This invention generally relates to manufacturing using diamond turning techniques, and in particular using diamond turning to manufacture components having a desired thickness with a high degree of precision.
Diamond turning is a machining technique commonly used to make ultra-precise parts such as small optical lenses and mirrors. For example, single-point diamond turning involves guiding an atomically sharp diamond tip over a rotating workpiece in a CNC (computer numerically controlled) lathe.
Conventional diamond turning techniques are typically able to achieve a length accuracy of only about ±10 um (microns). This level of accuracy may not be sufficient when manufacturing components where length accuracy is critical, such as certain types of small optical components.
Embodiments of the disclosure have other advantages and features which will be more readily apparent from the following detailed description and the appended claims, when taken in conjunction with the examples in the accompanying drawings, in which:
The figures and the following description relate to preferred embodiments by way of illustration only. It should be noted that from the following discussion, alternative embodiments of the structures and methods disclosed herein will be readily recognized as viable alternatives that may be employed without departing from the principles of what is claimed.
On modern diamond turning machines, the relative position of the diamond turning tip is able to be controlled with high precision (e.g., nanometer-level precision), allowing for the surfaces of workpieces to be shaped with a surface form error as small as about ±100 nm. However, when a workpiece is mounted directly to the chuck of a diamond turning machine, the position of the workpiece on the chuck relative to the diamond turning tip may not be sufficiently accurate to enable shaping of the workpiece to a desired length with a desired tolerance level (e.g., less than ±1 um).
Methods for achieving length accuracy of diamond turned parts as described below have been demonstrated to produce parts with length tolerances of ±1 um or better. The methods are based on using a diamond turning tip of a diamond turning machine to form a reference surface on a temporary part mounted on the diamond turning machine, in order to register a baseline for a motion control system of the diamond turning machine. The workpiece is then shaped based upon the reference surface. Because neither the temporary part on which the reference surface is formed nor the diamond turning tip used to form the reference surface are changed during the machining process, the baseline for the relative position of the diamond turning tip established by the reference surface is maintained throughout the shaping of the workpiece, allowing for the overall length or thickness of the workpiece to be machined with a high degree of accuracy. In some cases, the workpiece may be diamond turned and then flipped over so that the opposite side of the workpiece can also be diamond turned. By establishing a baseline using a reference surface diamond turned on a temporary part, high length accuracy can be achieved as long as the baseline is maintained (e.g., the temporary part and diamond turning tip used to form the reference surface remain the same throughout the diamond turning of the workpiece).
The methods described herein may be used with a variety of different types of diamond turning machines. An example of a state-of-the art diamond turning machines suitable for performing the processes and methods described below is the Nanotech 250 UPL V2 ultra-precision, two-axis, CNC diamond turning lathe made by Moore Nanotechnology Systems (Swanzey, N.H.).
In some embodiments as shown in
In some embodiments, a vacuum port 112 extends through the temporary part 102 to the reference surface 106. For example, where the chuck of the diamond turning machine is a vacuum chuck, the temporary part 102 is mounted to the vacuum chuck by the suction of the vacuum chuck. The vacuum port 112 extends the suction of the vacuum chuck to the reference surface 106, allowing for the workpiece 104 to be mounted onto the temporary part 102 by suction through the vacuum port 112 (see
In some embodiments, the diamond turning tip is used to form one or more grooves on the reference surface 106 and connected to the vacuum port 112, for carrying suction from the vacuum port 112 to portions of the workpiece 104 off the Z-axis. The one or more grooves may comprise a spiral groove.
As shown in
Concentricity is the degree to which the axis of symmetry of one side of a turned part coincides with the axis of symmetry of the other side of the part. The concentricity of workpiece 104 may depend on how accurately the workpiece 104 is mounted on the temporary part 102. In some embodiments, an insertion clearance of less than 0.5 um between the sides of the workpiece 104 and the sidewalls of the recess 108 is preferable. In some embodiments, when the temporary part 102 and workpiece 104 are made of different materials with different coefficients of thermal expansion (CTE), controlled temperature changes can be employed to make an interference fit. For example, if temporary part 102 has larger CTE than the workpiece 104, then heating the parts makes the workpiece 104 fit more easily in the temporary part 102, while cooling tightens the fit.
In some embodiments, depending on what materials the temporary part 102 and workpiece 104 are made from, alternatives to vacuum suction may be employed to hold the workpiece 104 on the temporary part 102. For example, the two parts may be held together magnetically, electrostatically, and/or via interference (e.g., thermal-mechanical interference).
After the workpiece 104 is mounted to the temporary part 102, the diamond turning tip of the diamond turning machine forms a surface profile on the surface of the workpiece 104 opposite from the first surface 202 to form a cut surface 204. Using the baseline established by the reference surface 106, the diamond turning tip is able to shape the cut surface 204 of the workpiece 104 to be a specified distance d2 from the reference surface 106 (and first surface 202) with a high degree of precision (e.g., within ±1 um).
In some embodiments, d2 corresponds to the critical length dimension of the workpiece 104, and is formed with a tolerance of ±1 um or less. In an example part, D=3 mm, t=1 mm, d1=200 um, and d2=765.521 um±0.5 um. The cut surface 204 may comprise one or more surface features, such as a small depression 206 around the z axis, while maintaining overall length d2 of the workpiece 104. For example, the diamond turning point may, in a first pass, form a flat cut surface 204 on the workpiece 104, and then perform one or more subsequent passes to form surface features onto the cut surface 204, such as the depression 206.
In some embodiments, it is desired to shape the workpiece 104 on both sides (e.g., on the first surface 202 and the cut surface 204) while maintaining a specified distance d2 between the first surface 202 and the cut surface 204. To do so, the workpiece 104 is separated from the temporary piece 102 and reoriented such that the cut surface 204 is mounted to the reference surface 106. Between the time in which the workpiece 104 is removed from the temporary part 102 and remounted to the temporary part 102, the reference surface 106 may be cleaned in order to remove any debris or contaminants that may have been deposited on the reference surface 106.
The diamond turning tip cuts one or more features onto the outward-facing first surface 202 of the workpiece 104 to form a surface profile 302. In some embodiments, the surface profile 302 is formed on the workpiece 104 while maintaining overall part length d2 between the cut surface 204 and the first surface 202. As such, both the first surface 202 and the cut surface 204 of the workpiece 104 are shaped while maintaining the critical length d2 between the cut surface 204 and the first surface 202. In other embodiments, the diamond turning tip cuts a new first surface into the workpiece 104 that does not maintain the length d2, but instead defines a new workpiece thickness. Because the baseline defined by the reference surface 106 remains constant throughout the process, the new workpiece thickness can be defined with a high degree of precision. When the surface profile 302 is complete, the workpiece 104 is released from temporary part 102 (e.g., by removing the suction applied via the vacuum port 112).
Because the temporary part 102 is not removed from the diamond turning machine and the diamond turning tip also is not removed or damaged, the relative position of the reference surface 106 along the Z-axis is known to very high precision (e.g., <0.1 nm). The reference surface 106 thus functions as a baseline allowing for the diamond turning tip to shape the workpiece 104 to a specified thickness, taking advantage of the high relative positional accuracy of the diamond turning tip.
Although the description above primarily discusses shaping a workpiece to form a component with a particular length d2, the establishment of the reference surface 106 baseline allows for any length of the workpiece 104 (i.e., any profile in the X-Z plane) to be turned with accuracy commensurate with the X-axis surface form error (e.g., as good as about ±1 nm for a state-of-the-art machine), depending on materials used.
As in
In addition, the diamond turning tip forms, on the cut surface 204, one or more cutout features 502, based upon a desired side profile/shape of the workpiece 104. Although
In some embodiments, the diamond turning tip first forms the cutout features 502 on the workpiece 104, which are then filled with the filler material. Subsequent to the forming and filling of the cutout features 502, the diamond turning tip subsequently shapes the cut surface 204 at the critical length d2, as well as any additional features on the cut surface (such as the depression 206). By forming and filling the cutout features 502 prior to forming the cut surface 204, the filler material can be planarized by the diamond turning tip such that it aligns with the cut surface 204, and does not protrude from the cutout features 502 past the critical length d2.
In
On the other hand, in
The diamond turning processes described above allow for manufacture of a diamond turned part with high length or thickness accuracy. Once the reference surface is created on the temporary part, a cut surface may be made on the workpiece at a specified z distance with high accuracy. For example, length accuracy better than ±1 um has been demonstrated in PMMA parts roughly 1 mm long and 1 mm in diameter. The techniques described herein can be applied to any material that can be machined by ultra-precision diamond turning. The techniques described herein for diamond turning may also be applied to work with conventional lathes for improved workpiece length accuracy.
The foregoing description of the embodiments of the invention has been presented for the purpose of illustration; it is not intended to be exhaustive or to limit the invention to the precise forms disclosed, but merely illustrates different examples. It should be appreciated that the scope of the disclosure includes other embodiments not discussed in detail above. Persons skilled in the relevant art can appreciate that many modifications and variations are possible in light of the above disclosure, without departing from the spirit and scope as defined in the appended claims. Therefore, the scope of the invention should be determined by the appended claims and their legal equivalents.
In the claims, reference to an element in the singular is not intended to mean “one and only one” unless explicitly stated, but rather is meant to mean “one or more.” In addition, it is not necessary for a device or method to address every problem that is solvable by different embodiments of the invention in order to be encompassed by the claims.
Finally, the language used in the specification has been principally selected for readability and instructional purposes, and it may not have been selected to delineate or circumscribe the inventive subject matter. It is therefore intended that the scope of the invention be limited not by this detailed description, but rather by any claims that issue on an application based hereon. Accordingly, the disclosure of the embodiments of the invention is intended to be illustrative, but not limiting, of the scope of the invention, which is set forth in the following claims.
This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 62/457,320, titled “Method for Achieving Length Accuracy of Diamond Turned Parts,” filed on Feb. 10, 2017, the subject matter of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2366935 | Schmid | Jan 1945 | A |
2843389 | Sloan | Jul 1958 | A |
2852264 | Granata | Sep 1958 | A |
3454282 | Boulton | Jul 1969 | A |
4183545 | Daly | Jan 1980 | A |
4603867 | Babb | Aug 1986 | A |
5423716 | Strasbaugh | Jun 1995 | A |
5445052 | Nichols, Jr. | Aug 1995 | A |
5485771 | Brennan | Jan 1996 | A |
5743685 | Piggott | Apr 1998 | A |
5861114 | Roffman | Jan 1999 | A |
5868401 | Darcy, III | Feb 1999 | A |
6758640 | Mizutani | Jul 2004 | B2 |
6767018 | Daniels | Jul 2004 | B1 |
7413689 | Tolley et al. | Aug 2008 | B2 |
7434299 | Gill | Oct 2008 | B1 |
7488145 | Watanabe | Feb 2009 | B2 |
8100413 | Otaguro | Jan 2012 | B2 |
20020197122 | Mizutani | Dec 2002 | A1 |
20080146124 | Morita | Jun 2008 | A1 |
20100270694 | Meyers | Oct 2010 | A1 |
20130255453 | Buck | Oct 2013 | A1 |
20140091537 | Iizuka | Apr 2014 | A1 |
20150375355 | Collins | Dec 2015 | A1 |
20180065187 | Yamamoto | Mar 2018 | A1 |
20180200868 | Ross | Jul 2018 | A1 |
20180243839 | Wielandts | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
2550828 | Nov 2017 | GB |
60263603 | Dec 1985 | JP |
Number | Date | Country | |
---|---|---|---|
20180229312 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
62457320 | Feb 2017 | US |