It is an object of this invention to provide a method of accumulating kinetic energy and a rotor device for accumulating and dissipating kinetic energy of objects being in motion, applicable for braking thereof. The solution can be applied in particular for accumulating and dissipating energy of automotive vehicles and other objects vulnerable to effects of an unexpected collision.
A method of protecting vehicles against effects of collisions is known from the international patent application WO2004028864, where the kinetic energy created during a collision is converted into energy of rotating weights. According to this known method the kinetic energy of a driving means is converted into kinetic energy of a rotor device having variable moment of inertia by bringing the rotor into the rotary motion. The variability of the moment of inertia of the rotor device is achieved thanks to the fact that a weight changes its position along a guide under the influence of a centrifugal force.
From the description of the international patent application WO2004028864 there is also known a device for protecting vehicles against collision effects, in which kinetic energy generated as the result of a collision is converted into energy of rotating weights. In this known solution a beater means is provided with two toothed bars, which by means of gears drive rotors made as rods with movable weights slidably fitted on them. The minimization of impact load acting on co-operating components in the initial stage of energy transmission is achieved in this known solution by using movable weights placed as closely as possible to the rotation axis of the rod rotor, so that the moment of inertia of the rotor in that initial stage is the lowest. In the further stage of the motion, when the rotor begins to rotate, said weights are moved by a centrifugal force away from the rotary axis along the rod axis up to its end stops, and in this position the highest moment of inertia of the rotor is achieved, and in effect the increased kinetic energy is taken over.
The drawback of this known solution is the lack of possibility to appropriately select the characteristics of the moment of inertia while taking the energy.
From the description of the international patent application WO2005121593 there is also known a kinetic energy converting device comprising a beaten means co-operating with an energy dissipating assembly made as a toothed bar bringing rotary weights into rotary motion in order to convert the kinetic energy of translational motion created in the result of the collision into the kinetic energy of rotary motion. In one of the embodiments of the known solution, the toothed bar drives the rotor via a gear, said rotor being a rod with slidably mounted movable weights. In this solution the rod has a determined constant moment of inertia and additionally acts as a guide for movable weights. In order to ensure gradual adjustment of the inertia moment of a rotor, springs are placed between the end stops of the rod and movable weights, what ensures maintaining the movable weights in an appropriate distance from the rotation axis, what depends on the rotational speed of the rotor. Such a solution ensures a smoother increase of the rotor inertia moment with the increase in its rotational speed, since the springs protect the movable weights from immediate reaching the end position already in the initial stage of the rotor rotation.
However, springs used in the known solution limit the possibility to increase the moment of inertia of the entire system which takes the energy when centrifugal forces resulting from the rotation of movable weights equal the reaction forces of the compressed springs. Therefore, the known structure prevents the appropriate selection of the characteristics of the rotor inertia moment while taking the energy.
It is an object of the solution according to the invention to improve the possibility of adjusting the moment of inertia of the energy accumulating rotor, and thereby to improve the effectiveness of taking over and dissipating different portions of energy.
Another aim of the solution according to the invention is to provide a rotor device which with its low total weight ensures a low moment of inertia in the starting moment and a considerable increase of this moment when the kinetic energy is further taken over.
According to the method provided by the invention the kinetic energy of a driving means is converted into the kinetic energy of a rotor device having a variable moment of inertia by bringing the rotor into rotary motion, whereas said variable moment of inertia of the rotor device is achieved by at least one weight moved by a centrifugal force along a trajectory set by a guide integrated with the rotor. This solution is characterised in that the weight moved along the trajectory set by the guide is brought into rotary motion in relation to its axis by the centrifugal force, thus smoothly increasing the moment of inertia of the entire rotor device, and thereby also its capacity to take over larger kinetic energy.
The variable moment of inertia of the rotor device is advantageously achieved by the movement of many rotary weights caused by the centrifugal force. In another advantageous solution various rotational speeds are imparted onto at least two of the rotary weights in relation to their axes.
The rotor device accumulating and dissipating kinetic energy according to the invention contains driving means transferring its kinetic energy to a rotor having a variable moment of inertia, and having at least one guide, along which a weight increasing the moment of inertia is moved by centrifugal force related to the rotation of the rotor. This solution is characterised in that the rotor guide has a toothed driving surface with which a gear meshes, said gear being a rotary weight.
This gear is advantageously connected axially with an additional rotary weight by means of a driving shaft slidably fitted in guiding recesses in covers.
The guide having a toothed driving surface is advantageously in contact with the gear situated at one face side of the rotor, and an additional rotary weight is situated at the opposite face side of the rotor, while a driving shaft connecting the toothed wheel with the additional rotary weights being slidably fitted in a guiding recess formed in the rotor, whereas the path of the guiding recess being parallel to the path of the guide comprising the toothed driving surface.
The gear is advantageously axially connected via the driving shaft with additional rotary weights situated at both face sides of the rotor, while the driving shaft connecting the gear with the additional rotary weight is slidably fitted in guiding recesses made in covers.
The additional rotary weight is also advantageously connected axially with the gear by means of a one-way clutch.
In an advantageous embodiment the guide with a toothed driving surface extends substantially radially in relation to the rotor axis. In another advantageous embodiment the rotor has many guides with the toothed driving surface, said guides being arranged substantially radially in relation to the rotor axis. It is also advantageous when said guides have their toothed driving surfaces of different length.
In another advantageous embodiment the rotor has multiple guides having a toothed driving surface, whereas at least two additional rotary weights have different moments of inertia.
In another advantageous embodiment the rotor has many guides with a toothed driving surface, said at least two additional rotary weights being driven by the gears of different diameters.
In another advantageous embodiment the rotor is made as a gear with its teeth meshing with a driving means made in the form of a toothed bar, and in addition the driving means is fitted with a shock absorber.
In the method according to the invention an increased capacity to accumulate increased kinetic energy is achieved by bringing the weight into additional rotary motion in relation to its own axis by a centrifugal force related to the rotation of the rotor.
Additional rotary motion of the weight moved by a centrifugal force is achieved in the rotor device according to the invention by using a toothed driving surface on the rotor guide and constructing a weight in the form of a gear coupled with that toothed driving surface, and thereby the energy absorbing capacity is increased. By selecting the quantity of additional rotary weights, their moments of inertia and lengths of guides with a toothed driving surface or the diameter of gears the possibility to adjust the flexibility of action of the rotor device according to the invention is achieved. A proper adjustment of the flexibility of action of the rotor device according to the invention is aimed at achieving an suitably low initial moment of inertia, causing low impact load of the device components in the initial stage of energy accumulation, and accordingly increasing a moment of inertia in the subsequent stages of energy accumulation. The structure of the rotor device according to the invention ensures also achieving relatively high moments of inertia of the entire device with relatively low weight of the parts brought into motion.
The object of the invention is presented schematically in an embodiment in a drawing, in which
In accordance with the method consistent with the invention, kinetic energy of a driving means is converted into kinetic energy of a rotor device having a variable moment of inertia by bringing the rotor into rotary motion. The centrifugal force resulting from the rotary motion of the rotor brings weights into movement along a trajectory set by the guides, what results in the movement of said weights away from the rotation axis of said rotor, thereby increasing the moment of inertia of the entire rotor device. In order to additionally increase the moment of inertia, the weights moving along the trajectory set by their guides are brought by a centrifugal force into additional rotary motion in relation to their axes. Further changes of the characteristics of moment of inertia are achieved by imparting differing rotational speeds to rotary weights in relation to their axes, what has been realized for example by driving rotary weights by means of gears having different pitch diameters.
In the embodiment presented in
In order to better demonstrate the principle of action of the solution according to the embodiment, in
In
In another embodiment in
The action of the solution according to the invention is best illustrated by
In the first stage of energy transmission, the moment of inertia of the rotor devices is the lowest since the gear 7 has not yet begun its plane and rotary motion, and in addition the gear is located closest to the rotor rotation axis. In the subsequent stage of collision, the moment of inertia advantageously increases due to rotary motion and movement of the gear 7. Energy possibly accumulated in the rotor device according to the invention is equal to the kinetic energy of the plane motion and the kinetic energy of the rotary motion of all parts of that rotor device moving in relation to the load-bearing structure 9.
The coupling of gear 7 with the toothed driving surface results in a considerable deceleration of movement of that gear towards outside, what positively affects the characteristics of the increase of inertia moment, thus ensuring the decrease of impact forces in the first stage of taking energy, and the optimisation of the energy taking in the subsequent stages.
The rotor device according to the second embodiment illustrated in
A similar increase in the moment of inertia is ensured by the embodiment illustrated in
In the most advantageous embodiment illustrated in
Number | Date | Country | Kind |
---|---|---|---|
PL392181 | Aug 2010 | PL | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/PL11/50032 | 8/17/2011 | WO | 00 | 2/15/2013 |