1. Field Of The Invention
The present invention relates to a method for activating a valve.
2. Description Of The Related Art
Modern brake systems, which are designed for a vehicle dynamics control system, normally have a plurality of valves, with the aid of which it is possible to control the build-up or reduction of pressure in the wheel brakes depending on situations.
HSV 3 and is able to deliver brake fluid to wheel brakes 6 via intake valve 5 when HSV 3 is open. Area A denotes a graduated circle between USV 2, hydraulic pump 4 and EV 5.
In the stable driving condition of the vehicle (normal condition), hydraulic pump 4 is not active. USV 2 is open and HSV 3 is closed. Operating a foot brake pedal (not shown) causes brake pressure from brake master cylinder 1 to be built up on wheel brake 6 via USV 2 and EV 5.
In a critical driving situation, a regulator 8 intervenes in the vehicle operation. In this case, hydraulic pump 4 is activated by control unit 7, USV 2 is closed and HSV 3 is opened. Hydraulic pump 4 then pumps hydraulic fluid from the reservoir into wheel brake 6 via intake valve 5 and automatically builds up brake pressure. To this end, regulator 8 predefines a setpoint pressure curve.
According to the current related art, two different methods are used for regulating the pressure in the wheel brakes and they will be explained briefly below:
In the case of the first method (suction regulation), HSV 3 is opened during the entire pressure build-up and USV 2 is closed.
When hydraulic pump 4 is switched on, valve 3 is opened and valve 2 is closed simultaneously at point in time t21, the entire volume flow generated by pump 4 is directed to wheel brakes 6 via valve 5. As soon as a target pressure n r target is reached, HSV 3 is closed at point in time t22. Hydraulic pump 4 continues to run; however, it can no longer suction fluid, so that volume flow qRfp on hydraulic pump 4 and volume flow qEV on the intake valve become zero. USV 2 is completely closed during the entire time. Volume flow qUSV on USV 2 is thus zero.
This method has the advantage that the entire brake fluid volume delivered by pump 4 flows into the wheel brake and thus a maximum dynamics of the pressure build-up in the brake is reached. However, a disadvantage is that target pressure ptarget is exclusively determined at the point in time in which HSV 3 is activated and closed. These points in time are as a rule empirical values which are ascertained empirically. However, in the real brake system, the output of the pump and in particular the elasticity of the wheel brake are subject to considerable fluctuation during their life. This same output duration of hydraulic pump 4 will therefore result in different target pressures n r target as a function of the condition of the brake system.
The shape of the curve over time of the pressure build-up in the wheel brake may be approximately represented by
where EB, denotes the elasticity of the wheel brake and k is a pump parameter which represents the relationship between a pump voltage URfp and pump speed n =URfp/2πk. The value of elasticity EB, is subject to manufacturing and aging related influences and may therefore vary a great deal; this has a significant influence on the pressure build-up. The variations of motor constant k also influence the quality of the pressure build-up. VRfp is the volume delivered by the pump during one rotation. Since the chronological duration T of the pressure build-up is predefined by the duration of the opening of HSV 3, the actually reached maximal pressure pMax in the wheel brake
is to a great degree a function of the variables. The possible deviation from intended target pressure ptarget is thus also considerable.
In the second known method, USV 2 is used for precisely adjusting target pressure ptarget.
USV 2 may be used for precisely setting a required target pressure. However, in the present case, the precision of the pressure setting is obtained in exchange for a loss in dynamics. This disadvantage is attributable to the fact that volume flow qRfp coming from pump 4 is not uniform but is instead pulsed as shown in
The hydraulic pump is as a rule a pump having a non-uniform delivery characteristic, for example, a single-piston pump. When such a pump is operated, suction phases C and delivery phases B are alternated periodically. The volume flow delivered by the pump during a complete rotation fluctuates between zero and a maximum. As a result, the periodically occurring back-pressure of the brake fluid on EV 5 causes a likewise periodically fluctuating stagnation pressure pA to occur in partial circuit A (
Therefore, an object of the present invention is to combine the advantages of both methods and thus achieve both a high dynamics of the pressure build-up as well as a high precision in setting the target pressure.
According to the present invention, it is proposed to set the pressure threshold value on one valve, in particular the USV, higher during the pressure build-up phase than a setpoint pressure predefined by the regulator. This has the advantage that the valve only opens at a higher pressure and thus the dynamics of the pressure build-up is not slowed as severely. Thus, a larger portion of the volume flow delivered by the hydraulic pump is actually directed to the wheel brakes and it does not flow off prematurely via the valve.
According to a preferred specific embodiment of the present invention, it is proposed to set the pressure threshold value on the valve lower than the pressure peaks produced by the pump. In this way, at least a portion of the brake fluid flows off via the valve in the direction of the brake master cylinder or a fluid reservoir. This has the advantage that the regulator may set the speed of the pump higher than the minimum required for the pressure build-up.
The pressure threshold value is preferably set in such a way that the brake pressure acting on the wheel brake corresponds to the desired setpoint pressure in the shape of the curve over time. In this case, the braking effect of the wheel brake displays exactly the curve requested by the regulator.
The pressure threshold value is preferably reascertained regularly during the pressure build-up phase. As soon as a desired maximum target pressure is reached, the pressure threshold value is set to this value. This ensures that the pressure in the wheel brakes is held at this value.
The pressure threshold value may be, for example, calculated based on a model or read out from a set of characteristics. According to a preferred specific embodiment of the present invention, it is proposed to calculate the pressure threshold value as a function of a mean volume flow. The mean volume flow is the volume flow which must flow in the direction of the wheel brake so that that the brake pressure prevailing in it essentially corresponds to the desired setpoint pressure curve. The pressure threshold value to be set on the valve is in this case a function of the mean volume flow and, if necessary, additional variables which describe the characteristics of the brake, for example, the throttle properties of the intake valve of the wheel brake.
Alternatively, it is proposed to read out the pressure increase from a set of characteristics. This method may be used if the required parameters are not known or not known with sufficient precision.
The proposed set of characteristics may represent, for example, the pressure threshold value as a function of a mean volume flow in the direction of the wheel brake or a gradient of the setpoint pressure.
During delivery phase B of the pump, qRfp(t) runs in the form of a half sine wave having a frequency f0 corresponding to the rotational speed. During suction phase C, qRfp(t) is equal to zero. From the properties of the pump and the present rotational speed, it is possible to ascertain the mean volume flow of the hydraulic pump qm
In order to build up the pressure in wheel brakes 6 using the dynamics requested by regulator 8, a specific mean volume flow qm
The mean volume flow to the wheel brakes is obtained from the relationship
From this, it is possible to ascertain threshold value qlimit which is a function of qm
From the valve properties, throttle characteristic α and throttle diameter d and density ρ of the brake fluid, it is possible to obtain the pressure threshold value Δplimit to be set on USV 2 using C=(απd2/4) √{square root over (2/ρ)}.
This pressure threshold value in turn corresponds to a determined current intensity I on USV 2. If this current intensity is set, the pressure build-up on the wheel brake essentially follows the setpoint. The remaining fluid, which is represented by a shaded area in
During the pressure build-up phase, mean volume flow pm
Number | Date | Country | Kind |
---|---|---|---|
10 2009 047 335.1 | Dec 2009 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/064748 | 10/4/2010 | WO | 00 | 8/31/2012 |