 |
6298259 | Kucharczyk et al. | Oct 2001 | B1 |
6314310 | Ben-Haim et al. | Nov 2001 | B1 |
6314311 | Williams et al. | Nov 2001 | B1 |
6314312 | Wessels et al. | Nov 2001 | B1 |
6317616 | Glossop | Nov 2001 | B1 |
6317619 | Boernert | Nov 2001 | B1 |
6330356 | Sundareswaran et al. | Dec 2001 | B1 |
6332089 | Acker et al. | Dec 2001 | B1 |
6332891 | Himes | Dec 2001 | B1 |
6335623 | Damadian et al. | Jan 2002 | B1 |
6340363 | Bolger et al. | Jan 2002 | B1 |
6347240 | Foley et al. | Feb 2002 | B1 |
6348058 | Melkent et al. | Feb 2002 | B1 |
6351573 | Schneider | Feb 2002 | B1 |
6351659 | Viismeier | Feb 2002 | B1 |
6361759 | Frayne et al. | Mar 2002 | B1 |
6362821 | Gibson et al. | Mar 2002 | B1 |
6368331 | Front et al. | Apr 2002 | B1 |
6369571 | Damadian et al. | Apr 2002 | B1 |
6379302 | Kessman et al. | Apr 2002 | B1 |
6381485 | Hunter et al. | Apr 2002 | B1 |
6402762 | Hunter et al. | Jun 2002 | B2 |
6418238 | Shiratani et al. | Jul 2002 | B1 |
6421551 | Kuth et al. | Jul 2002 | B1 |
6424856 | Vilsmeier et al. | Jul 2002 | B1 |
6425865 | Saicudean et al. | Jul 2002 | B1 |
6430430 | Gosche | Aug 2002 | B1 |
6434415 | Foley et al. | Aug 2002 | B1 |
6434507 | Clayton et al. | Aug 2002 | B1 |
6437571 | Danby et al. | Aug 2002 | B1 |
6445186 | Damadian et al. | Sep 2002 | B1 |
6445943 | Ferre et al. | Sep 2002 | B1 |
6455182 | Silver | Sep 2002 | B1 |
6461372 | Jensen et al. | Oct 2002 | B1 |
6468265 | Evans et al. | Oct 2002 | B1 |
6469508 | Damadian et al. | Oct 2002 | B1 |
6470066 | Takagi et al. | Oct 2002 | B2 |
6470207 | Simon et al. | Oct 2002 | B1 |
6473635 | Rashe | Oct 2002 | B1 |
6477400 | Barrick | Nov 2002 | B1 |
6478793 | Cosman et al. | Nov 2002 | B1 |
6478802 | Kienzle, III et al. | Nov 2002 | B2 |
6483948 | Spink et al. | Nov 2002 | B1 |
6484049 | Seeley et al. | Nov 2002 | B1 |
6485413 | Boppart et al. | Nov 2002 | B1 |
D466609 | Glossop | Dec 2002 | S |
6490467 | Bucholz et al. | Dec 2002 | B1 |
6490475 | Seeley et al. | Dec 2002 | B1 |
6490477 | Zylka et al. | Dec 2002 | B1 |
6491699 | Henderson et al. | Dec 2002 | B1 |
6491702 | Heilbrun et al. | Dec 2002 | B2 |
6493574 | Ehnholm et al. | Dec 2002 | B1 |
6496007 | Damadian et al. | Dec 2002 | B1 |
6501981 | Schweikard et al. | Dec 2002 | B1 |
6504893 | Flohr et al. | Jan 2003 | B1 |
6504894 | Pan et al. | Jan 2003 | B2 |
6517485 | Torp et al. | Feb 2003 | B2 |
6527443 | Vilsmeier et al. | Mar 2003 | B1 |
6535756 | Simon et al. | Mar 2003 | B1 |
6538634 | Chui et al. | Mar 2003 | B1 |
6539127 | Roche et al. | Mar 2003 | B1 |
6541973 | Danby et al. | Apr 2003 | B1 |
6544041 | Damadian | Apr 2003 | B1 |
6547782 | Taylor | Apr 2003 | B1 |
6558333 | Gilboa et al. | May 2003 | B2 |
6562059 | Edwards et al. | May 2003 | B2 |
6567687 | Front et al. | May 2003 | B2 |
6580938 | Acker | Jun 2003 | B1 |
6584174 | Schubert et al. | Jun 2003 | B2 |
6584339 | Galloway, Jr. et al. | Jun 2003 | B2 |
6591130 | Shahidi | Jul 2003 | B2 |
6442417 | Shahidi et al. | Aug 2003 | B1 |
6606513 | Lardo et al. | Aug 2003 | B2 |
6609022 | Vilsmeier et al. | Aug 2003 | B2 |
6636757 | Jascob et al. | Oct 2003 | B1 |
6650924 | Kuth et al. | Nov 2003 | B2 |
6666579 | Jensen | Dec 2003 | B2 |
6674833 | Shahidi et al. | Jan 2004 | B2 |
6675032 | Chen et al. | Jan 2004 | B2 |
6675033 | Lardo et al. | Jan 2004 | B1 |
6687531 | Ferre et al. | Feb 2004 | B1 |
6690960 | Chen et al. | Feb 2004 | B2 |
6694167 | Ferre et al. | Feb 2004 | B1 |
6697664 | Kienzie, III et al. | Feb 2004 | B2 |
6711429 | Gilboa et al. | Mar 2004 | B1 |
6714629 | Vilsmeier | Mar 2004 | B2 |
6714810 | Grzeszczuk et al. | Mar 2004 | B2 |
6725080 | Melkent et al. | Apr 2004 | B2 |
6738656 | Ferre et al. | May 2004 | B1 |
6772002 | Schmidt et al. | Aug 2004 | B2 |
6774624 | Anderson et al. | Aug 2004 | B2 |
6782287 | Grzeszczuk et al. | Aug 2004 | B2 |
6796988 | Melkent et al. | Sep 2004 | B2 |
6799569 | Danielsson et al. | Oct 2004 | B2 |
6823207 | Jensen et al. | Nov 2004 | B1 |
6826423 | Hardy et al. | Nov 2004 | B1 |
6850794 | Shahidi | Feb 2005 | B2 |
6856826 | Seeley et al. | Feb 2005 | B2 |
6856827 | Seeley et al. | Feb 2005 | B2 |
6892090 | Verard et al. | May 2005 | B2 |
6898303 | Armato, III et al. | May 2005 | B2 |
6907281 | Grzeszcuzuk | Jun 2005 | B2 |
6920347 | Simon et al. | Jul 2005 | B2 |
6925200 | Wood et al. | Aug 2005 | B2 |
6934575 | Ferre et al. | Aug 2005 | B2 |
6968224 | Kessman et al. | Nov 2005 | B2 |
6978166 | Foley et al. | Dec 2005 | B2 |
7015859 | Anderson | Mar 2006 | B2 |
7015907 | Tek et al. | Mar 2006 | B2 |
7050845 | Vilsmeier | May 2006 | B2 |
7139601 | Bucholz et al. | Nov 2006 | B2 |
7153297 | Peterson | Dec 2006 | B2 |
7171257 | Thomson | Jan 2007 | B2 |
7174201 | Govari et al. | Feb 2007 | B2 |
7260426 | Schweikard et al. | Aug 2007 | B2 |
7366562 | Dukesherer et al. | Apr 2008 | B2 |
7398116 | Edwards | Jul 2008 | B2 |
7505806 | Masutani et al. | Mar 2009 | B2 |
7697972 | Verard et al. | Apr 2010 | B2 |
20010007918 | Vilsmeier et al. | Jul 2001 | A1 |
20010025142 | Wessels et al. | Sep 2001 | A1 |
20010029333 | Shahidi | Oct 2001 | A1 |
20010031919 | Strommer et al. | Oct 2001 | A1 |
20010031985 | Gilboa et al. | Oct 2001 | A1 |
20010036245 | Kienzle, III et al. | Nov 2001 | A1 |
20010041835 | Front et al. | Nov 2001 | A1 |
20020044631 | Graumann et al. | Apr 2002 | A1 |
20020049375 | Strommer et al. | Apr 2002 | A1 |
20020049378 | Grzeszczuk et al. | Apr 2002 | A1 |
20020070970 | Wood et al. | Jun 2002 | A1 |
20020075994 | Shahidi et al. | Jun 2002 | A1 |
20020077543 | Grzezczuk | Jun 2002 | A1 |
20020077544 | Shadidi | Jun 2002 | A1 |
20020082492 | Grzeszczuk | Jun 2002 | A1 |
20020085681 | Jensen | Jul 2002 | A1 |
20020143317 | Glossop | Oct 2002 | A1 |
20020161295 | Edwards et al. | Oct 2002 | A1 |
20030000535 | Galloway, Jr. et al. | Jan 2003 | A1 |
20030004411 | Govari et al. | Jan 2003 | A1 |
20030016652 | Kaufman et al. | Jan 2003 | A1 |
20030018251 | Solomon | Jan 2003 | A1 |
20030023161 | Govari et al. | Jan 2003 | A1 |
20030028091 | Simon et al. | Feb 2003 | A1 |
20030029464 | Chen et al. | Feb 2003 | A1 |
20030032878 | Shahidi | Feb 2003 | A1 |
20030040667 | Feussner et al. | Feb 2003 | A1 |
20030074011 | Gilboa et al. | Apr 2003 | A1 |
20030088179 | Seeley et al. | May 2003 | A1 |
20030125622 | Schweikard et al. | Jul 2003 | A1 |
20030130576 | Seeley et al. | Jul 2003 | A1 |
20030139663 | Graumann | Jul 2003 | A1 |
20030199785 | Hibner et al. | Oct 2003 | A1 |
20030208116 | Liang et al. | Nov 2003 | A1 |
20030208122 | Melkent et al. | Nov 2003 | A1 |
20030216631 | Bloch et al. | Nov 2003 | A1 |
20030220557 | Cleary et al. | Nov 2003 | A1 |
20040006268 | Gilboa et al. | Jan 2004 | A1 |
20040034300 | Verard et al. | Feb 2004 | A1 |
20040049121 | Yaron | Mar 2004 | A1 |
20040076259 | Jensen et al. | Apr 2004 | A1 |
20040092815 | Schweikard et al. | May 2004 | A1 |
20040097805 | Verard | May 2004 | A1 |
20040097806 | Hunter et al. | May 2004 | A1 |
20040116603 | Jascob et al. | Jun 2004 | A1 |
20040122311 | Cosman | Jun 2004 | A1 |
20040138548 | Strommer et al. | Jul 2004 | A1 |
20040152970 | Hunter et al. | Aug 2004 | A1 |
20040152974 | Solomon | Aug 2004 | A1 |
20040167393 | Solar et al. | Aug 2004 | A1 |
20040193042 | Scampini et al. | Sep 2004 | A1 |
20040210125 | Chen et al. | Oct 2004 | A1 |
20050010099 | Raabe et al. | Jan 2005 | A1 |
20050027186 | Chen et al. | Feb 2005 | A1 |
20050033149 | Strommer et al. | Feb 2005 | A1 |
20050038337 | Edwards | Feb 2005 | A1 |
20050065433 | Anderson | Mar 2005 | A1 |
20050085793 | Glossop | Apr 2005 | A1 |
20050107688 | Strommer | May 2005 | A1 |
20050113809 | Melkent et al. | May 2005 | A1 |
20050143651 | Verard et al. | Jun 2005 | A1 |
20050169510 | Zuhars et al. | Aug 2005 | A1 |
20050182319 | Glossop | Aug 2005 | A1 |
20050197568 | Vass et al. | Sep 2005 | A1 |
20050203383 | Moctezuma de la Barrera et al. | Sep 2005 | A1 |
20050234335 | Simon et al. | Oct 2005 | A1 |
20050288574 | Thronton et al. | Dec 2005 | A1 |
20050288578 | Durlak | Dec 2005 | A1 |
20060004281 | Saracen | Jan 2006 | A1 |
20060025677 | Verard et al. | Feb 2006 | A1 |
20060045318 | Schoisswohl et al. | Mar 2006 | A1 |
20060050942 | Bertram et al. | Mar 2006 | A1 |
20060050988 | Kraus et al. | Mar 2006 | A1 |
20060058647 | Strommer et al. | Mar 2006 | A1 |
20060063998 | von Jako et al. | Mar 2006 | A1 |
20060064006 | Strommer et al. | Mar 2006 | A1 |
20060074292 | Thomson et al. | Apr 2006 | A1 |
20060074299 | Sayeh | Apr 2006 | A1 |
20060074304 | Sayeh | Apr 2006 | A1 |
20060079759 | Valliant et al. | Apr 2006 | A1 |
20060084867 | Tremblay et al. | Apr 2006 | A1 |
20060093089 | Vertatschitsch et al. | May 2006 | A1 |
20060094958 | Marquart et al. | May 2006 | A1 |
20060106292 | Anderson | May 2006 | A1 |
20060116634 | Shachar | Jun 2006 | A1 |
20060122497 | Glossop | Jun 2006 | A1 |
20060142798 | Holman et al. | Jun 2006 | A1 |
20060173269 | Glossop | Aug 2006 | A1 |
20060173291 | Glossop | Aug 2006 | A1 |
20060189667 | Revie et al. | Aug 2006 | A1 |
20060247511 | Anderson | Nov 2006 | A1 |
20070032723 | Glossop | Feb 2007 | A1 |
20070038058 | West et al. | Feb 2007 | A1 |
20070055142 | Webler | Mar 2007 | A1 |
20070066887 | Mire et al. | Mar 2007 | A1 |
20070110289 | Fu et al. | May 2007 | A1 |
20070129629 | Beauregard et al. | Jun 2007 | A1 |
20070167744 | Beauregard et al. | Jul 2007 | A1 |
20080140114 | Edwards et al. | Jun 2008 | A1 |
20120158047 | Edward | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
19725137 | Jan 1999 | DE |
19829224 | Jan 2000 | DE |
19909816 | May 2000 | DE |
10000937 | Aug 2001 | DE |
10136709 | Feb 2003 | DE |
10161160 | Jun 2003 | DE |
102005010010 | Sep 2005 | DE |
102004030836 | Jan 2006 | DE |
102005038394 | Mar 2006 | DE |
1020050505286 | Apr 2006 | DE |
102004058122 | Jul 2006 | DE |
0 501 993 | Sep 1992 | EP |
0 869 745 | Oct 1998 | EP |
9 00 048 | Mar 1999 | EP |
9 77 510 | Feb 2000 | EP |
1 079 240 | Feb 2001 | EP |
1 152 706 | Nov 2001 | EP |
1 181 897 | Feb 2002 | EP |
1 319 368 | Jun 2003 | EP |
1 374 792 | Jan 2004 | EP |
1 374 793 | Jan 2004 | EP |
1 391 181 | Feb 2004 | EP |
1 421 913 | May 2004 | EP |
1 464 285 | Oct 2004 | EP |
1 504 713 | Feb 2005 | EP |
1 504 726 | Feb 2005 | EP |
1 519 140 | Mar 2005 | EP |
1 523 951 | Apr 2005 | EP |
1 561 423 | Aug 2005 | EP |
1 629 774 | Mar 2006 | EP |
1 629 789 | Mar 2006 | EP |
2 876 273 | Apr 2006 | FR |
95 01757 | Jan 1995 | WO |
96 08209 | Mar 1996 | WO |
9610949 | Apr 1996 | WO |
9608209 | Sep 1996 | WO |
97 29699 | Aug 1997 | WO |
97 29709 | Aug 1997 | WO |
9836684 | Aug 1998 | WO |
9916352 | Apr 1999 | WO |
09943253 | Sep 1999 | WO |
0016684 | Mar 2000 | WO |
0016684 | Mar 2000 | WO |
0028911 | May 2000 | WO |
0047103 | Aug 2000 | WO |
0049958 | Aug 2000 | WO |
0057767 | Oct 2000 | WO |
0069335 | Nov 2000 | WO |
0101845 | Jan 2001 | WO |
0137748 | May 2001 | WO |
0162134 | Aug 2001 | WO |
0164124 | Sep 2001 | WO |
0176496 | Oct 2001 | WO |
0176497 | Oct 2001 | WO |
0187136 | Nov 2001 | WO |
0193745 | Dec 2001 | WO |
200093 | Jan 2002 | WO |
200103 | Jan 2002 | WO |
0219936 | Mar 2002 | WO |
0222015 | Mar 2002 | WO |
0224051 | Mar 2002 | WO |
02056770 | Jul 2002 | WO |
02064011 | Aug 2002 | WO |
02082375 | Oct 2002 | WO |
02 098273 | Dec 2002 | WO |
2004 046754 | Jun 2004 | WO |
2004 062497 | Jul 2004 | WO |
04060157 | Jul 2004 | WO |
05070318 | Aug 2005 | WO |
05077293 | Oct 2005 | WO |
05101277 | Oct 2005 | WO |
05111942 | Nov 2005 | WO |
2006 002396 | Jan 2006 | WO |
2006 005021 | Jan 2006 | WO |
06027781 | Mar 2006 | WO |
06039009 | Apr 2006 | WO |
06051523 | May 2006 | WO |
2006 090141 | Aug 2006 | WO |
2007 002079 | Jan 2007 | WO |
2007 031314 | Mar 2007 | WO |
2007033206 | Mar 2007 | WO |
2007 062051 | May 2007 | WO |
2007 084893 | Jul 2007 | WO |
Entry |
---|
Medical Industry Today, “New navigational aid could improve hip replacement outcomes,” Jul. 11, 1997. |
Educational Highlights from Data Presented at the 5th Joint Meeting of the European Association for Cardio-Thoracic Surgery (EACTS) and the European Society of Thoracic Surgeons (ESTS) “Evidence for Fleece-Bound Sealants in Cardiothoracic Surgery” Sep. 9-13, 2006, 4 pages. |
Moore, E. et al. “Needle Aspiration Lung Biopsy: Reevaluation of the Blood Patch Technique in an Equine Model”, Radiology, vol. 196, No. 1, Jul. 1995, pp. 183-186. |
FDA Approves Lung Sealant, May 31, 2000 [online] [Retrieved on Oct. 17, 2008] Retrieved from the Internet <URL:http://www.meds.com/archive/mol-cancer/2000/05/msg01329.html. |
Number | Date | Country | |
---|---|---|---|
20160113600 A1 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
60494268 | Aug 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13932428 | Jul 2013 | US |
Child | 14989671 | US | |
Parent | 12941555 | Nov 2010 | US |
Child | 13932428 | US | |
Parent | 12146738 | Jun 2008 | US |
Child | 12941555 | US | |
Parent | 10649600 | Aug 2003 | US |
Child | 12146738 | US |