The invention relates to a method for actuating a starting device for an internal combustion engine.
The German patent application DE 10 2009 027 117 A1 discloses a starting device comprising an electromagnetic starter relay which has two separate axially successively arranged relay windings in one housing. The first relay winding performs the task of a pull-in winding and moves a stroke armature which is coupled via an engagement lever to a starter pinion of the starting device. When the pull-in winding is energized, the starter pinion is moved between a retracted inoperative position and an axially advanced engaged position in which the starter pinion engages with a toothed ring of the internal combustion engine. The second relay winding serves as a switching winding and is paired with a switching means via which the power circuit of an electric starter motor for driving the starter pinion is to be switched on or off. A switching armature is paired with the switching winding, said switching armature, when current is passed through the switch-on winding, pressing a contact plate against two opposing contacts for closing the power circuit of the starter motor.
The embodiment comprising two separate relay windings allows the decoupling of the pre-meshing movement of the starter pinion from the switching-on of the electric starter motor.
The underlying aim of the invention is to enable a reliable, low-noise starting of an internal combustion engine under different operating conditions by the use of a starting device. Said aim is also to include operating states in which engagement is to be made into a decelerating toothed ring.
The method relates to a starting device for an internal combustion engine comprising an electromagnetic starter relay, by means of which a starter pinion of the starting device can be adjusted between a retracted inoperative position and an advanced engaged position with a toothed ring or the internal combustion engine. The adjusting movement of the starter pinion preferably relates to an axial adjusting movement, wherein pivoting movements come also in principle into consideration. The starter relay comprises an energizable pull-in winding, with which a stroke armature is paired that is displaced when current is passed through the pull-in winding. The adjusting movement of the stroke armature is transmitted to the starter pinion with the aid of a transmission component, for example a fork lever, said starter pinion thereupon being moved from the inoperative position into the engaged position.
The starting device furthermore comprises an electric starter motor, which sets the starter pinion into a rotating drive motion. The starter motor is switched on or off via a switch-on device, which is preferably integrated into the starter relay. By activating the switch-on device, the power circuit of the electric starter motor is closed and the starter motor is set into rotation. The switch-on device can thereby be actuated independently of the stroke armature or the energization of the pull-in winding.
In the method, different operating states of the internal combustion engine or more precisely the toothed ring of the internal combustion engine are differentiated. Said differentiation is made via the current rotational speed of the toothed ring at the point in time when the starting device is switched on, by means of which starting device the internal combustion engine is to be started. If the current rotational speed of the toothed ring is below a limit value, only the stroke armature is initially moved; and the switch-on device is switched on and thereby the starter motor as well as the starter pinion is set into rotation only after the starter pinion contacts the toothed ring of the internal combustion engine.
If, on the other hand, the toothed ring has a relatively high rotational speed and the rotational speed of said toothed ring exceeds a limit value, the switch-on device is thus already switched on prior to the starter pinion making contact with the toothed ring and as a result the rotational speed of the starter pinion is increased.
In this way, all of the operating conditions that occur can basically be covered under which the internal combustion is to be started by means of the starting device, wherein the starting of the internal combustion engine involves a smaller component load as well a reduced noise emission. Starting operations can be repeatedly carried out, in particular over a long operating period, during which operations the starter pinion has to be engaged and started in a still rotating toothed ring of the internal combustion engine, which, e.g., can occur in start-stop systems where the internal combustion system is frequently turned off and on. With regard to the differentiation via the rotational speed of the toothed ring, two different basic situations can be differentiated which are treated differently in each case.
If the rotational speed of the toothed ring undershoots the limit value, the pre-meshing or engagement of the starter pinion, i.e. the adjusting movement of said starter pinion from the inoperative position into the engaged position, occurs first and subsequently the cranking of the engine via the electric starter motor. Normal or regular staring operations are included in these cases, in which the internal combustion engine and the toothed ring are stationary, i.e. the rotational speed of the toothed ring is equal to zero, as well as operating situations having a relatively low rotational speed of the toothed ring. For the case in which the toothed ring is stationary, the starter pinion can move into a tooth-to-tooth position with the toothed ring during the pre-mesh operation. Said tooth-to-tooth position is however released when the starter pinion is set into rotation by switching on the starter motor. If, however, the toothed ring has a rotational speed below the limit rotational speed, tooth-to-tooth positions between the starter pinion and the toothed ring are also released solely due to the rotational speed of the toothed ring. In this case, it can be useful to carry out the starting operation by means of switching on the starter motor in a slightly delayed manner in relation to the situation in which the toothed ring is stationary.
If, on the other hand, the rotational speed of the toothed ring exceeds the limit value, a relatively high rotational speed of the toothed ring exists, wherein the rotational speed of the starter pinion is increased by switching on the starter motor and synchronization between starter pinion and toothed ring is achieved. In this instance, it is, in principle, sufficient if the rotational speed of the starter pinion is raised as a maximum to the level of the rotational speed of the toothed ring at the moment of engagement, wherein, in some instances, a slightly lower level of rotational speed of the starter pinion is sufficient, for example a rotational speed of the starter pinion that is reduced by 5% or 10% with respect to the rotational speed of the toothed ring. By the rotational speed of the starter pinion being raised to a level which does not exceed the rotational speed of the toothed ring, undesirable load shocks in the drive train of the starting device between the electric starter motor, a planetary gear set that is possibly provided, a freewheel that is possibly provided and the starter pinion are prevented.
Due to the inertia of the internal combustion engine, the toothed ring can overshoot in the opposite direction. In the event that the internal combustion engine is to be started again in this situation, the starter pinion is initially pre-meshed by moving the stroke armature in the starter relay, and the switch-on device of the starter motor is switched on only after the starter pinion has engaged. It can however be advantageous to switch on the starter motor with a greater time delay in comparison to a switch-on process when the combustion engine is stationary or the rotational speed of the toothed ring is slightly positive. This is done in order to reduce the load shock in the drive train by an additional torque being avoided which would be added upon start-up of the starter motor.
Because, during a normal starting operation, the pinion cannot be meshed with the stationary toothed ring when a tooth-to-tooth position exists, the starter must be switched on before the pinion is meshed with the toothed ring. When meshing with the backward-rotating toothed ring backward meshing the starter motor is first started after the pinion has engaged with the toothed ring.
It is however also possible in principle, during a starting operation in which the toothed ring is stationary as well as in which the toothed ring rotational speed is below the limit value, to actuate the switch-on device and thereby start the starter motor if a tooth-to-tooth position with the toothed ring exists as a result of pre-meshing the starter pinion. If the starter pinion is already set into rotation in the tooth-to-tooth position, the engagement operation can be supported in which the toothing of the starter pinion and that of the toothed ring mesh with each other.
According to an advantageous embodiment, the switch-on device can comprise an additional winding in the starter relay which assumes the function of an energizable switching winding, wherein an axially adjustable switching armature is paired with the switching winding. The switching armature is moved into a contact position when current is passed through the switching winding, whereby the power circuit of the starter motor is closed. Current is passed through the switching winding basically independently of current being passed through the pull-in winding, which serves to move the starter pinion between the inoperative and engaged position.
With regard to the starting operation, in particular at high engine rotational speeds, it can be useful to predict the rotational speed of the toothed ring at the expected point in time of the engagement operation in order to base the decision for the execution of the entire operation thereupon.
Further advantages and useful embodiments can be extracted from the further claims, the description of the figures and the drawings. In the drawings:
Identical components are provided with the same reference numerals in the figures.
The starting device 1 for an internal combustion engine depicted in
The rotating drive motion transmitted onto the shaft 5 or the starter pinion 2 is generated with the aid of an electric starter motor 11 which is coupled via a transmission 12, for example a planetary gear set, to the shaft 5. Upon actuating the electric starter motor 11, the shaft 5 and therefore the starter pinion 2 are set into rotation.
The starter motor 11 is switched on by means of a switch-on device 16 which is integrated into the starter relay 6. The power circuit is closed in the switch-on device 16 by means of a switching member that is embodied as a switching armature and is moved when current is passed through the second relay winding 15 that serves the function of a switching winding. When the power circuit is closed, the starter motor 11 is set into motion and the shaft 5 as well as the starter pinion 2 is rotationally driven.
A regulation or control device 10 is paired with the starting device 1, the functions of the starter relay as well as the starter motor being controlled via said regulation or control device. It is particularly possible for the energization of the pull-in winding 7 and the switching winding 15 to be carried out independently of one another.
A starter relay is depicted in longitudinal cross section in
The stroke armature return spring 20 which applies a force to the stroke armature 8 in the initial position of said armature, is supported on the side facing away from the stroke armature 8 at the end face of the switching armature 23. The stroke armature 8 together with the switching armature 23 and a portion of the housing 18 forms an electromagnetic circuit.
The switch-on device 16 for switching on or off the electric starter motor is integrated into the starter relay 6 or is disposed on said relay 6 and is fixedly connected to the housing 18. The switch-on device 16 comprises the switching armature 23, which, when current is passed through the associated switching winding 15, is moved out of the initial position axially into a contact position in which a contact bridge on a switching plunger 24, which is connected to the switching armature 23, comes into electrical contact with two opposing contacts that lie in the power circuit of the electrical starter motor, whereby the power circuit is closed and the electric starter motor is started.
The pull-in winding 7 and the switching winding 15 are energized, in principle, independently of one another. This facilitates the use of different procedural approaches which are carried out respectively in accordance with the current operating state. In particular, engagement operations are possible into a toothed ring of the internal combustion engine that is still rotating, for example during a restart shortly after switching off the internal combustion engine when the starter pinion has to be meshed into the decelerating toothed ring.
In
By way of example, the starting operation is divided into four different phases I, II, III and IV. In the phases I, II, IV, the toothed ring has a positive rotational speed. In phase III, the toothed ring overshoots in contrast in the opposite direction and therefore has a negative rotational speed. In the first phase I, the rotational speed of the starter lies above the limit value nL. If the internal combustion engine is to be started in phase I, the electric starter motor is thus set into rotation by passing current through the switching winding 15 and the rotational speed of the starter pinion, as is depicted with a dotted line, is thereby raised to a level which is advantageously approximately as high as the rotational speed of the toothed ring at the moment of engagement. The rotational speed of the starter pinion advantageously does not exceed the rotational speed of the toothed ring at the moment of engagement but is maximally at the same level or if need be slightly below said level, for example by 5% or 10%, in order to prevent a load shock in the drive train of the starting device. In phase I, current is initially passed through the switching winding 15 in order to start the electric starter motor; current is subsequently passed through the pull-in winding 7 in order to engage the starter pinion with the toothed ring.
In phase II, the rotational speed of the toothed ring lies below the limit value nL, said speed is however greater than zero. In the run-out phase, the rotational speed of the starter pinion also ranges at a level between zero and the limit value nL. In both phases I and IV, the starting operation takes place by only initially passing current through the pull-in winding 7; and as a result, the stroke armature 8 is moved in order to engage the starter pinion with the toothed ring. After the starter pinion has engaged, the switch-on device 16 is switched on by passing current through the switching winding 15, and the power circuit of the electric starter motor is closed.
In phase III, the toothed ring overshoots in the opposite direction on account of the inertia of the internal combustion engine. Current is also initially passed through the pull-in winding in this phase up until the starter pinion has engaged with the toothed ring, and current is subsequently passed through the switching winding 15 in order to switch on the switch-on device 16. The time lag between the switch-on time for supplying current to the pull-in winding 7 and the energization of the switching winding 15 is however greater than in the phases II and IV. The load shock in the drive train is intended to be reduced by means of the greater time lag.
The temporally dependent profiles of the current flow to the pull-in winding 7 (solid line course) and to the switching winding 15 (dot and dash line course) are depicted in each case in
In
The current profile for phase I is depicted in
An alternative to the current flow profile in phase I is depicted in
In
In
In order to also move the switching armature 23 reliably into the resting or initial position thereof or in order to apply an increased force for separating the switching device, current is again passed through the pull-in winding 7 for a short time. The magnetic force between the armatures pulls the switching armature reliably back into the resting position thereof, whereby the electrical contact in addition to the force of the return spring, which acts on the switching armature 23, is interrupted. This function can, for example, be implemented with a starter relay in which the switching armature of the starter relay forms the core plate of the stroke armature.
Number | Date | Country | Kind |
---|---|---|---|
10 2012 210 520.4 | Jun 2012 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/060023 | 5/15/2013 | WO | 00 |