METHOD, ARRAY AND USE THEREOF

Information

  • Patent Application
  • 20220214344
  • Publication Number
    20220214344
  • Date Filed
    March 25, 2022
    2 years ago
  • Date Published
    July 07, 2022
    2 years ago
Abstract
The present invention relates to a method for determining the presence of pancreatic cancer in an individual comprising or consisting of the steps of: (a) providing a sample to be tested from the individual, and (b) determining a biomarker signature of the test sample by measuring the expression in the test sample of one or more biomarkers selected from the group defined in Table A, wherein the expression in the test sample of one or more biomarkers selected from the group defined in Table A is indicative of the individual having pancreatic cancer. The invention also comprises arrays and kits of parts for use in the method of the invention.
Description
FIELD OF INVENTION

The present invention relates to methods for detecting pancreatic cancer, and biomarkers and arrays for use in the same.


BACKGROUND

Pancreatic ductal adenocarcinoma, or pancreatic cancer (PC) is the 4th most common cancer-related cause of death, resulting in almost as many deaths as in breast cancer in the United States, despite a 10 times lower incidence [1]. The poor prognosis is mostly due to the inability to detect PC at an early stage, even though data supports that it takes more than five years from tumor initiation until the acquisition of metastatic ability [2], clearly demonstrating a window of opportunity for early detection if markers were available. Today, the cancer is often detected at advanced disease progression, with tumors that are inoperable and already have metastasized [1, 3]. However, even if the five-year survival of large resected tumors is only 10-20% [4, 5], it increases to 30-60% if tumors <20 mmm can be resected [6, 7], and to >75% if the size at resection is <10 mm [8]. The late detection is due to unspecific clinical symptoms as well as lack of sensitive technologies and markers for early diagnosis. Interestingly, studies suggest that pancreatic tumors could be resectable as early as six months prior to clinical diagnosis at an asymptomatic stage [9, 10].


The so far most evaluated marker for PC, CA19-9, suffers from poor specificity, with elevated levels also in pancreatitis and other cancers, and a complete absence in Lewis a and b negative tumors. Consequently, the use of CA19-9 for pancreatic cancer screening has been discouraged [11]. Despite many efforts, no other single biomarkers have been shown to outperform CA19-9, and in recent years the field has been moving towards multiplexed marker panels for increased sensitivity and specificity [12]. Panels have primarily consisted of high abundant blood proteins, frequently acute-phase reactants (e.g. CRP and SAA), known tumor markers (e.g. CA242, CA125 and CEA), adhesion molecules (e.g. ICAM-1 and ADCAM), proteins involved in extracellular matrix degradation (e.g. MMPs and TIMP1), lipoproteins (e.g. Apo-C1, Apo-A2), and several others, most often in combination with CA19-9 [15-20]. Despite reports of high sensitivity for PC versus healthy controls or benign pancreatic conditions, none of these panels have yet been validated for clinical use.


Besides the markers already mentioned, several immunoregulatory proteins may be of interest as tumor biomarkers, as the association between cancer and inflammation keeps unraveling [21]. Considering the systemic effect as well as the multitude in functions of many of the immunoregulatory proteins, it is generally considered that small panels of 2 to 5 markers will not be sufficiently specific for pancreatic cancer, particularly when trying to discriminate pancreatic cancer from pancreatitis and other conditions that present with similar symptoms. However, previous studies have shown that an increased number of these analytes (25) may yield highly disease specific immunosignatures reflecting the systemic response to disease [22-24].


Nevertheless, analysis of the immunoregulatory proteome is associated with several challenges. First, the serum concentration of the proteins of interest displays a vast dynamic range, from high microgram to low picogram per mL, which complicates their simultaneous detection using conventional proteomic methodologies [25, 26]. Second, there seems to be a consensus in that promising cancer markers are more likely to be found among the most low abundant, often low-molecular weight proteins [27, 28]. Third, the disease-associated changes in serum levels of these low abundant analytes is expected to be small, and thus a significant number of clinical samples will be needed for adequate statistics [29]. For these purposes, we have designed highly multiplexed recombinant antibody microarrays with close to 300 scFv antibodies targeting mainly immunoregulatory proteins [30]. With these arrays, protein expression can be measured in hundreds of samples in a highly reproducible and high-throughput manner.


SUMMARY OF THE INVENTION

In this multicenter study, 338 individual serum samples from patients with pancreatic cancer, benign pancreatic disease, as well as normal controls, were analyzed on our in-house designed antibody microarrays. To define the most discriminative marker signatures, we applied an iterative backward elimination procedure, based on support vector machine analysis and designed to predict the optimal combination of antibodies [31]. To this end, 25-plex immunosignatures for discriminating PC from benign and healthy controls were identified in training sets, prevalidated in independent test sets, and compared to signatures derived from differential protein expression analysis. In addition, protein profiling could be applied to stratify serum samples based on the original location of the tumor in the pancreas, which to the best of our knowledge has not previously been done with proteomics. Together, these findings add important information to the proteome puzzle of pancreatic cancer, which may in the end result in multiplexed biomarkers providing benefit for thousands of patients.


Accordingly, a first aspect of the invention provides a method for detecting pancreatic cancer in an individual comprising or consisting of the steps of:

    • a) providing a sample to be tested from the individual;
    • b) determining a biomarker signature of the test sample by measuring the expression in the test sample at least one biomarker selected from the group defined in Table A (i), (ii) or (iii);


wherein the expression in the test sample of the one or more biomarker selected from the group defined in Table A (i), (ii) or (iii) is indicative of the presence of pancreatic cancer.


By “sample to be tested”, “test sample” or “control sample” we include a tissue or fluid sample taken or derived from an individual. Preferably the sample to be tested is provided from a mammal. The mammal may be any domestic or farm animal. Preferably, the mammal is a rat, mouse, guinea pig, cat, dog, horse or a primate. Most preferably, the mammal is human. Preferably the sample is a cell or tissue sample (or derivative thereof) comprising or consisting of plasma, plasma cells, serum, tissue cells or equally preferred, protein or nucleic acid derived from a cell or tissue sample. Preferably test and control samples are derived from the same species.


In an alternative or additional embodiment the tissue sample is pancreatic tissue. In an alternative or additional embodiment, the cell sample is a sample of pancreatic cells.


By “expression” we mean the level or amount of a gene product such as mRNA or protein.


Methods of detecting and/or measuring the concentration of protein and/or nucleic acid are well known to those skilled in the art, see for example Sambrook and Russell, 2001, Cold Spring Harbor Laboratory Press.


By “biomarker” we mean a naturally-occurring biological molecule, or component or fragment thereof, the measurement of which can provide information useful in the prognosis of pancreatic cancer. For example, the biomarker may be a naturally-occurring protein or carbohydrate moiety, or an antigenic component or fragment thereof.


In an alternative or additional embodiment, the method comprises or consists of steps (a) and (b) and the further steps of:

    • c) providing one or more control sample from an individual not afflicted with pancreatic cancer;
    • d) determining a biomarker signature of the control sample by measuring the expression in the control sample of the one or more biomarkers measured in step (b);


wherein the presence of pancreatic cancer is identified in the event that the expression in the test sample of the one or more biomarkers measured in step (b) is different from the expression in the control sample of the one or more biomarkers measured in step (d).


The one or more control sample may be from a healthy individual (i.e., an individual unaffiliated by any disease or condition), an individual afflicted with a non-pancreatic disease or condition or an individual afflicted with a benign pancreatic disease or condition (for example, acute or chronic pancreatitis).


In another embodiment, the method comprises or consists of steps (a) and (b) and, optionally, steps (c) and (d) and the additional steps of:

    • e) providing one or more control sample from an individual afflicted with pancreatic cancer;
    • f) determining a biomarker signature of the control sample by measuring the expression in the control sample of the one or more biomarkers measured in step (b);


wherein the presence of pancreatic cancer is identified in the event that the expression in the test sample of the one or more biomarkers measured in step (b) corresponds to the expression in the control sample of the one or more biomarkers measured in step (f).


In an alternative or additional embodiment, a standard or reference value is used instead of, or in addition, to the one or more positive or negative control. Hence, the standard or references value(s) may be determined in separate procedures from the test value(s).


In an alternative or additional embodiment, the method is for determining the presence of pancreatic cancer originating from (i) the head of the pancreas or (ii) the body or tail of the pancreas. In this embodiment, step (e) may comprise (i) providing one or more control sample from an individual afflicted with pancreatic cancer originating from the head of the pancreas and/or (ii) providing one or more control sample from an individual afflicted with pancreatic cancer originating from the body or tail of the pancreas.


In this embodiment, the presence of pancreatic cancer originating from head of the pancreas is identified in the event that the expression in the (e)(i) test sample (where present) of the one or more biomarkers measured in step (b) corresponds to the expression in the control sample of the one or more biomarkers measured in step (f) and/or the expression in the (e)(ii) test sample (where present) of the one or more biomarkers measured in step (b) is different from the expression in the control sample of the one or more biomarkers measured in step (f).


In this embodiment, the presence of pancreatic cancer originating from the body or tail of the pancreas is identified in the event that the expression in the (e)(i) test sample (where present) of the one or more biomarkers measured in step (b) is different from the expression in the control sample of the one or more biomarkers measured in step (f) and/or the expression in the (e)(ii) test sample (where present) of the one or more biomarkers measured in step (b) corresponds to the expression in the control sample of the one or more biomarkers measured in step (f).


By “corresponds to the expression in the control sample” we include that the expression of the one or more biomarkers in the sample to be tested is the same as or similar to the expression of the one or more biomarkers of the positive control sample. Preferably the expression of the one or more biomarkers in the sample to be tested is identical to the expression of the one or more biomarkers of the positive control sample.


Differential expression (up-regulation or down regulation) of biomarkers, or lack thereof, can be determined by any suitable means known to a skilled person. Differential expression is determined to a p value of a least less than 0.05 (p=<0.05), for example, at least <0.04, <0.03, <0.02, <0.01, <0.009, <0.005, <0.001, <0.0001, <0.00001 or at least <0.000001. Preferably, differential expression is determined using a support vector machine (SVM). Preferably, the SVM is an SVM as described below. Most preferably, the SVM is the SVM described in Table B, below.


It will be appreciated by persons skilled in the art that differential expression may relate to a single biomarker or to multiple biomarkers considered in combination (i.e. as a biomarker signature). Thus, a p value may be associated with a single biomarker or with a group of biomarkers. Indeed, proteins having a differential expression p value of greater than 0.05 when considered individually may nevertheless still be useful as biomarkers in accordance with the invention when their expression levels are considered in combination with one or more other biomarkers.


As exemplified in the accompanying examples, the expression of certain proteins in a tissue, blood, serum or plasma test sample may be indicative of pancreatic cancer in an individual. For example, the relative expression of certain serum proteins in a single test sample may be indicative of the presence of pancreatic cancer in an individual.


Step (b) may comprise or consist of measuring the expression of 1 or more biomarker from the biomarkers listed in Table A(i). Step (b) may comprise or consist of measuring the expression of each of the biomarkers listed in Table A(i), for example at least 2 of the biomarkers listed in Table A(i). Hence, step (b) may comprise or consist of measuring the expression of all of the biomarkers listed in Table A(i).


Step (b) may comprise or consist of measuring the expression of 1 or more biomarker from the biomarkers listed in Table A(ii), for example at least 2, 3, 4, 5, 6, 7, 8 or 9 of the biomarkers listed in Table A(ii). Hence, step (b) may comprise or consist of measuring the expression of all of the biomarkers listed in Table A(ii).


Step (b) may comprise or consist of measuring the expression of 1 or more biomarker from the biomarkers listed in Table A(iii), for example at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17 of the biomarkers listed in Table A(iii). Hence, step (b) may comprise or consist of measuring the expression of all of the biomarkers listed in Table A(iii).


Step (b) may comprise or consist of measuring the expression of 1 or more biomarker from the biomarkers listed in Table A(iv), for example at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 or 22, 23 or 24 of the biomarkers listed in Table A(iv). Hence, step (b) may comprise or consist of measuring the expression of all of the biomarkers listed in Table A(iv).


Step (b) may comprise or consist of measuring the expression of 1 or more biomarker from the biomarkers listed in Table A(v), for example at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55 or 56 of the biomarkers listed in Table A(v). Hence, step (b) may comprise or consist of measuring the expression of all of the biomarkers listed in Table A(v).


Step (b) may comprise or consist of measuring the expression of 1 or more biomarker from the biomarkers listed in Table A(vi). Hence, step (b) may comprises or consists of measuring the expression of all of the biomarkers listed in Table A(vi).


Step (b) may comprise or consist of measuring the expression of 1 or more biomarker from the biomarkers listed in Table A, for example at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109 or 110 of the biomarkers listed in Table A. Hence, step (b) may comprise or consist of measuring the expression of all of the biomarkers listed in Table A.


Where the method is for determining the presence of pancreatic adenocarcinoma step (b) preferably comprises or consists of measuring the expression of:

    • 1 or more biomarkers from the biomarkers listed in Table A(i), for example at least 2 of the biomarkers listed in Table A(i);
    • 1 or more biomarker from the biomarkers listed in Table A(ii), for example at least 2, 3, 4, 5, 6, 7, 8 or 9 of the biomarkers listed in Table A(ii);
    • 1 or more biomarker from the biomarkers listed in Table A(iii), for example at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17 of the biomarkers listed in Table A(iii);
    • 1 or more biomarker from the biomarkers listed in Table A(iv), for example at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 or 24 of the biomarkers listed in Table A(iv); and/or
    • 1 or more biomarker from the biomarkers listed in Table A(v), for example at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55 or 56 of the biomarkers listed in Table A(v).
    • 1 or more biomarker from the biomarkers listed in Table A(vi); Hence, step (b) may comprises or consists of measuring the expression of all of the biomarkers listed in Table A(vi).


Where the method is for determining the presence of pancreatic adenocarcinoma originating from (i) the head of the pancreas or (ii) the body or tail of the pancreas step (b) preferably comprises or consists of measuring the expression of:

    • 1 or more biomarker from the biomarkers listed in Table A(ii), for example at least 2, 3, 4, 5, 6, 7, 8 or 9 of the biomarkers listed in Table A(ii);
    • 1 or more biomarker from the biomarkers listed in Table A(iv), for example at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 13 or 24 of the biomarkers listed in Table A(iv); and/or
    • 1 or more biomarker listed in Table A(vi).


When referring to a “normal” disease state we include individuals not afflicted with chronic pancreatitis (ChP) or acute inflammatory pancreatitis (AIP). Preferably the individuals are not afflicted with any pancreatic disease or disorder. Most preferably, the individuals are healthy individuals, i.e., they are not afflicted with any disease or disorder.


In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Transcription factor SOX-11. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Integrin alpha-10. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of EDFR (SEQ ID NO: 3). In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of EPFR (SEQ ID NO: 4). In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of LSADHR (SEQ ID NO: 5). In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of SEAHLR (SEQ ID NO: 6). In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of AQQHQWDGLLSYQDSLS (SEQ ID NO: 7). In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of WTRNSNMNYWLIIRL (SEQ ID NO: 8). In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of WDSR (SEQ ID NO: 9). In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of DFAEDK (SEQ ID NO: 10). In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of FASN protein. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of GAK protein. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of HADH2 protein. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of LNVWGK (SEQ ID NO: 11). In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of LTEFAK (SEQ ID NO: 12). In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of LYEIAR (SEQ ID NO: 13). In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Megakaryocyte-associated tyrosine-protein kinase. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Oxysterol-binding protein-related protein 3. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of QEASFK (SEQ ID NO: 14). In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of SSAYSR (SEQ ID NO: 15). In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of QEASFK (SEQ ID NO: 14). In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of TEEQLK (SEQ ID NO: 16). In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of TLYVGK (SEQ ID NO: 17). In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of FLLMQYGGMDEHAR (SEQ ID NO: 18). In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of GIVKYLYEDEG (SEQ ID NO: 19). In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of GIVKYLYEDEG (SEQ ID NO: 19). In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Tumor necrosis factor receptor superfamily member 3. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Tyrosine-protein kinase SYK. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Angiomotin. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of C—C motif chemokine 2. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of C—C motif chemokine 5. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of CD40 ligand. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Glucagon-like peptide-1. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Immunoglobilin M. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Interleukin-1 alpha. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Interleukin-1 receptor antagonist protein. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Interleukin-11. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Interleukin-12. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Interleukin-16. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Interleukin-18. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Interleukin-2. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Interleukin-3. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Interleukin-4. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Interleukin-6. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Interleukin-7. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Interleukin-9. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Lewis x. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Lymphotoxin-alpha. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Transforming growth factor beta-1. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Vascular endothelial growth factor. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Visual system homeobox 2. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of HLA-DR/DP. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Apolipoprotein A1. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Apolipoprotein A4. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Apolipoprotein B-100. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of ATP synthase subunit beta, mitochondrial. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Beta-galactosidase. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Cathepsin W. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of C—C motif chemokine 13. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of C—C motif chemokine 7. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of CD40 protein. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Complement C1q. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Complement C1s. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Complement C3. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Complement C4. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Complement C5. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Complement factor B. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Cyclin-dependent kinase 2. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Cystatin-C. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Eotaxin. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Epidermal growth factor receptor. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Glucagon-like peptide 1 receptor. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Granulocyte-macrophage colony-stimulating factor. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Integrin alpha-11. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Intercellular adhesion molecule 1. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Interferon gamma. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Interleukin-1 beta. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Interleukin-10. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Interleukin-13. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Interleukin-5. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Interleukin-8. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Keratin, type I cytoskeletal 19. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Leptin. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Lumican. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Mitogen-activated protein kinase 1. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Mitogen-activated protein kinase 8. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Mucin-1. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Myomesin-2. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Osteopontin. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Phosphatidylinositol 3-kinase regulatory subunit alpha. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Plasma protease C1 inhibitor. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Properdin. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Prostate-specific antigen. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Receptor tyrosine-protein kinase erbB-2. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Regulator of nonsense transcripts 3B. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Ribosomal protein S6 kinase alpha-2. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Sialyl Lewis x. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Signal-transducing adaptor protein 2. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of SUMO-conjugating enzyme UBC9. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of TBC1 domain family member 9. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Transmembrane peptide. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Tumor necrosis factor alpha. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Tumor necrosis factor receptor superfamily member 14. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Tyrosine-protein kinase BTK. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Tyrosine-protein kinase JAK3. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Tyrosine-protein phosphatase non-receptor type 1. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Ubiquitin carboxyl-terminal hydrolase isozyme L5. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of Ubiquitin-conjugating enzyme E2 C. In an alternative or additional embodiment, step (b) comprises or consists of measuring the expression of FIQTDK (SEQ ID NO: 20).


In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Transcription factor SOX-11. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Integrin alpha-10. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of EDFR (SEQ ID NO: 3). In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of EPFR (SEQ ID NO: 4). In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of LSADHR (SEQ ID NO: 5). In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of SEAHLR (SEQ ID NO: 6). In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of AQQHQWDGLLSYQDSLS (SEQ ID NO: 7). In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of WTRNSNMNYWLIIRL (SEQ ID NO: 8). In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of WDSR (SEQ ID NO: 9). In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of DFAEDK (SEQ ID NO: 10). In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of FASN protein. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of GAK protein. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of HADH2 protein. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of LNVWGK (SEQ ID NO: 11). In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of LTEFAK (SEQ ID NO: 12). In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of LYEIAR (SEQ ID NO: 13). In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Megakaryocyte-associated tyrosine-protein kinase. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Oxysterol-binding protein-related protein 3. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of QEASFK (SEQ ID NO: 14). In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of SSAYSR (SEQ ID NO: 15). In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of QEASFK (SEQ ID NO: 14). In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of TEEQLK (SEQ ID NO: 16). In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of TLYVGK (SEQ ID NO: 17). In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of FLLMQYGGMDEHAR (SEQ ID NO: 18). In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of GIVKYLYEDEG (SEQ ID NO: 19). In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of GIVKYLYEDEG (SEQ ID NO: 19). In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Tumor necrosis factor receptor superfamily member 3. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Tyrosine-protein kinase SYK. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Angiomotin. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of C—C motif chemokine 2. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of C—C motif chemokine 5. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of CD40 ligand. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Glucagon-like peptide-1. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Immunoglobilin M. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Interleukin-1 alpha. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Interleukin-1 receptor antagonist protein. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Interleukin-11. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Interleukin-12. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Interleukin-16. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Interleukin-18. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Interleukin-2. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Interleukin-3. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Interleukin-4. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Interleukin-6. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Interleukin-7. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Interleukin-9. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Lewis x. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Lymphotoxin-alpha. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Transforming growth factor beta-1. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Vascular endothelial growth factor. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Visual system homeobox 2. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of HLA-DR/DP. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Apolipoprotein A1. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Apolipoprotein A4. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Apolipoprotein B-100. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of ATP synthase subunit beta, mitochondrial. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Beta-galactosidase. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Cathepsin W. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of C—C motif chemokine 13. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of C—C motif chemokine 7. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of CD40 protein. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Complement C1q. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Complement C1s. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Complement C3. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Complement C4. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Complement C5. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Complement factor B. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Cyclin-dependent kinase 2. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Cystatin-C. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Eotaxin. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Epidermal growth factor receptor. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Glucagon-like peptide 1 receptor. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Granulocyte-macrophage colony-stimulating factor. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Integrin alpha-11. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Intercellular adhesion molecule 1. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Interferon gamma. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Interleukin-1 beta. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Interleukin-10. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Interleukin-13. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Interleukin-5. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Interleukin-8. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Keratin, type I cytoskeletal 19. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Leptin. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Lumican. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Mitogen-activated protein kinase 1. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Mitogen-activated protein kinase 8. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Mucin-1. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Myomesin-2. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Osteopontin. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Phosphatidylinositol 3-kinase regulatory subunit alpha. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Plasma protease C1 inhibitor. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Properdin. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Prostate-specific antigen. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Receptor tyrosine-protein kinase erbB-2. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Regulator of nonsense transcripts 3B. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Ribosomal protein S6 kinase alpha-2. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Sialyl Lewis x. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Signal-transducing adaptor protein 2. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of SUMO-conjugating enzyme UBC9. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of TBC1 domain family member 9. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Transmembrane peptide. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Tumor necrosis factor alpha. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Tumor necrosis factor receptor superfamily member 14. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Tyrosine-protein kinase BTK. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Tyrosine-protein kinase JAK3. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Tyrosine-protein phosphatase non-receptor type 1. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Ubiquitin carboxyl-terminal hydrolase isozyme L5. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of Ubiquitin-conjugating enzyme E2 C. In an alternative or additional embodiment, step (b) does not comprise or consist of measuring the expression of FIQTDK (SEQ ID NO: 20).


By “transmembrane peptide” or “TM peptide” we mean a peptide derived from a 10TM protein, to which the scFv antibody construct of SEQ ID NO: 1 below has specificity (wherein the CDR sequences are indicated by bold, italicised text):









[SEQ ID NO: 1]


MAEVQLLESGGGLVQPGGSLRLSCAASGFTcustom-character KGLEW





Vcustom-charactercustom-character FTISRDNSKNTLYLQMNSLRAEDTAVYY





CARGTWFDPWGQGTLVTVSSGGGGSGGGGSGGGGSQSVLTQPPSASGTPG





QRVTISCScustom-character WYQQLPGTAPKLLIYcustom-character GVPDR





FSGSKSGTSASLAISGLRSEDEADYYcustom-charactercustom-character FGGGTKLTVL





G






Hence, this scFv may be used or any antibody, or antigen binding fragment thereof, that competes with this scFv for binding to the 10TM protein. For example, the antibody, or antigen binding fragment thereof, may comprise the same CDRs as present in SEQ ID NO:1.


It will be appreciated by persons skilled in the art that such an antibody may be produced with an affinity tag (e.g. at the C-terminus) for purification purposes. For example, an affinity tag of SEQ ID NO: 2 below may be utilised:











[SEQ ID NO: 2]



DYKDHDGDYKDHDIDYKDDDDKAAAHHHHHH






In an alternative or additional embodiment, the one or more biomarker measured in step (b) comprise or consist of one or more biomarker selected from the group consisting of:

    • Angiomotin, Apo-A1, Apo-A4, ATP-5B, BTK, C1 inh, C1q, C3, C5, CD40, CD40L, Cystatin C, Eotaxin, Factor B, GAK, GM-CSF, HADH2, IL-11, IL-13, IL-3, IL-4, IL-6, IL-8, IL-9, KSYK-1, LDL, MAPK1, MCP-1, PTP-1B, Sialyl Lewis x, Sox11A, TGF-beta1, TNF-alpha, TNFRSF3, UCHL5 and UPF3B.


In this embodiment, the method may be for discriminating between pancreatic cancer (PC), and non-pancreatic cancer (NC) and/or benign pancreatic conditions (BC).


In an alternative or additional embodiment the one or more biomarker measured in step (b) comprise or consist of one or more biomarker selected from the group consisting of:

    • Angiomotin, ATP-5B, C1 inh, C1q, C3, C5, CD40, Cystatin C, Eotaxin, Factor B, GAK, HADH2, IL-11, IL-13, IL-6, IL-8, LDL and TNF-alpha.


In this embodiment, the method may be for discriminating between pancreatic cancer (PC), and non-pancreatic cancer (NC).


In an alternative or additional embodiment, the one or more biomarker measured in step (b) comprise or consist of one or more biomarker selected from the group consisting of:

    • Apo-A1, Apo-A4, BTK, C1 inh., C5, CD40L, CIMS, Factor B, GM-CSF, HADH2, IL-3, IL-4, IL-4, IL-9, KSYK-1, MAPK1, MCP-1, PTP-1B, Sialyl Lewis x, Sox11A, TGF-beta1, TNFRSF3, UCHL5 and UPF3B.


In this embodiment, the method may be for discriminating between pancreatic cancer (PC), and benign pancreatic conditions (BC).


In an alternative or additional embodiment, the method comprises or consists of steps (a) and (b), optionally, steps (c) and (d), optionally, steps (e) and (f), and the additional step of:

    • g) determining the presence of pancreatic cancer based on the expression of the one or more biomarkers measured in step (b).


In an alternative or additional embodiment is based on the trends (up- or down-regulation) identified in Table 2.


In an alternative or additional embodiment step (b) and, where present, steps (d) and (f) are performed by contacting the sample to be tested with binding moiety for the one or more biomarker measured in step (b), for example, as first binding moiety as defined below.


In an alternative or additional embodiment, the method comprises or consists of the use of biomarkers listed in Table 3.


Generally, diagnosis is made with an ROC AUC of at least 0.55, for example with an ROC AUC of at least, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 0.96, 0.97, 0.98, 0.99 or with an ROC AUC of 1.00. Preferably, diagnosis is made with an ROC AUC of at least 0.85, and most preferably with an ROC AUC of 1.


Typically, diagnosis is performed using a support vector machine (SVM), such as those available from cran.r-project.org/web/packages/e1071/index.html (e.g. e1071 1.5-24). However, any other suitable means may also be used.


Support vector machines (SVMs) are a set of related supervised learning methods used for classification and regression. Given a set of training examples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that predicts whether a new example falls into one category or the other. Intuitively, an SVM model is a representation of the examples as points in space, mapped so that the examples of the separate categories are divided by a clear gap that is as wide as possible. New examples are then mapped into that same space and predicted to belong to a category based on which side of the gap they fall on.


More formally, a support vector machine constructs a hyperplane or set of hyperplanes in a high or infinite dimensional space, which can be used for classification, regression or other tasks. Intuitively, a good separation is achieved by the hyperplane that has the largest distance to the nearest training datapoints of any class (so-called functional margin), since in general the larger the margin the lower the generalization error of the classifier. For more information on SVMs, see for example, Burges, 1998, Data Mining and Knowledge Discovery, 2:121-167.


In an alternative or additional embodiment of the invention, the SVM is ‘trained’ prior to performing the methods of the invention using biomarker profiles from individuals with known disease status (for example, individuals known to have pancreatic cancer, individuals known to have acute inflammatory pancreatitis, individuals known to have chronic pancreatitis or individuals known to be healthy). By running such training samples, the SVM is able to learn what biomarker profiles are associated with pancreatic cancer. Once the training process is complete, the SVM is then able whether or not the biomarker sample tested is from an individual with pancreatic cancer.


However, this training procedure can be by-passed by pre-programming the SVM with the necessary training parameters. For example, diagnoses can be performed according to the known SVM parameters using the SVM algorithm detailed in Table B, based on the measurement of any or all of the biomarkers listed in Table A.


It will be appreciated by skilled persons that suitable SVM parameters can be determined for any combination of the biomarkers listed in Table A by training an SVM machine with the appropriate selection of data (i.e. biomarker measurements from individuals with known pancreatic cancer status). Alternatively, the Table 2 and 3 data may be used to determine a particular pancreatic cancer-associated disease state according to any other suitable statistical method known in the art.


Preferably, the method of the invention has an accuracy of at least 60%, for example 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% accuracy.


Preferably, the method of the invention has a sensitivity of at least 60%, for example 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sensitivity.


Preferably, the method of the invention has a specificity of at least 60%, for example 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% specificity.


By “accuracy” we mean the proportion of correct outcomes of a method, by “sensitivity” we mean the proportion of all PaC positive sample that are correctly classified as positives, and by “specificity” we mean the proportion of all PaC negative samples that are correctly classified as negatives.


In an alternative or additional embodiment, the individual not afflicted with pancreatic cancer is not afflicted with pancreatic cancer (PaC), chronic pancreatitis (ChP) or acute inflammatory pancreatitis (AIP). More preferably, the healthy individual is not afflicted with any pancreatic disease or condition. Even more preferably, the individual not afflicted with pancreatic cancer is not afflicted with any disease or condition. Most preferably, the individual not afflicted with pancreatic cancer is a healthy individual. By a “healthy individual” we include individuals considered by a skilled person to be physically vigorous and free from physical disease.


However, in another embodiment the individual not afflicted with pancreatic cancer is afflicted with chronic pancreatitis. In still another embodiment, the individual not afflicted with pancreatic cancer is afflicted with acute inflammatory pancreatitis.


As previously mentioned the present method is for determining the presence of pancreatic cancer in an individual. In an alternative or additional embodiment the pancreatic cancer is selected from the group consisting of adenocarcinoma, adenosquamous carcinoma, signet ring cell carcinoma, hepatoid carcinoma, colloid carcinoma, undifferentiated carcinoma, and undifferentiated carcinomas with osteoclast-like giant cells. Preferably, the pancreatic cancer is a pancreatic adenocarcinoma. More preferably, the pancreatic cancer is pancreatic ductal adenocarcinoma, also known as exocrine pancreatic cancer.


In a further embodiment, step (b), (d) and/or step (f) is performed using a first binding agent capable of binding to the one or more biomarkers (i.e., using one or more first binding agent, where in each binding agent is capable of specifically binding to one of the one or more biomarkers). It will be appreciated by persons skilled in the art that the first binding agent may comprise or consist of a single species with specificity for one of the protein biomarkers or a plurality of different species, each with specificity for a different protein biomarker.


Suitable binding agents (also referred to as binding molecules) can be selected from a library, based on their ability to bind a given motif, as discussed below.


At least one type of the binding agents, and more typically all of the types, may comprise or consist of an antibody or antigen-binding fragment of the same, or a variant thereof.


Methods for the production and use of antibodies are well known in the art, for example see Antibodies: A Laboratory Manual, 1988, Harlow & Lane, Cold Spring Harbor Press, ISBN-13: 978-0879693145, Using Antibodies: A Laboratory Manual, 1998, Harlow & Lane, Cold Spring Harbor Press, ISBN-13: 978-0879695446 and Making and Using Antibodies: A Practical Handbook, 2006, Howard & Kaser, CRC Press, ISBN-13: 978-(the disclosures of which are incorporated herein by reference).


Thus, a fragment may contain one or more of the variable heavy (VH) or variable light (VL) domains. For example, the term antibody fragment includes Fab-like molecules (Better et al (1988) Science 240, 1041); Fv molecules (Skerra et al (1988) Science 240, 1038); single-chain Fv (ScFv) molecules where the VH and VL partner domains are linked via a flexible oligopeptide (Bird et al (1988) Science 242, 423; Huston et al (1988) Proc. Natl. Acad. Sci. USA 85, 5879) and single domain antibodies (dAbs) comprising isolated V domains (Ward et al (1989) Nature 341, 544).


The term “antibody variant” includes any synthetic antibodies, recombinant antibodies or antibody hybrids, such as but not limited to, a single-chain antibody molecule produced by phage-display of immunoglobulin light and/or heavy chain variable and/or constant regions, or other immunointeractive molecule capable of binding to an antigen in an immunoassay format that is known to those skilled in the art.


A general review of the techniques involved in the synthesis of antibody fragments which retain their specific binding sites is to be found in Winter & Milstein (1991) Nature 349, 293-299.


Molecular libraries such as antibody libraries (Clackson et al, 1991, Nature 352, 624-628; Marks et al, 1991, J Mol Biol 222(3): 581-97), peptide libraries (Smith, 1985, Science 228(4705): 1315-7), expressed cDNA libraries (Santi et al (2000) J Mol Biol 296(2): 497-508), libraries on other scaffolds than the antibody framework such as affibodies (Gunneriusson et al, 1999, Appl Environ Microbiol 65(9): 4134-40) or libraries based on aptamers (Kenan et al, 1999, Methods Mol Biol 118, 217-31) may be used as a source from which binding molecules that are specific for a given motif are selected for use in the methods of the invention.


The molecular libraries may be expressed in vivo in prokaryotic (Clackson et al, 1991, op. cit.; Marks et al, 1991, op. cit.) or eukaryotic cells (Kieke et al, 1999, Proc Natl Acad Sci USA, 96(10):5651-6) or may be expressed in vitro without involvement of cells (Hanes & Pluckthun, 1997, Proc Natl Acad Sci USA 94(10):4937-42; He & Taussig, 1997, Nucleic Acids Res 25(24):5132-4; Nemoto et al, 1997, FEBS Lett, 414(2):405-8).


In cases when protein based libraries are used often the genes encoding the libraries of potential binding molecules are packaged in viruses and the potential binding molecule is displayed at the surface of the virus (Clackson et al, 1991, op. cit.; Marks et al, 1991, op. cit; Smith, 1985, op. cit.).


The most commonly used such system today is filamentous bacteriophage displaying antibody fragments at their surfaces, the antibody fragments being expressed as a fusion to the minor coat protein of the bacteriophage (Clackson et al, 1991, op. cit.; Marks et al, 1991, op. cit). However, also other systems for display using other viruses (EP 39578), bacteria (Gunneriusson et al, 1999, op. cit.; Daugherty et al, 1998, Protein Eng 11(9):825-32; Daugherty et al, 1999, Protein Eng 12(7):613-21), and yeast (Shusta et al, 1999, J Mol Biol 292(5):949-56) have been used.


In addition, display systems have been developed utilising linkage of the polypeptide product to its encoding mRNA in so called ribosome display systems (Hanes & Pluckthun, 1997, op. cit.; He & Taussig, 1997, op. cit.; Nemoto et al, 1997, op. cit.), or alternatively linkage of the polypeptide product to the encoding DNA (see U.S. Pat. No. 5,856,090 and WO 98/37186).


When potential binding molecules are selected from libraries one or a few selector peptides having defined motifs are usually employed. Amino acid residues that provide structure, decreasing flexibility in the peptide or charged, polar or hydrophobic side chains allowing interaction with the binding molecule may be used in the design of motifs for selector peptides.


For example:

  • (i) Proline may stabilise a peptide structure as its side chain is bound both to the alpha carbon as well as the nitrogen;
  • (ii) Phenylalanine, tyrosine and tryptophan have aromatic side chains and are highly hydrophobic, whereas leucine and isoleucine have aliphatic side chains and are also hydrophobic;
  • (iii) Lysine, arginine and histidine have basic side chains and will be positively charged at neutral pH, whereas aspartate and glutamate have acidic side chains and will be negatively charged at neutral pH;
  • (iv) Asparagine and glutamine are neutral at neutral pH but contain a amide group which may participate in hydrogen bonds;
  • (v) Serine, threonine and tyrosine side chains contain hydroxyl groups, which may participate in hydrogen bonds.


Typically, selection of binding agents may involve the use of array technologies and systems to analyse binding to spots corresponding to types of binding molecules.


In an alternative or additional embodiment, the first binding agent(s) is/are immobilised on a surface (e.g. on a multiwell plate or array).


The variable heavy (VH) and variable light (VL) domains of the antibody are involved in antigen recognition, a fact first recognised by early protease digestion experiments. Further confirmation was found by “humanisation” of rodent antibodies. Variable domains of rodent origin may be fused to constant domains of human origin such that the resultant antibody retains the antigenic specificity of the rodent parented antibody (Morrison et al (1984) Proc. Natl. Acad. Sci. USA 81, 6851-6855).


That antigenic specificity is conferred by variable domains and is independent of the constant domains is known from experiments involving the bacterial expression of antibody fragments, all containing one or more variable domains. These molecules include Fab-like molecules (Better et al (1988) Science 240, 1041); Fv molecules (Skerra et al (1988) Science 240, 1038); single-chain Fv (ScFv) molecules where the VH and VL partner domains are linked via a flexible oligopeptide (Bird et al (1988) Science 242, 423; Huston et al (1988) Proc. Natl. Acad. Sci. USA 85, 5879) and single domain antibodies (dAbs) comprising isolated V domains (Ward et al (1989) Nature 341, 544). A general review of the techniques involved in the synthesis of antibody fragments which retain their specific binding sites is to be found in Winter & Milstein (1991) Nature 349, 293-299.


By “ScFv molecules” we mean molecules wherein the VH and VL partner domains are linked via a flexible oligopeptide.


The advantages of using antibody fragments, rather than whole antibodies, are several-fold. The smaller size of the fragments may lead to improved pharmacological properties, such as better penetration of solid tissue. Effector functions of whole antibodies, such as complement binding, are removed. Fab, Fv, ScFv and dAb antibody fragments can all be expressed in and secreted from E. coli, thus allowing the facile production of large amounts of the said fragments.


Whole antibodies, and F(ab′)2 fragments are “bivalent”. By “bivalent” we mean that the said antibodies and F(ab′)2 fragments have two antigen combining sites. In contrast, Fab, Fv, ScFv and dAb fragments are monovalent, having only one antigen combining sites.


The antibodies may be monoclonal or polyclonal. Suitable monoclonal antibodies may be prepared by known techniques, for example those disclosed in “Monoclonal Antibodies: A manual of techniques”, H Zola (CRC Press, 1988) and in “Monoclonal Hybridoma Antibodies: Techniques and applications”, J G R Hurrell (CRC Press, 1982), both of which are incorporated herein by reference.


In an alternative or additional embodiment, the first binding agent immobilised on a surface (e.g. on a multiwell plate or array).


The advantages of using antibody fragments, rather than whole antibodies, are several-fold. The smaller size of the fragments may lead to improved pharmacological properties, such as better penetration of solid tissue. Effector functions of whole antibodies, such as complement binding, are removed. Fab, Fv, ScFv and dAb antibody fragments can all be expressed in and secreted from E. coli, thus allowing the facile production of large amounts of the said fragments.


Whole antibodies, and F(ab′)2 fragments are “bivalent”. By “bivalent” we mean that the said antibodies and F(ab′)2 fragments have two antigen combining sites. In contrast, Fab, Fv, ScFv and dAb fragments are monovalent, having only one antigen combining sites.


The antibodies may be monoclonal or polyclonal. Suitable monoclonal antibodies may be prepared by known techniques, for example those disclosed in “Monoclonal Antibodies: A manual of techniques”, H Zola (CRC Press, 1988) and in “Monoclonal Hybridoma Antibodies: Techniques and applications”, J G R Hurrell (CRC Press, 1982), both of which are incorporated herein by reference.


Hence, the first binding agent may comprise or consist of an antibody or an antigen-binding fragment thereof. Preferably, the antibody or antigen-binding fragment thereof is a recombinant antibody or antigen-binding fragment thereof. The antibody or antigen-binding fragment thereof may be selected from the group consisting of: scFv, Fab, and a binding domain of an immunoglobulin molecule.


The first binding agent may be immobilised on a surface.


The one or more biomarkers in the test sample may be labelled with a detectable moiety.


By a “detectable moiety” we include the meaning that the moiety is one which may be detected and the relative amount and/or location of the moiety (for example, the location on an array) determined.


Suitable detectable moieties are well known in the art.


Thus, the detectable moiety may be a fluorescent and/or luminescent and/or chemiluminescent moiety which, when exposed to specific conditions, may be detected. For example, a fluorescent moiety may need to be exposed to radiation (i.e. light) at a specific wavelength and intensity to cause excitation of the fluorescent moiety, thereby enabling it to emit detectable fluorescence at a specific wavelength that may be detected.


Alternatively, the detectable moiety may be an enzyme which is capable of converting a (preferably undetectable) substrate into a detectable product that can be visualised and/or detected. Examples of suitable enzymes are discussed in more detail below in relation to, for example, ELISA assays.


Alternatively, the detectable moiety may be a radioactive atom which is useful in imaging. Suitable radioactive atoms include 99mTc and 123I for scintigraphic studies. Other readily detectable moieties include, for example, spin labels for magnetic resonance imaging (MRI) such as 123I again, 131I, 111In, 19F, 13C, 15N, 17O, gadolinium, manganese or iron. Clearly, the agent to be detected (such as, for example, the one or more biomarkers in the test sample and/or control sample described herein and/or an antibody molecule for use in detecting a selected protein) must have sufficient of the appropriate atomic isotopes in order for the detectable moiety to be readily detectable.


The radio- or other labels may be incorporated into the agents of the invention (i.e. the proteins present in the samples of the methods of the invention and/or the binding agents of the invention) in known ways. For example, if the binding moiety is a polypeptide it may be biosynthesised or may be synthesised by chemical amino acid synthesis using suitable amino acid precursors involving, for example, fluorine-19 in place of hydrogen. Labels such as 99mTc, 123I, 186Rh, 188Rh and 111In can, for example, be attached via cysteine residues in the binding moiety. Yttrium-90 can be attached via a lysine residue. The IODOGEN method (Fraker et al (1978) Biochem. Biophys. Res. Comm. 80, 49-57) can be used to incorporate 123I. Reference (“Monoclonal Antibodies in Immunoscintigraphy”, J-F Chatal, CRC Press, 1989) describes other methods in detail. Methods for conjugating other detectable moieties (such as enzymatic, fluorescent, luminescent, chemiluminescent or radioactive moieties) to proteins are well known in the art.


Preferably, the one or more biomarkers in the control sample(s) are labelled with a detectable moiety. The detectable moiety may be selected from the group consisting of: a fluorescent moiety; a luminescent moiety; a chemiluminescent moiety; a radioactive moiety; an enzymatic moiety. However, it is preferred that the detectable moiety is biotin.


In an additional embodiment step (b), (d) and/or step (f) is performed using an assay comprising a second binding agent capable of binding to the one or more biomarkers, the second binding agent comprising a detectable moiety. Preferably, the second binding agent comprises or consists of an antibody or an antigen-binding fragment thereof. Preferably, the antibody or antigen-binding fragment thereof is a recombinant antibody or antigen-binding fragment thereof. Most preferably, the antibody or antigen-binding fragment thereof is selected from the group consisting of: scFv, Fab and a binding domain of an immunoglobulin molecule. In an alternative or additional embodiment the detectable moiety is selected from the group consisting of: a fluorescent moiety; a luminescent moiety; a chemiluminescent moiety; a radioactive moiety and an enzymatic moiety. Preferably, the detectable moiety is fluorescent moiety (for example an Alexa Fluor® dye, e.g. Alexa647).


In an alternative or additional embodiment, the method of the first aspect of the invention comprises or consists of an ELISA (Enzyme Linked Immunosorbent Assay).


Preferred assays for detecting serum or plasma proteins include enzyme linked immunosorbent assays (ELISA), radioimmunoassay (RIA), immunoradiometric assays (IRMA) and immunoenzymatic assays (IEMA), including sandwich assays using monoclonal and/or polyclonal antibodies. Exemplary sandwich assays are described by David et al in U.S. Pat. Nos. 4,376,110 and 4,486,530, hereby incorporated by reference. Antibody staining of cells on slides may be used in methods well known in cytology laboratory diagnostic tests, as well known to those skilled in the art.


Typically, the assay is an ELISA (Enzyme Linked Immunosorbent Assay) which typically involves the use of enzymes giving a coloured reaction product, usually in solid phase assays. Enzymes such as horseradish peroxidase and phosphatase have been widely employed. A way of amplifying the phosphatase reaction is to use NADP as a substrate to generate NAD which now acts as a coenzyme for a second enzyme system. Pyrophosphatase from Escherichia coli provides a good conjugate because the enzyme is not present in tissues, is stable and gives a good reaction colour. Chemi-luminescent systems based on enzymes such as luciferase can also be used.


ELISA methods are well known in the art, for example see The ELISA Guidebook (Methods in Molecular Biology), 2000, Crowther, Humana Press, ISBN-13: 978-0896037281 (the disclosures of which are incorporated by reference).


Conjugation with the vitamin biotin is frequently used since this can readily be detected by its reaction with enzyme-linked avidin or streptavidin to which it binds with great specificity and affinity.


However, step (b), (d) and/or step (f) is alternatively performed using an array. Arrays per se are well known in the art. Typically they are formed of a linear or two-dimensional structure having spaced apart (i.e. discrete) regions (“spots”), each having a finite area, formed on the surface of a solid support. An array can also be a bead structure where each bead can be identified by a molecular code or colour code or identified in a continuous flow. Analysis can also be performed sequentially where the sample is passed over a series of spots each adsorbing the class of molecules from the solution. The solid support is typically glass or a polymer, the most commonly used polymers being cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene. The solid supports may be in the form of tubes, beads, discs, silicon chips, microplates, polyvinylidene difluoride (PVDF) membrane, nitrocellulose membrane, nylon membrane, other porous membrane, non-porous membrane (e.g. plastic, polymer, perspex, silicon, amongst others), a plurality of polymeric pins, or a plurality of microtitre wells, or any other surface suitable for immobilising proteins, polynucleotides and other suitable molecules and/or conducting an immunoassay. The binding processes are well known in the art and generally consist of cross-linking covalently binding or physically adsorbing a protein molecule, polynucleotide or the like to the solid support. By using well-known techniques, such as contact or non-contact printing, masking or photolithography, the location of each spot can be defined. For reviews see Jenkins, R. E., Pennington, S. R. (2001, Proteomics, 2, 13-29) and Lal et al (2002, Drug Discov Today 15; 7(18 Suppl):S143-9).


Typically the array is a microarray. By “microarray” we include the meaning of an array of regions having a density of discrete regions of at least about 100/cm2, and preferably at least about 1000/cm2. The regions in a microarray have typical dimensions, e.g., diameters, in the range of between about 10-250 μm, and are separated from other regions in the array by about the same distance. The array may also be a macroarray or a nanoarray.


Once suitable binding molecules (discussed above) have been identified and isolated, the skilled person can manufacture an array using methods well known in the art of molecular biology.


Hence, the array may be the array is a bead-based array or a surface-based array. Preferably, the array is selected from the group consisting of: macroarray, microarray and nanoarray.


In an alternative or additional embodiment, the method according to the first aspect of the invention comprises:

    • (i) labelling biomarkers present in the sample with biotin;
    • (ii) contacting the biotin-labelled proteins with an array comprising a plurality of scFv immobilised at discrete locations on its surface, the scFv having specificity for one or more of the proteins in Table III;
    • (iii) contacting the immobilised scFv with a streptavidin conjugate comprising a fluorescent dye; and
    • (iv) detecting the presence of the dye at discrete locations on the array surface


wherein the expression of the dye on the array surface is indicative of the expression of a biomarker from Table A in the sample.


In an alternative embodiment step (b), (d) and/or (f) comprises measuring the expression of a nucleic acid molecule encoding the one or more biomarkers. Preferably the nucleic acid molecule is a cDNA molecule or an mRNA molecule. Most preferably the nucleic acid molecule is an mRNA molecule.


Hence the expression of the one or more biomarker(s) in step (b), (d) and/or (f) may be performed using a method selected from the group consisting of Southern hybridisation, Northern hybridisation, polymerase chain reaction (PCR), reverse transcriptase PCR (RT-PCR), quantitative real-time PCR (qRT-PCR), nanoarray, microarray, macroarray, autoradiography and in situ hybridisation. Preferably, the expression of the one or more biomarker(s) in step (b) is determined using a DNA microarray.


In an alternative or additional embodiment, the measuring of the expression of the one or more biomarker(s) in step (b), (d) and/or (f) is performed using one or more binding moieties, each individually capable of binding selectively to a nucleic acid molecule encoding one of the biomarkers identified in Table A.


In a further embodiment, the one or more binding moieties each comprise or consist of a nucleic acid molecule. Thus, the one or more binding moieties may each comprise or consist of DNA, RNA, PNA, LNA, GNA, TNA or PMO. However, it is preferred that the one or more binding moieties each comprise or consist of DNA.


Preferably, the one or more binding moieties are 5 to 100 nucleotides in length. More preferably, the one or more nucleic acid molecules are 15 to 35 nucleotides in length. More preferably still, the binding moiety comprises a detectable moiety.


In an additional embodiment, the detectable moiety is selected from the group consisting of: a fluorescent moiety; a luminescent moiety; a chemiluminescent moiety; a radioactive moiety (for example, a radioactive atom); and an enzymatic moiety. Preferably, the detectable moiety comprises or consists of a radioactive atom. The radioactive atom may be selected from the group consisting of technetium-99m, iodine-123, iodine-125, iodine-131, indium-111, fluorine-19, carbon-13, nitrogen-15, oxygen-17, phosphorus-32, sulphur-35, deuterium, tritium, rhenium-186, rhenium-188 and yttrium-90.


However, the detectable moiety of the binding moiety may be a fluorescent moiety (for example an Alexa Fluor® dye, e.g. Alexa647).


In an alternative or additional embodiment the sample provided in step (b), (d) and/or (f) is selected from the group consisting of unfractionated blood, plasma, serum, tissue fluid, pancreatic tissue, pancreatic juice, bile and urine. Preferably, the sample provided in step (b), (d) and/or (f) is selected from the group consisting of unfractionated blood, plasma and serum. More preferably, the sample provided in step (b), (d) and/or (f) is plasma. In another preferred embodiment, the sample provided in step (b), (d) and/or (f) is serum.


In an alternative embodiment, the method of the first aspect of the invention is for differentiating body and/or tail pancreatic cancer from head pancreatic cancer comprising or consisting of the steps of:

    • a) providing a sample to be tested from the individual;
    • b) determining a biomarker signature of the test sample by measuring the expression in the test sample at least one biomarker selected from the group defined in Table A (i), (ii), (iv) and/or (vi);


wherein the expression in the test sample of the at least one biomarker selected from the group defined in Table A (i), (ii) and/or (iii) is indicative of the presence of body and/or tail pancreatic cancer, or head pancreatic cancer. In this embodiment, the test sample may already have been identified as being a pancreatic cancer sample (for example, using the method described above). Alternatively, the test sample may not have been identified as being a pancreatic cancer sample. Positive and negative control samples can be selected appropriately.


In an alternative or additional embodiment, the patient is treated appropriately following identification of a pancreatic cancer. For example, the tumour(s) may be surgically removed (resected), treated with chemotherapy (i.e., anti-neoplastic drugs) and/or treated with radiotherapy. Hence, the present invention includes a method of treating a person having pancreatic cancer, wherein the patient is identified as having pancreatic cancer using the method of the first aspect of the invention.


A second aspect of the present invention provides an array for determining the presence of pancreatic cancer in an individual comprising one or more binding agent as defined in the first aspect of the present invention.


Arrays suitable for use in the methods of the invention are discussed above.


Preferably the one or more binding agents are capable of binding to all of the biomarkers defined in Table A.


A third aspect of the present invention provides the use of one or more biomarkers selected from the group defined in the first aspect of the invention as a diagnostic marker for determining the presence of pancreatic cancer in an individual. Preferably, all of the proteins defined in Table III are used as diagnostic markers for determining the presence of pancreatic cancer in an individual.


A fourth aspect of the present invention provides a kit for determining the presence of pancreatic cancer comprising:

    • A) one or more first binding agent according to the first aspect of the invention or an array according the second aspect of the invention; and
    • B) instructions for performing the method according to the first aspect of the invention.


A fifth aspect of the present invention provides the use of one or more binding agents/moieties selected from the group defined in the first aspect of the invention for determining the presence of pancreatic cancer in an individual. Preferably, binding agents/moieties for all of the proteins defined in Table III are used as diagnostic markers for determining the presence of pancreatic cancer in an individual.





Preferred, non-limiting examples which embody certain aspects of the invention will now be described, with reference to the following tables and figures:



FIG. 1. PCA with samples colored according to diagnosis (red=PC, yellow=BC, blue=NC). The data has been filtered to p=le-10 (63 antibodies).



FIGS. 2A-2C. Backward elimination analysis. The Kullback-Leibler (K-L) error after each round of antibody elimination in the first training sets was plotted for PC vs NC (FIG. 2A) and PC vs BC (FIG. 2B). FIG. 2C: Boxplot of the AUC values generated from 25-antibody SVM models in ten different pairs of training/test sets.



FIG. 3. PCA with samples colored according to tumor localization (red=head tumors, yellow=body and tail tumors, blue=normal controls). The data has been filtered to p=le-10 (46 antibodies).



FIG. 4. Representative image of a microarray slide with 13 subarrays denoted A1-6 and B1-7, after sample hybridization and scanning. Subarray B4 is enlarged, showing the array lay-out, with 33×31 spots. The arrays consist of three segments separated by printed rows of labeled BSA (row 1, 11, 21, and 31). Each antibody was printed in three replicate spots, one in each segment, distributed to different positions within each segment.



FIGS. 5A-5B. Preprocessing of data shown as PCA plots. FIG. 5A: Raw data colored according to the five rounds (days) of analysis, denoted R1-R5. FIG. 5B: Normalized data showing that clustering based on rounds of analysis has been eliminated.



FIG. 6. Pathway analysis on diseases as identified by biomarkers, based on data from the complete set of antibodies, with corresponding p-values and fold changes for PC vs. NC.





EXAMPLES

Materials and Methods


Samples


After informed consent, 338 serum samples were collected at five different sites in Spain, from patients with pancreatic cancer (PC, n=156), benign controls (BC, n=152), and from normal controls (NC, n=30) (Table 1). The entire set of samples was labeled at a single occasion, using a previously optimized protocol [32, 33]. Briefly, crude samples were diluted 1:45 in PBS, resulting in an approximate protein concentration of 2 mg/mL, and labeled with a 15:1 molar excess of biotin to protein using 0.6 mM EZ-Link Sulfo-NHS-LC-Biotin (Pierce, Rockford, Ill., USA). Unbound biotin was removed by dialysis against PBS for 72 hours. Labeled samples were aliquoted and stored at −20° C.


Antibodies


In total, 293 human recombinant scFv antibodies directed against 98 known serum antigens and 31 4-6 amino acid motifs (here denoted CIMS 1-31) [34], were used as content of the antibody microarrays (See Table 4 for full list of antibodies used). The antibodies were produced in 15 mL E. coli cultures and purified from the periplasm in 300 μL using a MagneHis Protein Purification system (Promega, Madison, Wis., USA) and a KingFisher96 robot (Thermo Fisher Scientific, Waltham, Mass., USA). The elution buffer was exchanged for PBS using Zeba 96-well desalt spin plates (Pierce). The protein yield was measured using NanoDrop (Thermo Scientific, Wilmington, Del., USA) and the purity was checked using 10% SDS-PAGE (Invitrogen, Carlsbad, Calif., USA).


Antibody Microarrays


The antibody microarrays were produced on black MaxiSorp slides (NUNC, Roskilde, Denmark) using a non-contact printer (SciFlexarrayer S11, Scienion, Berlin, Germany). Thirteen identical subarrays were printed on each slide, each array consisting of 31×33 spots, 130 μm in diameter, with 200 μm spot-to-spot center distance. Each subarray consisted of three segments, separated by printed rows of labeled BSA (FIG. 4). Each antibody was printed in three replicates, one in each subarray segment, placed in different positions to assure adequate reproducibility. Eight slides, i.e. 104 subarrays, were printed each day for five days. The printing was performed over night and the slides were immediately used for array analysis the following day.


Each slide was mounted in a hybridization gasket (Schott, Jena, Germany) and blocked with PBSMT (1% (w/v) milk, 1% (v/v) Tween®-20 in PBS) for one hour. Meantime, aliquots of labeled samples were thawed on ice and diluted 1:10 in PBSMT, in 96-well plates. The slides were washed with PBST (0.05% (v/v) Tween®-20 in PBS) four times before the samples were added from the dilution plates. Samples were incubated for two hours on a rocking table, washed four times with PBST, incubated with 1 μg/mL Streptavidin-Alexa in PBSMT for one hour on a rocking table, and again washed four times with PBST. Finally, the slides were dismounted from the hybridization chambers, quickly immersed in dH2O, and dried under a stream of N2. The slides were immediately scanned in a confocal microarray scanner (PerkinElmer Life and Analytical Sciences, Wellesley, Mass., USA) at 10 μm resolution, using 60% PMT gain and 90% laser power. Signal intensities were quantified using the ScanArray Express software version 4.0 (PerkinElmer Life and Analytical Sciences), using the fixed circle option. Intensities values with local background subtraction were used for data analysis.


Data Pre-Processing


An average value of the three replicate spots was used, unless any replicate CV exceeded 15% from the mean value, in case it was ruled out, and the average value of the two remaining replicates was used instead. The average replicate CV was 8.3% (±5.5%). Applying a cut-off CV of 15%, 70% of data values were calculated from all three replicate spots, and the remaining 30% from two replicates.


For evaluation of normalization strategies and initial analysis of variance, the data was visualized using 3D principal component analysis (QIucore, Lund, Sweden). One (chronic pancreatitis) sample was considered to be an outlier (barely any signals were obtained) and was excluded from the data. Principal component analysis on log 10 raw data showed that no differences between i) sample subarray positioning on slide, ii) patient gender, iii) patient age, and iv) serum sample collection center, could be found. Minor systematic differences could only be observed between days of analysis (rounds 1-5, likely due to small differences in humidity during array printing, in particular for day 1, see FIG. 4), which was neutralized by normalization. The data was normalized in two steps. First, the differences between rounds (days) of analysis was eliminated using a subtract group mean strategy. The average intensity from each antibody was calculated within each round of analysis, and subtracted from the single values, thus zero centering the data. The global mean signal from each antibody was added to each respective data point to avoid negative values. Second, array-to-array differences (e.g. inherent sample background fluorescence differences (see FIG. 4)) were handled by calculating a scaling factor for each subarray, based on the 20% of antibodies with the lowest CV, as has been previously described [23, 35]. Normalization of data was visualized in PCA plots (FIG. 5).


Data Analysis


Analysis was based on two-group comparisons of PC vs. NC and PC vs. BC using PCA, hierarchical clustering, Student's t-test and fold changes, as well as multigroup ANOVA (PC, NC and CP) (Qlucore). Support Vector Machine (SVM) analysis was performed in R (r-project.org) using a linear kernel with the cost of constraints set to one (default value). The data was randomly divided into training and test sets with two thirds of the samples from each group in the training set and the remaining one third of samples in the test set. The backward elimination algorithm was applied using training set data, excluding one antibody at the time and iteratively eliminating the antibody that was removed when the smallest Kullback-Leibler divergence was obtained in the classification analysis, as has been previously described [31]. The last 25 antibodies to be eliminated were used to build a classification model in the training set that was directly applied in the corresponding test set. The area under the ROC-curve (AUC) was used as a measure of the accuracy of the signature in the test set. This procedure was repeated ten times, in ten different, randomly generated pairs of training and test sets. Ultimately, each antibody was given a score based on the order of elimination in the ten training sets. The score was calculated from the average endurance in the elimination process (first antibody to be eliminated=1, last antibody to be eliminated=293). Sensitivities (SN) and specificities (SP) were calculated from the optimal threshold of SVM prediction values, here defined as the highest sum of SN+SP. Finally, pathway analyses were performed using MetaCore (Thomson Reuters, New York, N.Y., USA).


Results


Differential Protein Expression Analysis


Analysis of variance revealed a large number of antibodies with strong differential signaling patterns between cancer and controls in the serum samples. In fact, multigroup ANOVA showed that 75% of the antibodies displayed a significance level of p<0.001 in the serum data. Principal component analysis demonstrated that the cancer samples were clearly more differentiated from normal than from benign controls (FIG. 1).


For each subgroup comparison, the 25 antibodies displaying the lowest p-values are shown in Table 2. The PC vs. NC comparison revealed strongly up- and down-regulated analytes, while the PC vs. BC analysis identified analytes with more modest fold changes, and which were almost exclusively upregulated in PC vs. BC (Table 2). The analytes presenting the highest level of differential expression were GAK, IL-6, LDL, and MAPK8 (p≤4·10−20) for PC vs. NC, while a significantly different set of proteins were identified for PC vs. BC, with Cystatin C, IL-13, and IL-la displaying the lowest p-values (p≤3·10−10).


A pathway analysis based on the entire set of antibodies (n=293) with corresponding p-values and fold changes for PC vs. NC, suggested diseases related to insulin production (hyperinsulinism and insulin resistance) as top hits when searching for diseases by biomarkers (FIG. 6). Conditions associated with metabolism, such as glucose metabolism disorders, obesity, and overweight were also significantly related, as well as core biomarker networks of diabetes type I and II, Crohn's disease, hepatitis, autoimmune and infectious conditions, and various types of neoplasms (including pancreatic). The majority of diseases identified by pathway analysis thus has been associated with, or is symptomatically correlated to PC.


Signatures for Classification


Next, the data was randomly subdivided into training and test sets. The training sets were used to identify the most discriminative combination of antibodies by applying a backward elimination algorithm based on SVM analysis, excluding the antibodies one by one. The classification of PC and NC was highly accurate, as implied by small Kullback-Leibler (K-L) divergences (33.2) throughout the elimination process (FIG. 2A). A distinct K-L minimum (12.0) was reached when only seven antibodies were left in the elimination process. This 7-plex protein panel, including IL-6, Cystatin C, IL-8, IL-11, C1 inhibitor, Eotaxin, and HADH2, displayed a sensitivity (SN) and specificity (SP) of 100% and 96%, respectively, in the corresponding test set of previously unseen samples, which demonstrated that a handful of analytes could be combined for a close to perfect classification of PC and NC. In contrast, the K-L values were significantly higher (≤181.3) when PC was compared to BC. Here, the minimum K-L value (50.0) was not as distinct, and implied that a much larger panel of antibodies were needed for optimal differentiation of PC and BC (FIG. 2B). For each subgroup comparison, the procedure was repeated until ten different, randomly generated training sets had been used for backward elimination. The resulting K-L curves were highly similar to those shown in FIG. 2, indicating that an average of 67 antibodies would be needed for optimal classification of PC vs. BC (FIG. 2B).


To generate and evaluate signatures of a feasible number of antibodies, we chose the top 25 antibodies from each elimination process and used these to build SVM classification models in the training sets. The AUC values generated by the models in the corresponding test sets were used as a measure of the classification accuracy (FIG. 2C). Each 25-antibody signature generated could predict PC from NC with high accuracy (average AUC 0.98). The sensitivity and specificity of the ten signatures ranged from 90% SN and 85% SP, to 100% SN and SP, with an average SN and SP of 95%. In contrast, PC was more difficult to predict from BC (average AUC 0.67), with 76% SN and 67% SP for the best performing signature.


Finally, each antibody was given a score, corresponding to its average endurance in the elimination processes (Table 3). Within the PC vs. NC analysis, the ten signatures were highly similar. For example, the top antibody, targeting IL-11, had an overall score of 291.4 out of 293 eliminations, being the last antibody to be eliminated 4 out of 10 times. In all, the 25 highest scored antibodies for PC vs. NC represented 20 non-redundant analytes, ranging from cytokines and chemokines (IL-11, IL-6, IL-13, IL-8, TNF-α, and Eotaxin), complement components (C1 inhibitor, C1q, C5, and Factor B), enzymes (HADH2, GAK, and ATP-5B) and more. A highly different set of proteins appeared as top markers for PC vs. BC, with MAPK1, TNFRSF3, UCHL5, IL-4, Apo-A1, Apo-A4, CD40 ligand, KSYK and others, among the top scored analytes (Table 3).


Even though the signatures based on antibody score (Table 3) were different from those derived from p-values (Table 2), a significant overlap was observed, particularly for the PC vs. NC signatures, where 8 out of 25 antibodies (IL-11, IL-6, IL-13, HADH2, LDL, GAK, C1q, and TNF-α) appeared in both signatures. All of the top 25 scored antibodies for PC vs. NC were in fact significantly differentially expressed, even if not all being present on the top 25 p-value list.


Tumor Localization


Based on the serum protein profiles, the cancer samples could also be stratified according to tumor origin in the pancreas. Principal component analysis showed that samples from tumors located in the body or the tail of pancreas to some extent clustered closer to the normal controls than what samples from tumors located in the head of pancreas did, and that a separation of the cancer samples based on tumor localization (head vs. body/tail), could be observed (FIG. 3). Differential protein expression analysis revealed an extensive list of analytes with significantly different levels in serum samples from head and body/tail tumors, with 39% of the antibodies displaying p-values <0.001, and almost exclusively showing upregulated levels in head tumors compared body and tail tumors (Table 5).


Discussion

This study represents one of the largest multicenter analyses of biomarker panels for predicting pancreatic cancer that has been conducted so far. To the best of our knowledge, this is the most multiplexed analysis of serum analytes in such large pancreatic cancer cohort (>300 samples) using affinity proteomics. Analysis was performed using in-house recombinant antibody microarrays, a platform that has advanced over several years [32, 36], and that now include close to 300 antibodies, stringently selected against a range of targets, mainly of the immunoregulatory proteome. Employing novel protocols for high-throughput production and purification, these antibodies are readily generated in less than a week, and rapidly printed in three replicate spots in the picoliter scale onto planar microarrays. In the current set-up, over a hundred samples can be analyzed in parallel per day and workstation, using only minute volumes (<1 μL) of undiluted serum, enabling large sample cohorts to be analyzed in the course of a few days.


In the present study, 338 serum samples were profiled on these arrays, comparing pancreatic cancer to normal and benign controls. Using highly multiplexed assays such as the current one, a certain level of correlation is likely to appear, particularly when highly interconnected proteins such as those of the immune system, are targeted. Even though the discriminative power of individual antibodies, represented by single p-values, might still be of interest, other statistical approaches may be more accurate for identifying the optimal combination of antibodies [37]. Here, a supervised model based on support vector machine analysis was used. The data was divided into training sets from which biomarker signatures were identified by an iterative backward elimination algorithm, and complementary validation sets, in which the classification power of the signatures was tested.


By adopting this approach, lists of proteins of interest were derived both from differential expression patterns, represented by p-values, and from the backward elimination analysis. The latter showed that only 4 to 10 antibodies would be sufficient for close to perfect discrimination of PC vs. NC, results that are highly encouraging and confirm our previous observations that PC can be readily discriminated from healthy controls by assaying the immunoregulatory proteome [23, 24]. However, when PC was compared to BC (mainly chronic pancreatitis), as many as 67 antibodies appeared to be required for optimal classification power. This can partly be explained by the type of proteins measured; the immunoregulatory analytes are not likely to show single-handed disease specificity, as the immune system is highly affected in any condition. Indeed, the pathway analysis conducted in this study, confirmed the highly similar systemic impact of PC and a range of other conditions, such as hyperinsulinism, insulin resistance and metabolic diseases, as well as autoimmunity and infections, again demonstrating the challenge in distinguishing PC from symptomatically related benign conditions. Identifying a relevant immunosignature for PC is thus an act of balance. A small panel is desirable since each binder adds to the cost and complexity of the assay, still the signature needs to be large enough to constitute a sensitive and specific fingerprint of the disease. At this stage of discovery, we reasoned that 25 analytes would be a feasible starting point, and follow-up studies will tell whether these signatures can be condensed to even smaller biomarker panels, while still displaying the sensitivity and specificity required for a diagnostic immunoassay.


Although adopting two highly different strategies for signature identification, there was still a large overlap between the signatures derived from the different analyses, i.e. the markers that obtained the highest overall backward elimination scores were generally also highly differentially expressed. For example, IL-11, IL-6, C1 inhibitor, IL-13, HADH2, LDL, GAK, C1q, and TNF-α appeared in both signatures, and thus demonstrated both low p-values and high backward elimination scores for PC vs. NC. For PC vs. BC the two signatures overlapped by C5, Apo-A4, BTK, TGF-β1, MCP-1, and UPF3B. Of note, a number of markers showed potential for PC both when compared to NC and to BC. Several of these, including C1 inhibitor, C5, Factor B, IL-13, MCP-1, and TNF-α, have been associated with PC in previous studies by us [23, 24] and others [38-40], while HADH2, an acetyl CoA dehydrogenase, has to the best of our knowledge so far not been reported for PC. In addition, other proteins that have not previously been measured by us also showed potential for PC differentiation. For example, GAK, a serine/threonine kinase was heavily down-regulated in PC vs. NC, and also appeared in the backward elimination signatures for PC vs. NC. In addition TNFRSF3 (TNF-β receptor), and UPF3B, an mRNA regulator protein, were included in both the p-value and antibody score signatures for PC vs. BC. Finally, MAPK1 (ERK2), a kinase of the MAPK/ERK signaling pathway which has shown to be deregulated in PC [41], was the highest scored protein in the backward elimination signatures for PC vs. BC.


The serum samples were also stratified on the basis of tumor location in the pancreas, which to the best of our knowledge has not previously been done with proteomics. It was shown that the samples to a certain extent could be separated based on tumor origin, and that the predominant part of samples from patients with tail and body tumors clustered slightly closer to the normal controls than what serum from patients with pancreatic head tumors did. These results thus demonstrated discrepancies in the systemic impact of the cancer based on its origin in the pancreas. The vast number of serum immunoregulatory proteins found to be upregulated in samples from head tumors compared to samples from body/tail tumors, may reflect a more profound systemic impact from tumors located in the pancreatic head, often invading the surrounding mesenteric blood vessels connecting pancreas to the duodenum [3]. These findings thus suggest that serum profiling on antibody microarrays could be applied to distinguish between head and body/tail pancreatic tumors, which potentially could aid in the decision of tumor treatment.


Despite being the 4th most lethal cancer, the incidence of PC is low, ˜11 per 100 000 individuals in the US [42]. From a health-economic perspective, the low incidence makes it difficult to motivate screening for PC in the general population. Based on sensitivities and specificities previously presented by us [24], a recent study however confirms the cost-effectiveness of screening high-risk individuals for PC [43]. Risk factors for PC include not only pancreatitis and benign neoplasms, but also e.g. familial pancreatic cancer, hereditary pancreatitis, BRCA mutations, Peutz-Jeghers syndrome, diabetes mellitus, and Helicobacter pylori infection [44]. The next step will be to explore the signatures identified in the present study, for PC diagnosis among individuals at an increased risk of PC, representing a relevant target population for a diagnostic PC immunoassay.


In conclusion, this extensively multiplexed, multicenter study which revealed immunosignatures associated with pancreatic cancer, displaying sensitivities specificities in the 90-100% range, clearly demonstrated the applicability for PC diagnosis, and also indicated the potential of recombinant antibody microarrays for stratifying serum samples based on tumor location in the pancreas.


REFERENCES



  • [1] Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA: a cancer journal for clinicians. 2012; 62:10-29.

  • [2] Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010; 467:1114-7.

  • [3] Hidalgo M. Pancreatic cancer. The New England journal of medicine. 2010; 362:1605-17.

  • [4] Conlon K C, Klimstra D S, Brennan M F. Long-term survival after curative resection for pancreatic ductal adenocarcinoma. Clinicopathologic analysis of 5-year survivors. Annals of surgery. 1996; 223:273-9.

  • [5] Sohn T A, Yeo C J, Cameron J L, Koniaris L, Kaushal S, Abrams R A, et al. Resected adenocarcinoma of the pancreas-616 patients: results, outcomes, and prognostic indicators. Journal of gastrointestinal surgery: official journal of the Society for Surgery of the Alimentary Tract. 2000; 4:567-79.

  • [6] Furukawa H, Okada S, Saisho H, Ariyama J, Karasawa E, Nakaizumi A, et al. Clinicopathologic features of small pancreatic adenocarcinoma. A collective study. Cancer. 1996; 78:986-90.

  • [7] Shimizu Y, Yasui K, Matsueda K, Yanagisawa A, Yamao K. Small carcinoma of the pancreas is curable: new computed tomography finding, pathological study and postoperative results from a single institute. Journal of gastroenterology and hepatology. 2005; 20:1591-4.

  • [8] Ishikawa O, Ohigashi H, lmaoka S, Nakaizumi A, Uehara H, Kitamura T, et al. Minute carcinoma of the pancreas measuring 1 cm or less in diameter—collective review of Japanese case reports. Hepato-gastroenterology. 1999; 46:8-15.

  • [9] Gangi S, Fletcher J G, Nathan M A, Christensen J A, Harmsen W S, Crownhart B S, et al. Time interval between abnormalities seen on CT and the clinical diagnosis of pancreatic cancer: retrospective review of CT scans obtained before diagnosis. AJR American journal of roentgenology. 2004; 182:897-903.

  • [10] Pelaez-Luna M, Takahashi N, Fletcher J G, Chari S T. Resectability of presymptomatic pancreatic cancer and its relationship to onset of diabetes: a retrospective review of CT scans and fasting glucose values prior to diagnosis. The American journal of gastroenterology. 2007; 102:2157-63.

  • [11] Locker G Y, Hamilton S, Harris J, Jessup J M, Kemeny N, Macdonald J S, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2006; 24:5313-27.

  • [12] Koopmann J, Rosenzweig C N, Zhang Z, Canto M I, Brown D A, Hunter M, et al. Serum markers in patients with resectable pancreatic adenocarcinoma: macrophage inhibitory cytokine 1 versus CA19-9. Clinical cancer research: an official journal of the American Association for Cancer Research. 2006; 12:442-6.

  • [13] Brand R E, Nolen B M, Zeh H J, Allen P J, Eloubeidi M A, Goldberg M, et al. Serum biomarker panels for the detection of pancreatic cancer. Clinical cancer research: an official journal of the American Association for Cancer Research. 2011; 17:805-16.

  • [14] Bunger S, Laubert T, Roblick U J, Habermann J K. Serum biomarkers for improved diagnostic of pancreatic cancer: a current overview. Journal of cancer research and clinical oncology. 2011; 137:375-89.

  • [15] Jiang J T, Wu C P, Deng H F, Lu M Y, Wu J, Zhang H Y, et al. Serum level of TSGF, CA242 and CA19-9 in pancreatic cancer. World journal of gastroenterology: WJG. 2004; 10:1675-7.

  • [16] Duraker N, Hot S, Polat Y, Hobek A, Gencler N, Urhan N. CEA, CA 19-9, and CA 125 in the differential diagnosis of benign and malignant pancreatic diseases with or without jaundice. Journal of surgical oncology. 2007; 95:142-7.

  • [17] Ni X G, Bai X F, Mao Y L, Shao Y F, Wu J X, Shan Y, et al. The clinical value of serum CEA, CA19-9, and CA242 in the diagnosis and prognosis of pancreatic cancer. European journal of surgical oncology: the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology. 2005; 31:164-9.

  • [18] Faca V M, Song K S, Wang H, Zhang Q, Krasnoselsky A L, Newcomb L F, et al. A mouse to human search for plasma proteome changes associated with pancreatic tumor development. PLoS medicine. 2008; 5:e123.

  • [19] Firpo M A, Gay D Z, Granger S R, Scaife C L, DiSario J A, Boucher K M, et al. Improved diagnosis of pancreatic adenocarcinoma using haptoglobin and serum amyloid A in a panel screen. World journal of surgery. 2009; 33:716-22.

  • [20] Orchekowski R, Hamelinck D, Li L, Gliwa E, vanBrocklin M, Marrero J A, et al. Antibody microarray profiling reveals individual and combined serum proteins associated with pancreatic cancer. Cancer research. 2005; 65:11193-202.

  • [21] Coussens L M, Werb Z. Inflammation and cancer. Nature. 2002; 420:860-7.

  • [22] Carlsson A, Wuttge D M, Ingvarsson J, Bengtsson A A, Sturfelt G, Borrebaeck C A, et al. Serum protein profiling of systemic lupus erythematosus and systemic sclerosis using recombinant antibody microarrays. Molecular & cellular proteomics: MCP. 2011; 10:M110 005033.

  • [23] Ingvarsson J, Wingren C, Carlsson A, Ellmark P, Wahren B, Engstrom G, et al. Detection of pancreatic cancer using antibody microarray-based serum protein profiling. Proteomics. 2008; 8:2211-9.

  • [24] Wingren C, Sandstrom A, Segersvard R, Carlsson A, Andersson R, Lohr M, et al. Identification of serum biomarker signatures associated with pancreatic cancer. Cancer research. 2012; 72:2481-90.

  • [25] Anderson N L, Anderson N G. The human plasma proteome: history, character, and diagnostic prospects. Molecular & cellular proteomics: MCP. 2002; 1:845-67.

  • [26] Zhang H, Liu A Y, Loriaux P, Wollscheid B, Zhou Y, Watts J D, et al. Mass spectrometric detection of tissue proteins in plasma. Molecular & cellular proteomics: MCP. 2007; 6:64-71.

  • [27] Surinova S, Schiess R, Huttenhain R, Cerciello F, Wollscheid B, Aebersold R. On the development of plasma protein biomarkers. Journal of proteome research. 2011; 10:5-16.

  • [28] Haab B B, Geierstanger B H, Michailidis G, Vitzthum F, Forrester S, Okon R, et al. Immunoassay and antibody microarray analysis of the HUPO Plasma Proteome Project reference specimens: systematic variation between sample types and calibration of mass spectrometry data. Proteomics. 2005; 5:3278-91.

  • [29] Alonzo T A, Pepe M S, Moskowitz C S. Sample size calculations for comparative studies of medical tests for detecting presence of disease. Statistics in medicine. 2002; 21:835-52.

  • [30] Borrebaeck C A, Wingren C. Design of high-density antibody microarrays for disease proteomics: key technological issues. Journal of proteomics. 2009; 72:928-35.

  • [31] Carlsson A, Wingren C, Kristensson M, Rose C, Ferno M, Olsson H, et al. Molecular serum portraits in patients with primary breast cancer predict the development of distant metastases. Proceedings of the National Academy of Sciences of the United States of America. 2011; 108:14252-7.

  • [32] Wingren C, Ingvarsson J, Dexlin L, Szul D, Borrebaeck C A. Design of recombinant antibody microarrays for complex proteome analysis: choice of sample labeling-tag and solid support. Proteomics. 2007; 7:3055-65.

  • [33] Carlsson A, Persson O, Ingvarsson J, Widegren B, Salford L, Borrebaeck C A, et al. Plasma proteome profiling reveals biomarker patterns associated with prognosis and therapy selection in glioblastoma multiforme patients. Proteomics Clinical applications. 2010; 4:591-602.

  • [34] Olsson N, Wallin S, James P, Borrebaeck C A, Wingren C. Epitope-specificity of recombinant antibodies reveals promiscuous peptide-binding properties. Protein science: a publication of the Protein Society. 2012; 21:1897-910.

  • [35] Carlsson A, Wingren C, Ingvarsson J, Ellmark P, Baldertorp B, Ferno M, et al. Serum proteome profiling of metastatic breast cancer using recombinant antibody microarrays. Eur J Cancer. 2008; 44:472-80.

  • [36] Ingvarsson J, Larsson A, Sjoholm A G, Truedsson L, Jansson B, Borrebaeck C A, et al. Design of recombinant antibody microarrays for serum protein profiling: targeting of complement proteins. Journal of proteome research. 2007; 6:3527-36.

  • [37] Quackenbush J. Computational analysis of microarray data. Nature reviews Genetics. 2001; 2:418-27.

  • [38] Ma Y, Hwang R F, Logsdon C D, Ullrich S E. Dynamic mast cell-stromal cell interactions promote growth of pancreatic cancer. Cancer research. 2013; 73:3927-37.

  • [39] Kudo-Saito C, Shirako H, Ohike M, Tsukamoto N, Kawakami Y. CCL2 is critical for immunosuppression to promote cancer metastasis. Clinical & experimental metastasis. 2013; 30:393-405.

  • [40] McDade T P, Perugini R A, Vittimberga F J, Jr., Carrigan R C, Callery M P. Salicylates inhibit NF-kappaB activation and enhance TNF-alpha-induced apoptosis in human pancreatic cancer cells. The Journal of surgical research. 1999; 83:56-61.

  • [41] Arlt A, Muerkoster S S, Schafer H. Targeting apoptosis pathways in pancreatic cancer. Cancer letters. 2013; 332:346-58.

  • [42] Shaib Y H, Davila J A, El-Serag H B. The epidemiology of pancreatic cancer in the United States: changes below the surface. Alimentary pharmacology & therapeutics.



2006; 24:87-94.

  • [43] Ghatnekar O, Andersson R, Svensson M, Persson U, Ringdahl U, Zeilon P, et al. Modelling the benefits of early diagnosis of pancreatic cancer using a biomarker signature. International journal of cancer Journal international du cancer. 2013.
  • [44] Konstantinou F, Syrigos K N, Saif M W. Pancreatic cancer: what about screening and detection? JOP: Journal of the pancreas. 2013; 14:312-5.









TABLE 1







Serum sample demographics













Gender
Age
No of


Diagnosis
Subgroup
(M/F)
(mean ± sd)
samples














Pancreatic

92/64
66 ± 13
156


cancer (PC)
Body


16



Head


97



Tail


10



Other


16



Unspecified


17


Benign

117/35 
52 ± 14
152


controls (BC)
Acute pancreatitis


33



Chronic pancreatitis


110



Langerhan neoplasm


3



Pancreatic neoplams


6


Normal

20/10
62 ± 14
30


controls (NC)






Total



338
















TABLE 2







Top 25 antibodies based on significance by differential protein expression


analysis. Shown within brackets is the individual antibody clone suffix (for analytes


targeted by multiple antibody clones). FC = Fold change









PC-NC-BC ANOVA
PC-NC t-test
PC-BC t-test














Antibody
p-value
Antibody
p-value
FC
Antibody
p-value
FC





GAK (3)
4.14E−48
GAK (3)
3.44E−30
0.68
Cystatin C (3)
3.80E−11
1.08


IL-6 (7)
4.00E−43
IL-6 (7)
1.11E−27
0.71
IL-13 (3)
1.09E−10
1.13


GAK (2)
3.25E−36
GAK (1)
3.25E−26
0.77
IL-1α (1)
3.08E−10
1.11


IL-11 (2)
1.78E−32
LDL (2)
1.15E−22
0.62
Surface ag X
5.57E−09
1.10


LDL (2)
6.09E−32
MAPK8 (1)
4.24E−20
0.81
BTK (2)
6.06E−09
1.05


TNF-α (3)
1.89E−31
IL-11 (2)
4.56E−18
0.69
Cystatin C (4)
6.60E−09
1.05


Procathepsin W
4.88E−27
TNF-α (3)
2.93E−16
0.76
CIMS (26)
6.79E−09
1.10


IL-13 (3)
8.15E−27
HADH2 (3)
2.49E−15
0.89
CD40 (1)
1.02E−08
1.09


MAPK8 (1)
3.02E−22
Procathepsin W
3.21E−14
0.79
TNFRSF3 (2)
1.29E−08
1.05


IL-1α (1)
5.83E−20
TNFRSF3 (1)
5.08E−13
0.91
ORP-3 (2)
2.16E−08
1.07


IL-13 (2)
3.36E−19
VEGF (3)
1.52E−12
1.24
Apo-A4 (3)
2.66E−08
1.07


TNFRSF3 (1)
8.51E−16
IL-1ra (1)
3.24E−12
1.16
UPF3B (2)
2.84E−08
1.04


IL-18 (2)
5.33E−15
C1 inh (1)
1.20E−11
1.22
MUC-1 (1)
3.49E−08
1.07


IL-1ra (1)
9.67E−15
IL-13 (3)
2.73E−11
0.77
TNF-α (3)
4.31E−08
1.08


HADH2 (3)
1.06E−14
C1q
4.12E−11
1.11
CIMS (16)
4.67E−08
1.08


CD40 (1)
1.48E−14
IL-16 (3)
5.19E−11
1.15
ATP-5B (1)
5.68E−08
1.06


Cystatin C (4)
2.36E−14
VEGF (1)
5.43E−11
1.19
CIMS (12)
6.00E−08
1.06


IL-4 (3)
3.12E−14
CD40L
6.21E−11
1.13
IL-13 (1)
6.31E−08
1.08


CIMS (18)
6.91E−14
IL-4 (3)
8.82E−11
1.24
MCP-1 (4)
9.64E−08
1.03


CIMS (16)
7.21E−14
Sialyi Lewis x
9.47E−11
1.10
CIMS (1)
1.14E−07
1.08


VEGF (3)
8.52E−14
IL-18 (2)
1.12E−10
1.20
CD40 (3)
1.28E−07
1.06


FASN (3)
1.18E−13
CIMS (18)
1.43E−10
1.16
Procathepsin W
1.43E−07
1.07


TGF-β1 (2)
2.59E−13
CIMS (23)
2.64E−10
1.13
Digoxin
1.55E−07
1.08


CIMS (26)
2.61E−13
MCP-1 (2)
3.08E−10
1.16
TGF-β1 (2)
1.88E−07
1.09


CIMS (25)
6.47E−13
CIMS (25)
3.44E−10
1.24
CIMS (24)
3.32E−07
1.08
















TABLE 3







Top 25 antibodies based on antibody score from ten backward elimination


iterations. Shown within brackets is the individual antibody clone


suffix (for analytes targeted by multiple antibody clones).












PC vs NC
Score
PC vs BC
Score
















IL-11 (2)
291.4
MAPK1 (3)
276.5



IL-6 (7)
288.1
C5 (2)
273



Cystatin C (1)
286.9
TNFRSF3 (1)
265.5



C1 inh (3)
279.2
TNFRSF3 (2)
260.9



Angiomotin (1)
276
UCHL5
259.6



IL-13 (2)
272.9
IL-4 (3)
258.7



IL-13 (3)
270.7
Factor B (3)
258



CD40 (1)
270.6
Apo-A4 (3)
257.5



HADH2 (3)
270.4
KSYK-1
255.2



HADH2 (4)
269.7
Sox11A
253.1



C1 inh. (4)
269.4
CD40L
252.2



C1 inh. (2)
269.2
Apo-A1 (1)
251.4



LDL (2)
268.1
CIMS (13)
250.1



GAK (3)
268
BTK (2)
246.1



C3 (1)
266.1
GM-CSF (5)
245



CIMS (5)
264.3
TGF-β1 (2)
239.5



C1q
261.1
PTP-1B (2)
237.2



CD40 (4)
259.6
MCP-1 (7)
235.1



IL-8 (2)
259.4
UPF3B (1)
232.5



C5 (2)
258.5
C1 inh. (4)
228.3



ATP-5B (3)
257.1
Sialyl Lewis x
227.6



Factor B (4)
256.2
IL-3 (1)
225.8



CIMS (10)
253.6
IL-9 (2)
224.2



TNF- α (3)
253.5
HADH2 (2)
222.7



Eotaxin (3)
248.4
IL-4 (4)
222.4

















TABLE 4







Antigens targeted on the antibody microarray









Protein
Full name
No of antibody clones












Angiomotin
Angiomotin
2


Apo-A1
Apolipoprotein A1
3


Apo-A4
Apolipoprotein A4
3


ATP-5B
ATP synthase subunit beta, mitochondrial
3


β-galactosidase
Beta-galactosidase
1


BTK
Tyrosine-protein kinase BTK
4


C1 inhibitor
Plasma protease C1 inhibitor
4


C1q
Complement C1q
1


C1s
Complement C1s
1


C3
Complement C3
6


C4
Complement C4
4


C5
Complement C5
3


CD40
CD40 protein
4


CD40L
CD40 ligand
1


CDK-2
Cyclin-dependent kinase 2
2


CHX10
Visual system homeobox 2
3


CT17
Cholera toxin subunit B
1


Cystatin C
Cystatin C
4


Digoxin
Digoxin
1


DUSP9
Dual specificity protein phosphatase 9
1


EGFR
Epidermal growth factor receptor (Cetuximab (Erbitux) antibody)
1


Eotaxin
Eotaxin
3


Factor B
Complement factor B
4


FASN
FASN protein
4


GAK
GAK protein
3


GLP-1
Glucagon-like peptide-1
1


GLP-1R
Glucagon-like peptide 1 receptor
1


GM-CSF
Granulocyte-macrophage colony-stimulating factor
6


HADH2
HADH2 protein
4


Her2/ErbB-2
Receptor tyrosine-protein kinase erbB-2
4


HLA-DR/DP
HLA-DR/DP
1


ICAM-1
Intercellular adhesion molecule 1
1


IFN-γ
Interferon gamma
3


IgM
Immunoglobulin M
5


IL-10
Interleukin-10
3


IL-11
Interleukin-11
3


IL-12
Interleukin-12
4


IL-13
Interleukin-13
3


IL-16
Interleukin-16
3


IL-18
Interleukin-18
3


IL-1α
Interleukin-1 alpha
3


IL-1β
Interleukin-1 beta
3


IL-1ra
Interleukin-1 receptor antagonist protein
3


IL-2
Interleukin-2
3


IL-3
Interleukin-3
3


IL-4
Interleukin-4
4


IL-5
Interleukin-5
3


IL-6
Interleukin-6
8


IL-7
Interleukin-7
2


IL-8
Interleukin-8
3


IL-9
Interleukin-9
3


Integrin α-10
Integrin alpha-10
1


Integrin α-11
Integrin alpha-11
1


JAK3
Tyrosine-protein kinase JAK3
1


Keratin19
Keratin, type I cytoskeletal 19
3


KSYK
Tyrosine-protein kinase SYK
2


LDL
Apolipoprotein B-100
2


Leptin
Leptin
1


Lewis x
Lewis x
2


Lewis y
Lewis y
1


Lumican
Lumican
1


MAPK1
Mitogen-activated protein kinase 1
4


MAPK8
Mitogen-activated protein kinase 8
3


MATK
Megakaryocyte-associated tyrosine-protein kinase
3


MCP-1
C-C motif chemokine 2
9


MCP-3
C-C motif chemokine 7
3


MCP-4
C-C motif chemokine 13
3


MUC-1
Mucin-1
6


Myomesin-2
Myomesin-2
2


ORP-3
Oxysterol-binding protein-related protein 3
2


Osteopontin
Osteopontin
3


P85A
Phosphatidylinositol 3-kinase regulatory subunit alpha
3


PKB gamma
RAC-gamma serine/threonine-protein kinase
2


Procathepsin W
Cathepsin W
1


Properdin
Properdin
1


PSA
Prostate-specific antigen
1


PTK-6
Protein-tyrosine kinase 6
1


PTP-1B
Tyrosine-protein phosphatase non-receptor type 1
3


RANTES
C-C motif chemokine 5
3


RPS6KA2
Ribosomal protein S6 kinase alpha-2
3


Sialyl Lewis x
Sialyl Lewis x
1


Sox11A
Transcription factor SOX-11
1


STAP2
Signal-transducing adaptor protein 2
4


STAT1
Signal transducer and activator of transcription 1-alpha/beta
2


Surface Ag X
Surface Ag X
1


TBC1D9
TBC1 domain family member 9
3


TENS4
Tensin-4
1


TGF-β1
Transforming growth factor beta-1
3


TM peptide
Transmembrane peptide
1


TNF-α
Tumor necrosis factor
3


TNF-β
Lymphotoxin-alpha
4


TNFRSF14
Tumor necrosis factor receptor superfamily member 14
2


TNFRSF3
Tumor necrosis factor receptor superfamily member 3
3


UBC9
SUMO-conjugating enzyme UBC9
3


UBE2C
Ubiquitin-conjugating enzyme E2 C
2


UCHL5
Ubiquitin carboxyl-terminal hydrolase isozyme L5
1


UPF3B
Regulator of nonsense transcripts 3B
2


VEGF
Vascular endothelial growth factor
4
















TABLE 5







Differential protein expression analysis of serum samples


drawn from patients with differently located pancreatic


tumors. Results are shown for body + tail tumors vs. head


tumors, for the top 40 antibodies (p < 5 · 10−5).











Antibody
p-val
FC















IL-1α (2)
4.32E−07
0.874447



CIMS (16)
1.28E−06
0.874676



VEGF (1)
1.47E−06
0.870962



TNF-β (2)
1.57E−06
0.872955



IL-11 (2)
2.15E−06
0.833144



CIMS (18)
3.09E−06
0.891206



CD40L
3.89E−06
0.917468



IL-3 (3)
4.19E−06
0.87497



CIMS (30)
4.88E−06
0.919455



IL-6 (1)
7.01E−06
0.873484



HLA-DR/DP
8.10E−06
0.879348



IL-2 (3)
8.34E−06
0.845869



Angiomotin (2)
8.45E−06
0.892806



Integrin α-10
9.07E−06
0.864779



IL-18 (3)
9.40E−06
0.899675



Sox11A
1.05E−05
0.898637



IL-7 (1)
1.18E−05
0.892816



MCP-1 (3)
1.20E−05
0.885187



Surface ag X
1.20E−05
0.865919



IL-9 (1)
1.21E−05
0.872639



CIMS (20)
1.36E−05
0.873286



IL-12 (3)
1.67E−05
0.872587



Lewis x (1)
1.77E−05
0.898973



IgM (3)
1.91E−05
0.893885



IL-7 (2)
1.98E−05
0.893886



CIMS (25)
2.25E−05
0.851688



CIMS (2)
2.30E−05
0.88583



CIMS (6)
2.41E−05
0.858863



IL-16 (3)
2.57E−05
0.905756



GLP-1
2.78E−05
0.890237



CHX10 (3)
2.83E−05
0.889864



IL-4 (3)
3.02E−05
0.860565



VEGF (4)
3.20E−05
0.848107



IL-3 (2)
3.35E−05
0.871146



IL-2 (2)
3.89E−05
0.843949



IL-1ra (3)
3.93E−05
0.88975



RANTES (3)
4.51E−05
0.933006



CIMS (31)
4.80E−05
0.886723



CIMS (27)
4.90E−05
0.915073



TGF-β1 (3)
4.91E−05
0.889071







FC = Fold change.
















TABLE A










Diagnosis











Uniprot



PC (body&tail)


entry ID
Recommended protein name
Short name
PC
vs PC (head)










(i) Core Biomarkers











Q61BS9
HADH2 protein
HADH2
X






P36941
Tumor necrosis factor receptor
TNFRSF3
X




superfamily member 3













(ii) Preferred Biomarkers (PC & BTvH)











P35716
Transcription factor SOX-11
Sox11A
X
X





O75578
Integrin alpha-10
Integrin a-10
X
X





NA
EDFR (SEQ ID NO: 3)

X
X





NA
EPFR (SEQ ID NO: 4)

X
X





NA
LSADHR (SEQ ID NO: 5)

X
X





NA
SEAHLR (SEQ ID NO: 6)

X
X





NA
AQQHQWDGLLSYQDSLS (SEQ ID NO: 7)

X
X





NA
WTRNSNMNYWLIIRL (SEQ ID NO: 8)

X
X





NA
WDSR (SEQ ID NO: 9)

X
X










(iii) Preferred Biomarkers (PC)











NA
DFAEDK (SEQ ID NO: 10)

X






Q6PJJ3
FASN protein
FASN
X






Q5U4P5
GAK protein
GAK
X






NA
LNVWGK (SEQ ID NO: 11)

X






NA
LTEFAK (SEQ ID NO: 12)

X






NA
LYEIAR (SEQ ID NO: 13)

X






P42679
Megakaryocyte-associated tyrosine-
MATK
X




protein kinase








Q9H4L5
Oxysterol-binding protein-related
ORP-3
X




protein 3








NA
QEASFK (SEQ ID NO: 14)

X






NA
SSAYSR (SEQ ID NO: 15)

X






NA
QEASFK (SEQ ID NO: 14)

X






NA
TEEQLK (SEQ ID NO: 16)

X






NA
TLYVGK (SEQ ID NO: 17)

X






NA
FLLMQYGGMDEHAR (SEQ ID NO: 18)

X






NA
GIVKYLYEDEG (SEQ ID NO: 19)

X






NA
GIVKYLYEDEG (SEQ ID NO: 19)

X






P43405
Tyrosine-protein kinase SYK
KSYK
X











(iv) Optional Biomarkers (PC & BTvH)











Q4VCS5
Angiomotin
Angiomotin
X
X





P13500
C-C motif chemokine 2
MCP-1
X
X





P13501
C-C motif chemokine 5
RANTES
X
X





P29965
CD40 ligand
CD40L
X
X





P01275
Glucagon-like peptide-1
GLP-1
X
X





NA
Immunoglobilin M
IgM
X
X





P01583
Interleukin-1 alpha
IL-1a
X
X





P18510
Interleukin-1 receptor antagonist
IL-1ra
X
X



protein








P20809
Interleukin-11
IL-11
X
X





P29459/60
Interleukin-12
IL-12
X
X





Q14005
Interleukin-16
IL-16
X
X





Q14116
Interleukin-18
IL-18
X
X





P60568
Interleukin-2
IL-2
X
X





P08700
Interleukin-3
IL-3
X
X





P05112
Interleukin-4
IL-4
X
X





P05231
Interleukin-6
IL-6
X
X





P13232
Interleukin-7
IL-7
X
X





P15248
Interleukin-9
IL-9
X
X





NA
Lewis x
Lewis x
X
X





P01374
Lymphotoxin-alpha
TNF-b
X
X





P01137
Transforming growth factor beta-1
TGF-b1
X
X





P15692
Vascular endothelial growth factor
VEGF
X
X





P58304
Visual system homeobox 2
CHX10
X
X





P01903/P01911/

HLA-DR/DP
X
X


P79483/P13762/






Q30154/P20036/






P04440














(v) Optional Biomarkers (PC)











P02647
Apolipoprotein A1
Apo-A1
X






P06727
Apolipoprotein A4
Apo-A4
X






P04114
Apolipoprotein B-100
LDL
X






P06576
ATP synthase subunit beta, mitochondrial
ATP-5B
X






P16278
Beta-galactosidase
B-
X





galactosidase







P56202
Cathepsin W
Procathepsin
X





W







Q99616
C-C motif chemokine 13
MCP-4
X






P80098
C-C motif chemokine 7
MCP-3
X






Q6P2H9
CD40 protein
CD40
X






P02745/6/7
Complement C1q
C1q
X






P09871
Complement C1s
C1s
X






P01024
Complement C3
C3
X






P0COL4/5
Complement C4
C4
X






P01031
Complement C5
C5
X






P00751
Complement factor B
Factor B
X






P24941
Cyclin-dependent kinase 2
CDK-2
X






P01034
Cystatin-C
Cystatin C
X






P51671
Eotaxin
Eotaxin
X






P00533
Epidermal growth factor receptor
EGFR
X






P43220
Glucagon-like peptide 1 receptor
GLP-1R
X






P04141
Granulocyte-macrophage colony-
GM-CSF
X




stimulating factor








Q9UKX5
Integrin alpha-11
Integrin a-11
X






P05362
Intercellular adhesion molecule 1
ICAM-1
X






P01579
Interferon gamma
IFN-g
X






P01584
Interleukin-1 beta
IL-1b
X






P22301
Interleukin-10
IL-10
X






P35225
Interleukin-13
IL-13
X






P05113
Interleukin-5
IL-5
X






P10145
Interleukin-8
IL-8
X






P08727
Keratin, type I cytoskeletal 19
Keratin19
X






P41159
Leptin
Leptin
X






P51884
Lumican
Lumican
X






P28482
Mitogen-activated protein kinase 1
MAPK1
X






P45983
Mitogen-activated protein kinase 8
MAPK8
X






P15941
Mucin-1
MUC-1
X






P54296
Myomesin-2
Myomesin-2
X






P10451
Osteopontin
Osteopontin
X






P27986
Phosphatidylinositol 3-kinase regulatory
P85A
X




subunit alpha








P05155
Plasma protease C1 inhibitor
C1 inh
X






P27918
Properdin
Properdin
X






P07288
Prostate-specific antigen
PSA
X






P04626
Receptor tyrosine-protein kinase erbB-2
Her2/ErbB-2
X






Q9BZI7
Regulator of nonsense transcripts 3B
UPF3B
X






Q15349
Ribosomal protein S6 kinase alpha-2
RPS6KA2
X






NA
Sialyl Lewis x
Sialyl Lewis x
X






Q9UGK3
Signal-transducing adaptor protein 2
STAP2
X






P63279
SUMO-conjugating enzyme UBC9
UBC9
X






Q6ZT07
TBC1 domain family member 9
TBC1D9
X






NA
Transmembrane peptide
(Tm peptide)
X






P01375
Tumor necrosis factor alpha
TNF-a
X






Q92956
Tumor necrosis factor receptor 
TNFRSF14
X




superfamily member 14








Q06187
Tyrosine-protein kinase BTK
BTK
X






P52333
Tyrosine-protein kinase JAK3
JAK3
X






P18031
Tyrosine-protein phosphatase non-
PTP-1B
X




receptor type 1








Q9Y5K5
Ubiquitin carboxyl-terminal hydrolase
UCHL5
X




isozyme L5








O00762
Ubiquitin-conjugating enzyme E2 C
UBE2C
X











(vi) Preferred Biomarkers (BTvH)











NA
FIQTDK (SEQ ID NO: 20)


X
















TABLE C







Exemplary discriminating power of biomarkers


and biomarker combinations (PC v NC)








ROC-AUC
Biomarker signature











0.9
HADH2


0.83
TNFRSF3


0.93
HADH2 + TNFRSF3


0.96
HADH2 + TNFRSF3 + GAK


0.95
HADH2 + TNFRSF3 + GAK + UPF3B


0.95
HADH2 + TNFRSF3 + GAK + UPF3B + Integrin a-10








Claims
  • 1. A method for determining the presence of pancreatic cancer in an individual comprising or consisting of the steps of: a) providing a sample to be tested from the individual;b) determining a biomarker signature of the test sample by measuring the expression in the test sample of one or more biomarkers selected from the group defined in Table A (i), (ii) or (iii);
  • 2. The method according to claim 1 further comprising or consisting of the steps of: c) providing a control sample from an individual not afflicted with pancreatic cancer;d) determining a biomarker signature of the control sample by measuring the expression in the control sample of the one or more biomarkers measured in step (b);
  • 3. The method according to claim 1 or 2 further comprising or consisting of the steps of: e) providing a control sample from an individual afflicted with pancreatic cancer;f) determining a biomarker signature of the control sample by measuring the expression in the control sample of the one or more biomarkers measured in step (b);
  • 4. The method according to claim 1, 2 or 3, wherein step (b) comprises or consists of measuring the expression of one or more of the biomarkers listed in Table A(i), for example, at least 2 of the biomarkers listed in Table IV(A).
  • 5. The method according to any one of the preceding claims, wherein step (b) comprises or consists of measuring the expression of HADH2 and/or TNFRSF3, for example, measuring the expression of HADH2, measuring the expression of TNFRSF3, or measuring the expression of HADH2 and TNFRSF3.
  • 6. The method according to any one of the preceding claims, wherein step (b) comprises or consists of measuring the expression of each the biomarkers listed in Table A(i).
  • 7. The method according to any one of the preceding claims, wherein step (b) comprises or consists of measuring the expression of 1 or more of the biomarkers listed in Table (A)(ii), for example at least 2, 3, 4, 5, 6, 7, 8 or 9 of the biomarkers listed in Table A(ii).
  • 8. The method according to any one of the preceding claims, wherein step (b) comprises or consists of measuring the expression of all of the biomarkers listed in Table A(ii).
  • 9. The method according to any one of the preceding claims wherein step (b) comprises or consists of measuring the expression of 1 or more biomarkers from the biomarkers listed in Table A(iii), for example at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17 of the biomarkers listed in Table A(iii).
  • 10. The method according to any one of the preceding claims, wherein step (b) comprises or consists of measuring the expression of 1 or more biomarkers from the biomarkers listed in Table A(iv), for example at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 or 24 of the biomarkers listed in Table A(iv).
  • 11. The method according to any one of the preceding claims, wherein step (b) comprises or consists of measuring the expression of 1 or more biomarkers from the biomarkers listed in Table A(v), for example at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, or 56 of the biomarkers listed in Table A(v).
  • 12. The method according to any one of the preceding claims, wherein step (b) comprises or consists of measuring the expression of 1 or more biomarkers from the biomarkers listed in Table A(vi).
  • 13. The method according to any one of the preceding claims wherein step (b) comprises or consists of measuring the expression in the test sample of all of the biomarkers defined in Table A.
  • 14. The method according to any one of the preceding claims wherein the pancreatic cancer is selected from the group consisting of adenocarcinoma, adenosquamous carcinoma, signet ring cell carcinoma, hepatoid carcinoma, colloid carcinoma, undifferentiated carcinoma, and undifferentiated carcinomas with osteoclast-like giant cells.
  • 15. The method according to any one of the preceding claims wherein the pancreatic cancer is an adenocarcinoma.
  • 16. The method according to any one of the preceding claims wherein step (b), (d) and/or step (f) is performed using a first binding agent capable of binding to the one or more biomarkers.
  • 17. The method according to claim 16 wherein the first binding agent comprises or consists of an antibody or an antigen-binding fragment thereof.
  • 18. The method according to claim 16 wherein the antibody or antigen-binding fragment thereof is a recombinant antibody or antigen-binding fragment thereof.
  • 19. The method according to claim 16 or 17 wherein the antibody or antigen-binding fragment thereof is selected from the group consisting of: scFv; Fab; a binding domain of an immunoglobulin molecule.
  • 20. The method according to any one of claims 16 to 19 wherein the first binding agent is immobilised on a surface.
  • 21. The method according to any one of claims 1 to 20 wherein the one or more biomarkers in the test sample are labelled with a detectable moiety.
  • 22. The method according to any one of claims 2 to 20 wherein the one or more biomarkers in the control sample(s) are labelled with a detectable moiety.
  • 23. The method according to claim 21 or 22 wherein the detectable moiety is selected from the group consisting of: a fluorescent moiety; a luminescent moiety; a chemiluminescent moiety; a radioactive moiety; an enzymatic moiety.
  • 24. The method according to claim 21 or 23 wherein the detectable moiety is biotin.
  • 25. The method according to any one of claims 16 to 24 wherein step (b), (d) and/or step (f) is performed using an assay comprising a second binding agent capable of binding to the one or more biomarkers, the second binding agent comprising a detectable moiety.
  • 26. The method according to any one of claim 25 wherein the second binding agent comprises or consists of an antibody or an antigen-binding fragment thereof.
  • 27. The method according to claim 26 wherein the antibody or antigen-binding fragment thereof is a recombinant antibody or antigen-binding fragment thereof.
  • 28. The method according to claim 26 or 27 wherein the antibody or antigen-binding fragment thereof is selected from the group consisting of: scFv; Fab; a binding domain of an immunoglobulin molecule.
  • 29. The method according to any one of claims 25 to 28 wherein the detectable moiety is selected from the group consisting of: a fluorescent moiety; a luminescent moiety; a chemiluminescent moiety; a radioactive moiety; an enzymatic moiety.
  • 30. The method according to claim 29 wherein the detectable moiety is fluorescent moiety (for example an Alexa Fluor dye, e.g. Alexa647).
  • 31. The method according to any one of the preceding claims wherein the method comprises or consists of an ELISA (Enzyme Linked Immunosorbent Assay).
  • 32. The method according to any one of the preceding claims wherein step (b), (d) and/or step (f) is performed using an array.
  • 33. The method according to claim 32 wherein the array is a bead-based array.
  • 34. The method according to claim 32 wherein the array is a surface-based array.
  • 35. The method according to any one of claims 32 to 34 wherein the array is selected from the group consisting of: macroarray; microarray; nanoarray.
  • 36. The method according to any one of the preceding claims wherein the method comprises: (v) labelling biomarkers present in the sample with biotin;(vi) contacting the biotin-labelled proteins with an array comprising a plurality of scFv immobilised at discrete locations on its surface, the scFv having specificity for one or more of the proteins in Table A;(vii) contacting the immobilised scFv with a streptavidin conjugate comprising a fluorescent dye; and(viii) detecting the presence of the dye at discrete locations on the array surface
  • 37. The method according to any one of claims wherein, step (b), (d) and/or (f) comprises measuring the expression of a nucleic acid molecule encoding the one or more biomarkers.
  • 38. The method according to claim 37, wherein the nucleic acid molecule is a cDNA molecule or an mRNA molecule.
  • 39. The method according to claim 37, wherein the nucleic acid molecule is an mRNA molecule.
  • 40. The method according to claim 37, 38 or 39, wherein measuring the expression of the one or more biomarker(s) in step (b), (d) and/or (f) is performed using a method selected from the group consisting of Southern hybridisation, Northern hybridisation, polymerase chain reaction (PCR), reverse transcriptase PCR (RT-PCR), quantitative real-time PCR (q RT-PCR), nanoarray, microarray, macroarray, autoradiography and in situ hybridisation.
  • 41. The method according to any one of claims 37-40, wherein measuring the expression of the one or more biomarker(s) in step (b) is determined using a DNA microarray.
  • 42. The method according to any one of claims 37 to 41, wherein measuring the expression of the one or more biomarker(s) in step (b), (d) and/or (f) is performed using one or more binding moieties, each individually capable of binding selectively to a nucleic acid molecule encoding one of the biomarkers identified in Table A.
  • 43. The method according to claim 42, wherein the one or more binding moieties each comprise or consist of a nucleic acid molecule.
  • 44. The method according to claim 42 wherein, the one or more binding moieties each comprise or consist of DNA, RNA, PNA, LNA, GNA, TNA or PMO.
  • 45. The method according to claim 42 or 44, wherein the one or more binding moieties each comprise or consist of DNA.
  • 46. The method according to any one of claims 42-45 wherein the one or more binding moieties are 5 to 100 nucleotides in length.
  • 47. The method according to any one of claims 42-45 wherein the one or more nucleic acid molecules are 15 to 35 nucleotides in length.
  • 48. The method according to any one of claims 43-47 wherein the binding moiety comprises a detectable moiety.
  • 49. The method according to claim 48 wherein the detectable moiety is selected from the group consisting of: a fluorescent moiety; a luminescent moiety; a chemiluminescent moiety; a radioactive moiety (for example, a radioactive atom); or an enzymatic moiety.
  • 50. The method according to claim 49 wherein the detectable moiety comprises or consists of a radioactive atom.
  • 51. The method according to claim 50 wherein the radioactive atom is selected from the group consisting of technetium-99m, iodine-123, iodine-125, iodine-131, indium-111, fluorine-19, carbon-13, nitrogen-15, oxygen-17, phosphorus-32, sulphur-35, deuterium, tritium, rhenium-186, rhenium-188 and yttrium-90.
  • 52. The method according to claim 49 wherein the detectable moiety of the binding moiety is a fluorescent moiety.
  • 53. The method according to any one of the preceding claims wherein, the sample provided in step (b), (d) and/or (f) is selected from the group consisting of unfractionated blood, plasma, serum, tissue fluid, pancreatic tissue, pancreatic juice, bile and urine.
  • 54. The method according to claim 53, wherein the sample provided in step (b), (d) and/or (f) is selected from the group consisting of unfractionated blood, plasma and serum.
  • 55. The method according to claim 53 or 54, wherein the sample provided in step (b), (d) and/or (f) is plasma.
  • 56. An array for determining the presence of pancreatic cancer in an individual comprising one or more binding agent as defined in any one of claims 16 to 30.
  • 57. An array according to claim 56 wherein the one or more binding agents is capable of binding to all of the proteins defined in Table A.
  • 58. Use of one or more biomarkers selected from the group defined in Table A as a diagnostic marker for determining the presence of pancreatic cancer in an individual.
  • 59. The use according to claim 58 wherein all of the proteins defined in Table A are used as a diagnostic marker for determining the presence of pancreatic cancer in an individual.
  • 60. A kit for determining the presence of pancreatic cancer comprising: C) one or more first binding agent as defined in any one of claims 16 to 24 or an array according to claims 32 to 35 or claim 56 or 56;D) instructions for performing the method as defined in any one of claims 1 to 36 or the use according to any one of claim 58 or 59.
  • 61. A kit according to claim 61 further comprising a second binding agent as defined in any one of claims 35 to 40.
  • 62. A method or use for determining the presence of pancreatic cancer in an individual substantially as described herein.
  • 63. An array or kit for determining the presence of pancreatic cancer in an individual substantially as described herein.
Priority Claims (1)
Number Date Country Kind
1319878.3 Nov 2013 GB national
Parent Case Info

The present application is a continuation of U.S. patent application Ser. No. 16/161,741, filed Oct. 16, 2018, which is a continuation of U.S. patent application Ser. No. 15/035,953, filed May 11, 2016, which is a § 371 application of PCT/GB2014/053340, filed Nov. 11, 2014, which claims priority to GB Patent Application No. 1319878.3, filed Nov. 11, 2013, the entire disclosure of each of the foregoing being incorporated by reference herein as though set forth in full.

Continuations (2)
Number Date Country
Parent 16161741 Oct 2018 US
Child 17704057 US
Parent 15035953 May 2016 US
Child 16161741 US