A more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Reference will now be made in detail to the embodiments consistent with the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numerals used throughout the drawings refer to the same or like parts. Though this invention is described with respect to rail vehicles, such as but not limited to trains and/or railway maintenance vehicles, those skilled in the art will readily recognize that the present invention may also be used for other vehicle systems, such as, but not limited to, where vehicles move over a given surface and other surfaces used where other vehicles, such as but not limited to non-rail vehicles, move along another surface that intersect with and/or bisects the first given surface.
Embodiments of the present invention solve the problems in the prior art by providing a system, method, and computer implemented method, such as but not limited to a computer software code, for determining a direction a train is traveling on a railway track. Persons skilled in the art will recognize that an apparatus, such as a data processing system, including a CPU, memory, I/O, program storage, a connecting bus, and other appropriate components, could be programmed or otherwise designed to facilitate the practice of the method of the invention. Such a system may include appropriate program means for executing an embodiment of a method of the invention.
Also, an article of manufacture, such as a pre-recorded disk or other similar computer program product, for use with a data processing system, could include a storage medium and program means recorded thereon for directing the data processing system to facilitate the practice of the method of the invention. Such apparatus and articles of manufacture also fall within the spirit and scope of the invention.
Broadly speaking, the technical effect is determining a direction a vehicle is traveling on a railway track. To facilitate an understanding of embodiments of the present invention, it is described hereinafter with reference to specific implementations thereof. The invention may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, data structures, etc. that performs particular tasks or implement particular abstract data types. For example, the software programs that underlie the invention can be coded in different languages, for use with different platforms. Examples of embodiments of the invention may be implemented in the context of a web portal that employs a web browser. It will be appreciated, however, that the principles that underlie embodiments of the invention can be implemented with other types of computer software technologies as well.
Moreover, those skilled in the art will appreciate that embodiments of the invention may be practiced with other computer system configurations, including hand-held devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, minicomputers, mainframe computers, and the like. Embodiments of the invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote computer storage media including memory storage devices.
Referring now to the drawings, embodiments of the present invention will be described. Embodiments of the invention can be implemented in numerous ways, including as a system (including a computer processing system), a method (including a computerized method), an apparatus, a computer readable medium, a computer program product, a graphical user interface, including a web portal, or a data structure tangibly fixed in a computer readable memory. Several embodiments of the invention are discussed below.
Embodiments of the present invention adapts and/or modifies current crossing warning systems to allow for determining a direction a vehicle is traveling along a railway as it approaches a road crossing. Embodiments of the present invention may use existing infrastructure in addition with the unique characteristics of a transmit voltage, TV, and receive voltage, RV, as the train approaches from either side of the road crossing so as to determine train direction. More specifically, embodiments of the present invention may use two voltage receivers, and/or sensors, one located on each side of the road crossing. The speed of the train, and hence the prediction of warning time, only requires one of these sensors. The purpose for the second voltage sensor is to compare the sensed voltage on either side of the crossing to ensure correct polarity of the track wiring and/or to compare the sensed voltage on either side of the crossing to report a high resistance or broken track wire.
The slope of the traces 42, 44 as the vehicle moves towards the crossing is exactly opposite when comparing the graphical lines. As the vehicle approaches from the second side of the crossing, the difference, TV-RV, results in a trace 42 having an increasing slope. As a vehicle approaches from the first side of the crossing 12, the difference, TV-RV, results in a trace 44 having a decreasing slope. This relationship exists regardless of other variables associated with the system, such as but not limited to frequency, approach length, ballast resistance, etc. Therefore, in an exemplary embodiment, no variation in the results is introduced due to external factors. This graphical representation occurs because the approaching vehicle shunt will cause the voltage receiver 14, 15 that is closest to it to decrease faster than the other voltage receiver. For example, if the vehicle approaches from the second side, the receive voltage 15 will decay quicker than the transmit voltage 14, thus causing an increasing slope on the TV-RV difference.
Once a train has moved through the crossing 12, the vehicle direction can be logged for that vehicle. In an exemplary embodiment, this information is then available to later verify that the crossing warning system is functioning properly. Towards this end, the information may be stored in a storage device 60, illustrated in
Embodiments of the invention may provide a software upgrade for one or more prior art crossing warning systems. Utilizing a software upgrade provided by an embodiment of the present invention, one or more prior art systems will be able to determine vehicle direction. Such determinations may be accomplished automatically.
While the invention has been described in what is presently considered to be a preferred embodiment, many variations and modifications will become apparent to those skilled in the art. Accordingly, it is intended that the invention not be limited to the specific illustrative embodiment but be interpreted within the full spirit and scope of the appended claims.