Method for actuating a tactile interface layer

Information

  • Patent Grant
  • 9372539
  • Patent Number
    9,372,539
  • Date Filed
    Tuesday, April 1, 2014
    11 years ago
  • Date Issued
    Tuesday, June 21, 2016
    8 years ago
Abstract
A method for actuating a tactile interface layer for a device that defines a surface with a deformable region, comprising the steps of detecting a gesture of the user along the surface of the tactile interface layer that includes a movement of a finger of the user from a first location on the surface to a second location on the surface; interpreting the gesture as a command for the deformable region; and manipulating the deformable region of the surface based on the command.
Description
TECHNICAL FIELD

This invention relates generally to tactile user interfaces, and more specifically to a new and useful mountable systems and methods for selectively raising portions of a surface of the user interface of a device.


BACKGROUND

As more devices utilize touch screen technology that does not provide physical buttons to a user, tactile interface layers that include deformable regions that function to provide tactile guidance and/or feedback to a user for a device become useful in bridging the need for the flexibility of a touch screen and the desire for tactile guidance in using the device. Such tactile interface layers (for example, the type described in U.S. application Ser. Nos. 11/969,848, 12/319,334, and 12/497,622) introduce a substantially different type of user experience from what is available in the field. Actuation of such tactile interface layers is substantially different from existing keypads seen in the field. This invention provides a new and useful method for interpreting gestures as commands for a tactile interface layer with a deformable region.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a schematic representation of the method of the preferred embodiments.



FIG. 2 is a top view of a variation of the tactile interface layer.



FIG. 3 is a cross sectional view of a variation of the tactile interface layer.



FIGS. 4A, 4B, and 4C are cross-sectional views illustrating the operation of a deformable region of a tactile interface layer.



FIG. 5 is a cross sectional view of a variation of the tactile interface layer with a valve.



FIG. 6 is a schematic representation of a variety of gestures and exemplary interpretations as commands.



FIGS. 7A and 7B are schematic representations of a swiping gesture and the elimination of a deformed region as applied to the variation of the tactile interface layer in FIGS. 2-4.



FIGS. 8A and 8B are schematic representations of a pinch open gesture and the creation of a deformed region as applied to the variation of the tactile interface layer in FIGS. 2-4.



FIGS. 9A, 9B, 10A and 10B are schematic representations of a pinch open gesture and a change of the deformable region in a first and second variation, respectively, as applied to the variation of the tactile interface layer in FIGS. 2-4.



FIGS. 11A and 11B are schematic representations of a drag gesture and a change in location of the deformed region, as applied to the variation of the tactile interface layer in FIGS. 2-4.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following description of the preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.


As shown in FIG. 1, the method S100 for actuating a tactile interface layer 100 of a device that defines a surface with a deformable region of the preferred embodiments includes: detecting a gesture of the user along the surface of the tactile interface layer that includes a movement of a finger of the user from a first location (1) to a second location (2) on the surface Step S110; interpreting the gesture as a command for the deformable region Step S120; and manipulating the deformable region of the surface based on the command Step S130. The method S100 for actuating a tactile interface layer 100 may also include the step of receiving a user input for a particular interpretation of a gesture as a command Step S140. The step of receiving a user input for a particular interpretation of a gesture as a command Step S140 may include receiving a user input from the user of the device, but may alternatively include receiving a user input from a person remote from the device, for example, a third party such as the manufacturer or a second user. However, the user input for a particular interpretation of a gesture as a command may be received from any other suitable user. The method S100 is preferably applied to a tactile interface layer 100 that is to be used with an electronic device and, more preferably, in an electronic device that benefits from an adaptive user interface. The electronic device may include a display and may include a touch sensor. For example, the electronic device may be an automotive console, a steering wheel, a desktop computer, a laptop computer, a tablet computer, a television, a radio, a desk phone, a mobile phone, a PDA, a personal navigation device, a personal media player, a camera, a watch, a remote control, a mouse, a trackpad, or a keyboard. The tactile interface layer 100 may, however, be used as the user interface for any suitable device that interfaces with a user in a tactile and/or visual manner. The tactile interface layer 100 is preferably integrated with the device, for example, in the variation wherein the tactile interface layer 100 includes a sensor 140, the tactile interface layer 100 is preferably assembled into the device and presented to the user as one unit. Alternatively, the tactile interface layer 100 may function as an accessory to a device, the user may be presented the tactile interface layer 100 and the device as two separate units wherein, when coupled to each other, the tactile interface layer 100 functions to provide tactile guidance to the user and/or to receive user inputs. However, the method S100 may be applied to any other suitable arrangement of the tactile interface layer 100.


The method S100 of the preferred embodiments is preferably applied to any suitable tactile interface layer that includes deformable regions. In particular, as shown in FIGS. 2-4, the method S100 of the preferred embodiments may be applied to the user interface system as described in U.S. application Ser. Nos. 11/969,848, 12/319,334, and 12/497,622. The tactile interface layer may be applied over a display, but may alternatively be applied on to a surface without a display. However, the tactile interface layer may be applied to any suitable surface of a device that may benefit from a tactile interface. The tactile interface layer 100 of this variation preferably includes a layer 110 that defines a surface 115, a substrate 120 that at least partially defines a fluid vessel 127 that includes a volume of fluid 112, and a displacement device 130 coupled to the fluid vessel 127 that manipulates the volume of fluid 112 to expand and/or contract at least a portion of the fluid vessel 127, thereby deforming a particular region 113 of the surface 115. The substrate 120 may also include a support region that substantially prevents inward deformation of the layer 110 (for example, inward deformation into the fluid vessel 127). The tactile interface layer 100 of this variation may also include a second layer 210 (as shown in FIGS. 10a and 10b) that allows for an additional degree of deformation of the surface 115. In this variation of the tactile interface layer 100, the step of manipulating the deformable region of the surface based on the command Step S130 preferably includes manipulating the fluid within the fluid vessel 127. In particular, the displacement device 130 is preferably actuated to manipulate the fluid within the fluid vessel 127 to deform a particular region 113 of the surface. The fluid vessel 127 preferably includes a cavity 125 and the displacement device 130 preferably influences the volume of fluid 112 within the cavity 125 to expand and retract the cavity 125. The fluid vessel 127 may alternatively be a channel 138 or a combination of a channel 138 and a cavity 125, as shown in FIG. 3b. The fluid vessel 127 may also include a second cavity 125b in addition to a first cavity 125a. When the second cavity 125b is expanded, a second particular region 113b on the surface 115 is preferably deformed. The displacement device 130 preferably influences the volume of fluid 112 within the second cavity 125b independently of the first cavity 125a. As shown in FIG. 5, the tactile interface layer of this variation may include a valve 139 that functions to direct fluid within the tactile interface layer 100. In this variation, the step of manipulating the fluid within the fluid vessel 127 may include actuating the valve 139 to direct fluid within the tactile interface layer 100. Alternatively, the user interface enhancement system 100 may include a second displacement device 130 that functions to influence the volume of fluid 112 within the second cavity 125b to expand and retract the second cavity 125b, thereby deforming a second particular region 113b of the surface. The second cavity 125b is preferably similar or identical to the cavity 125, but may alternatively be any other suitable kind of cavity. The following examples may be described as expanding a fluid vessel 127 that includes a cavity 125 and a channel 138, but the fluid vessel 127 may be any other suitable combination of combination of cavity 125 and/or channel 138. However, any other suitable type of tactile interface layer 100 may be used.


The tactile interface layer 100 preferably functions to provide tactile guidance to a user when using a device that the tactile interface layer 100 is applied to. As shown in FIG. 4, the surface 115 of the tactile interface layer 100 preferably remains flat until tactile guidance is to be provided to the user at the location of the particular region 113. In the variation of the tactile interface layer 100 as described above, the displacement device 130 then preferably expands the cavity 125 (or any other suitable portion of the fluid vessel 127) to expand the particular region 113 outward, forming a deformation that may be felt by a user (referenced throughout this document as a “tactilely distinguishable formation”), and providing tactile guidance for the user. The expanded particular region 113 preferably also provides tactile feedback to the user when he or she applies force onto the particular region 113 to provide input. This tactile feedback may be the result of Newton's third law, whenever a first body (the user's finger) exerts a force on a second body (the surface 115), the second body exerts an equal and opposite force on the first body, or, in other words, a passive tactile response. Alternatively, the displacement device 130 may retract the cavity 125 to deform the particular region 113 inward. However, any other suitable method of deforming a particular region 113 of the tactile interface layer 100 may be used.


The tactile interface layer 100 preferably includes a sensor that functions to detect the gesture of the user, for example, a capacitive sensor that functions to detect the motion of a finger of the user from the first location to the second location. Alternatively, in the variation of the tactile interface layer 100 as described above, a pressure sensor located within the fluid vessel 127 may be used to detect changes in pressure within the fluid vessel 127 to detect the motion of a finger of the user from the first location to the second location. Alternatively, the sensor may be a sensor included in the device to which the tactile interface layer 100 is applied to, for example, the device may include a touch sensitive display onto which the tactile interface layer 100 is overlaid. The gesture of the user may be detected using the sensing capabilities of the touch sensitive display. However, any other suitable gesture detection may be used.


Similarly, the tactile interface layer 100 preferably includes a processor that functions to interpret the detected gesture as a command. The processor preferably functions to discern between a gesture that is provided by the user to be a command a gesture that may be provided by the user but not meant to be a command, for example, an accidental brush of the finger along the surface of the tactile interface layer 100. The processor may include a storage device that functions to store a plurality of gesture and command associations and/or user preferences for interpretations of gestures as commands. The processor may be any suitable type of processor and the storage device may be any suitable type of storage device, for example, a flash memory device, a hard-drive, or any other suitable type. The processor and/or storage device may alternatively be a processor and/or storage device included into the device that the tactile interface layer 100 is applied to. However, any other suitable arrangement of the processor and/or storage device may be used.


As shown in FIG. 6, a gesture may be one of a variety of movements of one or more fingers of the user across the surface 115 of the tactile interface layer 100. The gesture may be detected as a swipe from a first location to a second location arranged in any suitable location along the surface 115 of the tactile interface layer 100. Alternatively, this first variation of gesture may be detected as a swipe from a first location relative to a deformed particular region 113 to a second location relative to the deformed particular region 113. Detection of a gesture relative to a deformed particular region 113 may be particularly useful in the variation of the tactile interface layer 100 that includes a plurality of deformable regions and may function to allow the interpretation of the gesture as a command for a particular deformable region that is substantially proximal to the detected gesture. However, the gesture may be detected relative to any other suitable portion of the tactile interface layer.


The gesture may be a single finger moving from the first location to the second location on the surface 115, as shown in FIG. 6 (Example A). Alternatively, the gesture may include more than one finger, for example, two fingers, where the first finger moves from a first location to a second location and the second finger moves from a third location to a forth location, as shown in FIG. 6 (Examples B-E). In the variation where the gesture includes more than one finger, the fingers of the user preferably move substantially concurrently. Alternatively, the fingers may move one after the other, or in other words, a “staggered” gesture, for example, a first finger moves and then the second finger moves or the first finger starts moving and continues moving as the second finger starts to move. However, any other suitable temporal relationship between the fingers of the user during a gesture may be used.


In a first variation of the gesture, as shown in Example A, the finger or fingers of a user move from a first location to a second location in a “swiping” motion. In a second variation, at least two of the fingers of the user move apart from each other in a “pinch open” motion, as shown in Example B. In other words, a first finger moves from a first location to a second and a second finger moves from a third location to a fourth, where the second and fourth locations are farther apart from each other than the first and third. A third variation of the gesture may be thought of as opposite that of the second variation, where at least two of the fingers of the user move together in a “pinch close” motion, as shown in Example C. In a fourth variation of the gesture, at least two fingers of the user may move in substantially the same direction in a “drag” motion, as shown in Example D. In other words, a first finger moves from a first location to a second and a second finger moves from a third location substantially adjacent to the first location to a fourth location substantially adjacent to the second location. In this variation, the first and second fingers remain substantially equidistant from the beginning of the gesture to the end of the gesture. In a fifth variation, as shown in Example E, the first and second fingers also remain substantially equidistant from the beginning of the gesture to the end of the gesture. In this fifth variation, the first finger moves from a first location to a second location and the second finger moves from a third to a fourth location along the surface by rotating about a point that is substantially in between the distance between the first and third locations. In other words, the fingers of a user rotate about a center that is substantially defined by the distance between the initial positions of the first and second fingers of the user. While the gesture is preferably one of the variations as described above, the gesture may be any other suitable combination of the above variations and/or any other suitable type of gesture.


As shown in FIG. 6, the gesture may be interpreted as one of a variety of commands for the deformable particular region 113. Examples A-E show exemplary parings between a gesture and the interpreted command. However, any other suitable type of association between gesture and command may be used. In a first variation, the command may be to un-deform (or “eliminate”) the deformed particular region 113, as shown in FIG. 6 (Examples A and B). In a second variation, the command may be to change the shape of the deformed particular region, as shown in FIG. 6 (Example B), for example, to enlarge the surface area of the deformed particular region and/or to change overall shape of the deformed particular region (e.g., from a substantially round button to a substantially square button). In a third variation, the command may be to actuate (or “create”) the deformed particular region 113. This may be thought of as the opposite of the first variation of command. In a fourth variation, the command may be to change the location of a deformed particular region 113, as shown in FIG. 6 (Example D). In the variation of the tactile interface layer 100 that includes a plurality of deformable regions, the fourth variation may alternatively be thought of the “elimination” of the originally deformed particular region 113 at a first location and the “creation” of another deformed particular region 113 at a second location. The second location is preferably indicated by the gesture provided by the user. However, the location of the deformed particular region may be changed using any other suitable method. In a fifth variation, the command may be to change an already deformed particular region 113, for example, to change the firmness or the height of the deformed particular region 113, as shown in FIG. 6 (Example E). However, any other suitable type of change to the deformed particular region 113 may be used, for example, a gesture that is not in contact with the surface 115. In this variation, the sensor that detects the gesture may be a video sensor or a distance sensor that detects the motion of the user that is removed from the surface 115. Similarly, the gesture may include any other suitable body part of the user, for example, a hand, an arm, and/or a foot.


The command interpreted from the gesture along the surface 115 of the tactile interface layer is preferably one of the variations described above, but may alternatively be any suitable combination of the above variations or any other suitable type of command for the deformable region. In addition to a command for the deformable region, the gesture may also be interpreted as a command for the device, for example, when applied to a device that is a mobile phone, music player, or any other suitable device that outputs sound, the command may include a user command to change the volume of the sound output. Similarly, in a device that provides a visual output, the command may include a user command to change the brightness or any other suitable property of the visual output. However, any other suitable command for the device may be used.


Exemplary Interpretations of Gestures as Commands for the Deformable Region


The following include exemplary interpretations of particular gestures as commands for the deformable region and implementation of the command using the variation of the tactile interface layer 100 as described in U.S. application Ser. Nos. 11/969,848, 12/319,334, and 12/497,622.


In a first exemplary interpretation, as shown in FIG. 6 (Examples A and B), a “swiping” gesture, as shown in FIGS. 7a and 7b, or a “pinch open” gesture may be interpreted as an “eliminate” command to un-deform the deformed particular region 113. The “swiping” motion and the “pinch open” gesture is substantially similar to a motion a user may make when moving an object away or to push out a crease, thus, it may be useful to associate such a gesture with the elimination of a deformation of the deformed particular region 113. The “swiping” and “pinch open” gesture may involve one and two fingers of the user, respectively, but may alternatively involve two and four fingers of the user, respectively, or any other suitable number of fingers of the user or any other suitable number of fingers of multiple users. In this exemplary interpretation, in the variation of the tactile interface layer 100 that includes a plurality of deformable regions, the location of the gesture relative to a deformed particular region 113 may be used to determine the deformed region that the user wishes to eliminate. For example, as shown in Example A and FIGS. 7a and 7b, the tactile interface layer 100 may detect that the finger of the user passes over a particular deformed particular region 113 and interprets the gesture as a command to eliminate the particular deformation. Alternatively, the tactile interface layer 100 may detect a command motion from the user and be prepared to eliminate a deformed particular region at a location later indicated by the user. For example, the swiping or pinch open gesture may indicate to the tactile interface layer 100 that the user desires to eliminate a particular deformed region. Upon detection of the gesture, the user interface 100 may actuate an operation mode that waits for a user to indicate the desired deformation to eliminate. The user may then indicate the desired location for the desired deformation to eliminate anywhere on the tactile interface layer 100. The location may be substantially adjacent to where the user provided the gesture, but may alternatively be substantially distal from where the user provided the gesture along the surface 115. However, the user may define their desired location using any other suitable method, for example, applying pressure to a particular location on the surface 115. However, any other suitable method to indicate the desired deformed region to eliminate may be used.


In a second exemplary interpretation, as shown in FIG. 6 (Example C) and in FIGS. 8a and 8b, a “pinch close” gesture may be interpreted as a “creation” command. The user may “create” the button for any suitable reason, for example, to mark a location on a screen, to mark an option, to mark a file for easy reference, or to indicate that tactile guidance is desired at a particular location. For example, as shown in FIGS. 8a and 8b, the user may draw two fingers together to indicate the desired location of a deformed particular region of the surface 113. The tactile interface layer 100 preferably detects the motion of the fingers and location along the fluid vessel 127 and/or cavity 125 corresponding to a particular region 113 that is substantially adjacent to the location substantially central to the location of the fingers as the user draws the fingers is expanded and the desired particular region of the surface 113 is deformed, as shown in FIG. 8b. The user may alternatively draw more than two fingers together to better define a central location. Similar to the first exemplary interpretation, the tactile interface layer 100 may alternatively detect a gesture from the user and be prepared to expand a cavity 125 in a location indicated by the user. For example, the motion of drawing two fingers together may indicate to the tactile interface layer 100 that the user desires expansion of a cavity 125. Upon detection of the gesture, the user interface 100 may actuate an operation mode that waits for a user indication for the desired location for a deformed region of the surface. The user may then indicate the desired location for the deformed region of the surface anywhere on the tactile interface layer 100. The location may be substantially adjacent to where the user draws two fingers together, but may alternatively be substantially distal from where the user draws two fingers together. Alternatively, the user may indicate an arrangement of deformable regions to deform. For example, once a command to deform a particular region is interpreted, the user may indicate the desired arrangement of regions by providing a second gesture, such as to trace a shape on the surface 115 that may indicate, for example, a QWERTY keyboard configuration of deformable regions. The user may also indicate a desired shape of the deformed region of the surface. For example, the user may trace out a desired shape along the surface and the user interface 100 may function to deform the regions substantially adjacent to the traced shape along the surface. However, the user may define their desired location using any other suitable method, for example, applying pressure to a particular location on the surface 115. This variation is preferably used on the variation of the user interface system that includes a plurality of cavities 125 to provide the user with a plurality of options of the location of the deformed particular region of the surface 113, but may alternatively be used on a tactile interface layer 100 with any other suitable number of cavities 125. This may be a useful tactile experience where the device is a trackpad and the user draws his or her fingers together to create a pointing stick, such as the pointing stick trademarked by IBM as the TRACKPOINT and by Synaptics as the TOUCHSTYK (which are both informally known as the “nipple”). This allows a trackpad to be combined with a pointing stick where the two navigational interfaces are generally kept separate.


In a third exemplary interpretation, as shown in FIG. 6 (Example B), and FIGS. 9 and 10, the user may pull two fingers in a “pinch open” gesture to indicate the desire to “spread out” a deformed particular region 113, for example, a user may pull two fingers in opposite directions away from a deformed particular region 113 or pull a finger in one direction away from a deformed particular region 113, indicating to the user interface system 100 that the total surface area of the deformation of the particular region 113 is to be increased, or “spread.” In a first example, the deformable region of the tactile interface layer 100 may include a first and second degree of deformation, as shown in FIGS. 9a and 9b. In this example, the deformable region may require a first pressure to deform the first degree and a second pressure to deform the second degree; for example, the layer 100 may include a second portion that requires a higher pressure to deform. Alternatively, a first and second cavity 125a and 125b may be coupled to the deformable region such that the expansion of one of the first and second cavities 125a and 125b results in a portion of the deformable region deforming and the expansion of both the first and second cavities 125a and 125b results in the full deformable region deforming, as shown in FIGS. 10a and 10b. Alternatively, the degree of deformation of the particular region 113 may be decreased and substantially adjacent particular regions 113 may be expanded to produce the effect of spreading a deformation across a large surface area. Alternatively, the deformation of the particular region 113 may be maintained and substantially adjacent particular regions 113 can be expanded to substantially the same degree, providing the effect of enlarging a deformed particular region 113. The “spreading” of the deformed particular region 113 may be radially equidistant from the original deformed particular region 113. More specifically, the central point of the resulting deformed particular region 113 is preferably of the same central point of the original deformed particular region 113, as shown in FIG. 9. Alternatively, the central point of the resulting deformed particular region 113 may be different from the central point of the original deformed particular region 113, for example, a user may pull one finger away from the deformed particular region 113 in one direction, indicating expansion of the deformed particular region 113 in the indicated direction, thus moving the central point of the deformed particular region 113 towards the indicated direction, as shown in FIG. 10. Alternatively, the motion of two fingers pulled in opposite directions away from a deformed particular region 113 may indicate to the user interface system 100 to retract the cavity 125 and undeform the deformed particular region 113. However, the user interface system 100 may provide any other suitable active response to the motion of two fingers pulled in opposite directions away from a deformed particular region 113.


In a fourth exemplary interpretation, as shown in FIG. 6 (Example D), and FIGS. 11a and 11b, a “dragging” gesture may be interpreted as a command to move the deformed region from a first location to a second location along the surface 115. For example, once a first cavity 125 has been expanded and a particular region 113 has been deformed, the user may move his or her finger(s) along the surface 115 (preferably in contact with the surface 115, but may also be any other suitable distance away from the surface 115) to indicate successive particular regions 113 to deform. As a successive particular region 113 deforms, the prior particular region 113 preferably undeforms (in other words, the cavity 125 corresponding to the prior particular region 113 retracts), resulting in the user seemingly “dragging” the deformed particular region 113 along the surface 115. As the user moves his or her finger(s) along the surface 115, the successive particular regions 113 are preferably substantially adjacent or continuous with each prior particular region 113 to provide an experience akin to that of dragging a single object along a surface as opposed to touching a first object on a surface and then another object on the same surface. Alternatively, the deformed region may be “pushed” by the dragging gesture. In this variation, the dragging gesture preferably starts on one side of the deformed region and “pushes” the deformed region forward, as shown in FIGS. 11a and 11b. Subsequent particular regions 113 may be deformed forward of the original deformed region (instead of behind as described in the dragging example) to emulate the user pushing the deformed region from a first location to a second location along the surface 115. Yet alternatively, the user may indicate the deformed region that is to be moved by the start of the “dragging” gesture and then indicate the desired location of the moved deformed region by the end of the “dragging” gesture (in other words, where the user lifts the fingers off the surface 115 after the gesture). In this variation, the initial deformed particular region may be “eliminated” and a particular region at the desired location is “created” while deformable regions in between the eliminated and created deformations are not actuated. However, any other suitable actuation of deformable regions may be used.


In another aspect of the fourth exemplary interpretation, the user may dictate interaction between expanded cavities 125. For example, in the “dragging” example mentioned above, the user may “drag” an object along a path and particular regions 113 are expanded along the path. When an object is dragged over an existing deformed particular region 113, the object and the existing deformed particular region 113 may “react” based on actions of the user. For example, if the user pauses the dragging motion when the object is in the location of the existing deformed particular region 113, the deformed particular region 113 of the object and the existing deformed particular region 113 may seemingly “merge,” for example, the total surface area of the existing deformed particular region 113 may grow as if the deformed particular region 113 of the object is added into the existing deformed particular region 113, similar to the third exemplary interpretation. The user may then also drag the “merged” particular region 113 to a different location. Alternatively, the existing deformed particular region 113 and the deformed particular region 113 for the object may “repel” each other, for example, the object may represent a baseball bat and the existing deformed particular region 113 may represent a ball, and the user may “hit” the ball with the baseball bat, seemingly “repelling” the two deformed particular regions. Similarly, the user may perform a splitting motion on an existing deformed particular region 113 and the existing deformed particular region 113 may “split,” forming two distinct deformed particular regions 113. Each of the resulting two distinct deformed particular regions 113 is preferably of a smaller surface area than the original existing deformed particular region 113. An example of a splitting motion may be drawing two fingers apart substantially adjacent to the existing deformed particular region 113, However, any other suitable interaction between expanded cavities 125 may be implemented. While an active response to a command given by the user is preferably one of the examples described here, any active response to a command given by the user may be used.


A fifth exemplary interpretation, as shown in FIG. 6 (Example E), a rotating gesture may be interpreted as a command to change the characteristics of a deformed particular region 113 substantially proximal to the user input. Unlike the first, second, third, and fourth exemplary interpretations where the deformations have binary states of expanded and retracted, the command of the fifth exemplary interpretation allows for a plurality of states in between fully deformed and fully undeformed, respectively. For example, the rotating gesture around a deformed particular region 113 may be interpreted as a command to increase the stiffness of the deformation. This may be particular useful in a scenario where the command includes a command for the volume of the device and the deformed particular region 113 indicates the location of the “increase volume” button. When the user provides the rotating gesture around the button to indicate an input to increase the volume, the deformed particular region 113 may become progressively stiffer to the touch as the volume becomes higher and reaches the limit of the volume strength, indicating to the user through tactile means where along the volume scale they are currently. The rate of stiffness increase may be selected by the user to be tailored to their tactile preferences and/or sensitivity. The height of the deformed particular region 113 may also be adjusted as the volume level changes. To adjust the stiffness of the particular region of the surface 113, the displacement device 130 may adjust the amount of fluid that is displaced to expand the cavity 125. The more fluid that is displaced to expand the cavity 125, the stiffer the particular region 113 will feel to the touch. Similarly, the more fluid that is displaced to expand the cavity 125, the taller the deformation of the particular region 113. The user interface system 100 may also include a valve that directs the fluid displaced by the displacement device 130. In this variation, when additional fluid is desired to expand the cavity 125 to increase the stiffness and/or the height of the deformed particular region 113, the valve may direct additional fluid into the cavity 125.


While the interpretation of the gesture as a command is preferably one of the variations described above, the active response may alternatively be a combination of the variations described above or any other suitable combination of gestures and commands.


As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.

Claims
  • 1. A method for actuating a dynamic tactile interface comprising a tactile layer and a substrate, the tactile layer defining a tactile surface, a deformable region cooperating with the substrate to define a cavity, and a peripheral region adjacent the deformable region and coupled to the substrate opposite the tactile surface, the method comprising: during a period of time, detecting a first progression of a first input object from proximate a first location over the substrate to proximate a second location over the substrate;during the period of time, detecting a second progression of a second input object from proximate a third location over the substrate to proximate a fourth location over the substrate, the first location and the third location spanning the deformable region, and the second location and the fourth location spanning the deformable region;interpreting the first progression and the second progression as a gesture; andin response to the gesture, displacing fluid into the cavity to transition the deformable region from a retracted setting into an expanded setting, the tactile surface at the deformable region offset above the tactile surface at the peripheral region in the expanded setting.
  • 2. The method of claim 1, wherein detecting the first progression comprises detecting contact of the first input object on the tactile surface between the first location and the second location.
  • 3. The method of claim 1 wherein detecting the first progression comprises detecting a change in capacitance proximate the first location at a first instance during the period of time and detecting a change in capacitance proximate the second location at a second instance during the period of time and subsequent the first time.
  • 4. The method of claim 1, wherein displacing fluid into the cavity to transition the deformable region from the retracted setting into the expanded setting comprises displacing a volume of fluid into the cavity, the volume of fluid corresponding approximately to a distance between the first location and the second location.
  • 5. The method of claim 4, wherein displacing fluid into the cavity comprises activating a displacement device to pump fluid from a reservoir into the cavity via a fluid channel defined within the substrate.
  • 6. The method of claim 1, wherein displacing fluid into the cavity comprises transitioning the tactile surface at the deformable region from substantially flush with the tactile surface at the peripheral region to a formation elevated above and tactilely distinguishable from the tactile surface at the peripheral region.
  • 7. The method of claim 1, further comprising during a second period of time succeeding the period of time, detecting a third progression of an input object from proximate a fifth location over the substrate to proximate a sixth location over the substrate,during the second period of time, detecting a fourth progression of an input object from proximate a seventh location over the substrate to proximate an eighth location over the substrate substantially simultaneously with the third progression, the fifth location and the seventh location at approximately a first distance from the deformable region, and the sixth location and the eighth location at approximately a second distance from the deformable region less than the first distance,interpreting the third progression and the fourth progression as a second gesture, andin response to the second gesture, displacing fluid out of the cavity to retract the deformable region from the expanded setting.
  • 8. The method of claim 7, wherein displacing fluid into the cavity comprises displacing a first volume of fluid into the cavity, and wherein displacing fluid out of the cavity comprises displacing a second volume of fluid out of the cavity, the second volume less than the first volume and corresponding approximately to a distance between the fifth location and the sixth location.
  • 9. The method of claim 1, wherein displacing fluid into the cavity comprises responding to the gesture according to a user preference for an output of the dynamic tactile interface corresponding to the gesture.
  • 10. The method of claim 1, further comprising interpreting the gesture as a selection for a function of a computing device coupled to the dynamic tactile interface, and wherein displacing fluid into the cavity comprises transitioning the deformable region into a tactile formation corresponding to a current state of the function of the computing device.
  • 11. The method of claim 10, wherein interpreting the gesture as the selection for the function of the device comprises interpreting the gesture as a selection from the group consisting of: volume, brightness, and track number.
  • 12. The method of claim 1, further comprising, on a display coupled to the substrate opposite the tactile layer, displaying an image of an input key substantially aligned with the deformable region.
  • 13. The method of claim 12, further comprising, in response to displacing fluid into the cavity, adjusting a rendered size the image of the input key.
  • 14. The method of claim 1, wherein detecting the first progression comprises detecting progression of the first input object from proximate the first location over the substrate toward the deformable region, and wherein detecting the second progression comprises detecting progression of the second input object from proximate the third location over the substrate toward the deformable region, and wherein displacing fluid into the cavity comprises inflating the cavity to expand the deformable region proportional to a distance between the first location and the deformable region and between a distance between the third location and the deformable region.
  • 15. The method of claim 1, wherein detecting the first progression comprises detecting substantially arcuate progression of the first input object from proximate the first location to proximate the second location approximately about a first point on the dynamic tactile interface coincident with the deformable region, wherein detecting the second progression comprises detecting substantially arcuate progression of the second input object from proximate the third location to proximate the fourth location approximately about a second point on the dynamic tactile interface coincident with the deformable region, wherein interpreting the first progression and the second progression as the gesture comprises pairing the first progression and the second progression according to a proximity of the first point and the second point, and wherein displacing fluid into the cavity comprises selecting the deformable region based on coincidence of the first point and the second point on the deformable region.
  • 16. The method of claim 15, wherein identifying the gesture comprises detecting the first progression and the second progression that apply a torque to the deformable region in the expanded setting.
  • 17. A method for actuating a dynamic tactile interface comprising a tactile layer and a substrate, the tactile layer defining a tactile surface, a deformable region cooperating with the substrate to define a cavity, and a peripheral region adjacent the deformable region and coupled to the substrate opposite the tactile surface, the method comprising: displacing fluid into the cavity to transition the deformable region from a retracted setting into an expanded setting, the deformable region offset above and tactilely distinguishable from the peripheral region in the expanded setting;during a period of time, detecting a first progression of a first input object from proximate a first location over the substrate to proximate a second location over the substrate;during the period of time, detecting a second progression of a second input object from proximate a third location over the substrate to proximate a fourth location over the substrate, the first location and the third location spanning the deformable region, and the second location and the fourth location spanning the deformable region;interpreting the first progression and the second progression as a gesture; andin response to the gesture, displacing fluid out of the cavity to retract the deformable region.
  • 18. The method of claim 17, wherein displacing fluid into the cavity comprises displacing a first volume of fluid into the cavity to transition the deformable region from the retracted setting into the expanded setting, the deformable region flush with the peripheral region in the retracted setting, and wherein displacing fluid out of the cavity comprises displacing a second volume of fluid out of the cavity, the second volume of fluid less than the first volume of fluid and corresponding approximately to a distance between the first location and the second location.
  • 19. The method of claim 17, wherein displacing fluid out of the cavity comprises adjusting a stiffness of the deformable region by reducing a fluid pressure within the cavity based on the gesture.
  • 20. A method for actuating a dynamic tactile interface comprising a tactile layer and a substrate, the tactile layer defining a tactile surface, a deformable region, and a peripheral region adjacent the deformable region and coupled to the substrate opposite the tactile surface, the method comprising: during a period of time, detecting a first progression of a first input object from proximate a first location over the substrate to proximate a second location over the substrate;during the period of time, detecting a second progression of a second input object from proximate a third location over the substrate to proximate a fourth location over the substrate, the first location and the third location spanning the deformable region, and the second location and the fourth location spanning the deformable region;interpreting the first progression and the second progression as a gesture; andin response to the gesture, transitioning the deformable region from a retracted setting into an expanded setting, the tactile surface at the deformable region flush with the peripheral region in the retracted setting and offset above the tactile surface at the peripheral region in the expanded setting.
  • 21. The method of claim 20, wherein detecting the first progression comprises detecting substantially linear progression of the first input object from proximate the first location to proximate the second location, and wherein detecting the second progression comprises detecting substantially linear progression of the second input object from proximate the third location to proximate the fourth location substantially simultaneously with the first progression, the first location and the third location at approximately a first distance from the deformable region, and the third location and the fourth location at approximately a second distance from the deformable region greater than the first distance.
  • 22. The method of claim 20, wherein detecting the first progression comprises detecting a change in capacitance proximate the first location at a first instance during the period of time and detecting a change in capacitance proximate the second location at a second instance during the period of time and subsequent the first time.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/054,591, filed on 15, Oct. 2013, which is a continuation of U.S. patent application Ser. No. 13/090,208, filed on 19 Apr. 2011 and issued as U.S. Pat. No. 8,587,541 on 19 Nov. 2013, which claims priority to U.S. Provisional Application No. 61/325,772, filed on 19 Apr. 2010, all of which are incorporated in their entireties by this reference. This application is related to U.S. patent application Ser. No. 11/969,848 filed on 4 Jan. 2008, U.S. patent application Ser. No. 12/319,334 filed on 5, Jan. 2009, and U.S. patent application Ser. No. 12/497,622 filed on 3 Jul. 2009, all of which are incorporated in their entireties by this reference.

US Referenced Citations (526)
Number Name Date Kind
3034628 Wadey May 1962 A
3659354 Sutherland May 1972 A
3759108 Borom et al. Sep 1973 A
3780236 Gross Dec 1973 A
3818487 Brody et al. Jun 1974 A
4109118 Kley Aug 1978 A
4209819 Seignemartin Jun 1980 A
4290343 Gram Sep 1981 A
4307268 Harper Dec 1981 A
4467321 Volnak Aug 1984 A
4477700 Balash et al. Oct 1984 A
4517421 Margolin May 1985 A
4543000 Hasenbalg Sep 1985 A
4584625 Kellogg Apr 1986 A
4700025 Hatayama et al. Oct 1987 A
4772205 Chlumsky et al. Sep 1988 A
4920343 Schwartz Apr 1990 A
4940734 Ley et al. Jul 1990 A
5194852 More et al. Mar 1993 A
5195659 Eiskant Mar 1993 A
5212473 Louis May 1993 A
5222895 Fricke Jun 1993 A
5286199 Kipke Feb 1994 A
5346476 Elson Sep 1994 A
5369228 Faust Nov 1994 A
5412189 Cragun May 1995 A
5459461 Crowley et al. Oct 1995 A
5488204 Mead et al. Jan 1996 A
5496174 Kim et al. Mar 1996 A
5666112 Crowley et al. Sep 1997 A
5717423 Parker Feb 1998 A
5729222 Iggulden et al. Mar 1998 A
5742241 Crowley et al. Apr 1998 A
5754023 Roston et al. May 1998 A
5766013 Vuyk Jun 1998 A
5767839 Rosenberg Jun 1998 A
5835080 Beeteson et al. Nov 1998 A
5880411 Gillespie et al. Mar 1999 A
5889236 Gillespie et al. Mar 1999 A
5917906 Thornton Jun 1999 A
5943043 Furuhata et al. Aug 1999 A
5977867 Blouin Nov 1999 A
5982304 Selker et al. Nov 1999 A
6067116 Yamano et al. May 2000 A
6154198 Rosenberg Nov 2000 A
6154201 Levin et al. Nov 2000 A
6160540 Fishkin et al. Dec 2000 A
6169540 Rosenberg et al. Jan 2001 B1
6187398 Eldridge Feb 2001 B1
6188391 Seely et al. Feb 2001 B1
6218966 Goodwin et al. Apr 2001 B1
6243074 Fishkin et al. Jun 2001 B1
6243078 Rosenberg Jun 2001 B1
6268857 Fishkin et al. Jul 2001 B1
6271828 Rosenberg et al. Aug 2001 B1
6278441 Gouzman et al. Aug 2001 B1
6300937 Rosenberg Oct 2001 B1
6310614 Maeda et al. Oct 2001 B1
6323846 Westerman et al. Nov 2001 B1
6337678 Fish Jan 2002 B1
6354839 Schmidt et al. Mar 2002 B1
6356259 Maeda et al. Mar 2002 B1
6359572 Vale Mar 2002 B1
6366272 Rosenberg et al. Apr 2002 B1
6369803 Brisebois et al. Apr 2002 B2
6384743 Vanderheiden May 2002 B1
6414671 Gillespie et al. Jul 2002 B1
6429846 Rosenberg et al. Aug 2002 B2
6437771 Rosenberg et al. Aug 2002 B1
6462294 Davidson et al. Oct 2002 B2
6469692 Rosenberg Oct 2002 B2
6486872 Rosenberg et al. Nov 2002 B2
6498353 Nagle et al. Dec 2002 B2
6501462 Garner Dec 2002 B1
6509892 Cooper et al. Jan 2003 B1
6529183 Maclean et al. Mar 2003 B1
6573844 Venolia et al. Jun 2003 B1
6636202 Ishmael, Jr. et al. Oct 2003 B2
6639581 Moore et al. Oct 2003 B1
6655788 Freeman Dec 2003 B1
6657614 Ito et al. Dec 2003 B1
6667738 Murphy Dec 2003 B2
6681031 Cohen et al. Jan 2004 B2
6683627 Ullmann et al. Jan 2004 B1
6686911 Levin et al. Feb 2004 B1
6697086 Rosenberg et al. Feb 2004 B2
6700556 Richley et al. Mar 2004 B2
6703924 Tecu et al. Mar 2004 B2
6743021 Prince et al. Jun 2004 B2
6788295 Inkster Sep 2004 B1
6819316 Schulz et al. Nov 2004 B2
6850222 Rosenberg Feb 2005 B1
6861961 Sandbach et al. Mar 2005 B2
6877986 Fournier et al. Apr 2005 B2
6881063 Yang Apr 2005 B2
6930234 Davis Aug 2005 B2
6937225 Kehlstadt et al. Aug 2005 B1
6975305 Yamashita Dec 2005 B2
6979164 Kramer Dec 2005 B2
6982696 Shahoian Jan 2006 B1
6995745 Boon et al. Feb 2006 B2
7027032 Rosenberg et al. Apr 2006 B2
7056051 Fiffie Jun 2006 B2
7061467 Rosenberg Jun 2006 B2
7064655 Murray et al. Jun 2006 B2
7079111 Ho Jul 2006 B2
7081888 Cok et al. Jul 2006 B2
7096852 Gregorio Aug 2006 B2
7102541 Rosenberg Sep 2006 B2
7104152 Levin et al. Sep 2006 B2
7106305 Rosenberg Sep 2006 B2
7106313 Schena et al. Sep 2006 B2
7109967 Hioki et al. Sep 2006 B2
7112737 Ramstein Sep 2006 B2
7113166 Rosenberg et al. Sep 2006 B1
7116317 Gregorio et al. Oct 2006 B2
7124425 Anderson, Jr. et al. Oct 2006 B1
7129854 Arneson et al. Oct 2006 B2
7131073 Rosenberg et al. Oct 2006 B2
7136045 Rosenberg et al. Nov 2006 B2
7138977 Kinerk et al. Nov 2006 B2
7138985 Nakajima Nov 2006 B2
7143785 Maerkl et al. Dec 2006 B2
7144616 Unger et al. Dec 2006 B1
7148875 Rosenberg et al. Dec 2006 B2
7151432 Tierling Dec 2006 B2
7151527 Culver Dec 2006 B2
7151528 Taylor et al. Dec 2006 B2
7154470 Tierling Dec 2006 B2
7158112 Rosenberg et al. Jan 2007 B2
7159008 Wies et al. Jan 2007 B1
7161276 Face Jan 2007 B2
7161580 Bailey et al. Jan 2007 B2
7168042 Braun et al. Jan 2007 B2
7176903 Katsuki et al. Feb 2007 B2
7182691 Schena Feb 2007 B1
7191191 Peurach et al. Mar 2007 B2
7193607 Moore et al. Mar 2007 B2
7195170 Matsumoto et al. Mar 2007 B2
7196688 Schena Mar 2007 B2
7198137 Olien Apr 2007 B2
7199790 Rosenberg et al. Apr 2007 B2
7202851 Cunningham et al. Apr 2007 B2
7205981 Cunningham Apr 2007 B2
7208671 Chu Apr 2007 B2
7209028 Boronkay et al. Apr 2007 B2
7209113 Park Apr 2007 B2
7209117 Rosenberg et al. Apr 2007 B2
7209118 Shahoian et al. Apr 2007 B2
7210160 Anderson, Jr. et al. Apr 2007 B2
7215326 Rosenberg May 2007 B2
7216671 Unger et al. May 2007 B2
7218310 Tierling et al. May 2007 B2
7218313 Marcus et al. May 2007 B2
7233313 Levin et al. Jun 2007 B2
7233315 Gregorio et al. Jun 2007 B2
7233476 Goldenberg et al. Jun 2007 B2
7236157 Schena et al. Jun 2007 B2
7245202 Levin Jul 2007 B2
7245292 Custy Jul 2007 B1
7249951 Bevirt et al. Jul 2007 B2
7250128 Unger et al. Jul 2007 B2
7253803 Schena et al. Aug 2007 B2
7253807 Nakajima Aug 2007 B2
7265750 Rosenberg Sep 2007 B2
7280095 Grant Oct 2007 B2
7283120 Grant Oct 2007 B2
7283123 Braun et al. Oct 2007 B2
7283696 Ticknor et al. Oct 2007 B2
7289106 Bailey et al. Oct 2007 B2
7289111 Asbill Oct 2007 B2
7307619 Cunningham et al. Dec 2007 B2
7308831 Cunningham et al. Dec 2007 B2
7319374 Shahoian Jan 2008 B2
7336260 Martin et al. Feb 2008 B2
7336266 Hayward et al. Feb 2008 B2
7339572 Schena Mar 2008 B2
7339580 Westerman et al. Mar 2008 B2
7342573 Ryynaenen Mar 2008 B2
7355595 Bathiche et al. Apr 2008 B2
7369115 Cruz-Hernandez et al. May 2008 B2
7382357 Panotopoulos et al. Jun 2008 B2
7390157 Kramer Jun 2008 B2
7391861 Levy Jun 2008 B2
7397466 Bourdelais et al. Jul 2008 B2
7403191 Sinclair Jul 2008 B2
7432910 Shahoian Oct 2008 B2
7432911 Skarine Oct 2008 B2
7432912 Cote et al. Oct 2008 B2
7433719 Dabov Oct 2008 B2
7471280 Prins Dec 2008 B2
7489309 Levin et al. Feb 2009 B2
7511702 Hotelling Mar 2009 B2
7522152 Olien et al. Apr 2009 B2
7545289 Mackey et al. Jun 2009 B2
7548232 Shahoian et al. Jun 2009 B2
7551161 Mann Jun 2009 B2
7561142 Shahoian et al. Jul 2009 B2
7567232 Rosenberg Jul 2009 B2
7567243 Hayward Jul 2009 B2
7589714 Funaki Sep 2009 B2
7592999 Rosenberg et al. Sep 2009 B2
7605800 Rosenberg Oct 2009 B2
7609178 Son et al. Oct 2009 B2
7656393 King et al. Feb 2010 B2
7659885 Kraus et al. Feb 2010 B2
7671837 Forsblad et al. Mar 2010 B2
7679611 Schena Mar 2010 B2
7679839 Polyakov et al. Mar 2010 B2
7688310 Rosenberg Mar 2010 B2
7701438 Chang et al. Apr 2010 B2
7728820 Rosenberg et al. Jun 2010 B2
7733575 Heim et al. Jun 2010 B2
7743348 Robbins et al. Jun 2010 B2
7755602 Tremblay et al. Jul 2010 B2
7808488 Martin et al. Oct 2010 B2
7834853 Finney et al. Nov 2010 B2
7843424 Rosenberg et al. Nov 2010 B2
7864164 Cunningham et al. Jan 2011 B2
7869589 Tuovinen Jan 2011 B2
7890257 Fyke et al. Feb 2011 B2
7890863 Grant et al. Feb 2011 B2
7920131 Westerman Apr 2011 B2
7924145 Yuk et al. Apr 2011 B2
7944435 Rosenberg et al. May 2011 B2
7952498 Higa May 2011 B2
7956770 Klinghult et al. Jun 2011 B2
7973773 Pryor Jul 2011 B2
7978181 Westerman Jul 2011 B2
7978183 Rosenberg et al. Jul 2011 B2
7978186 Vassallo et al. Jul 2011 B2
7979797 Schena Jul 2011 B2
7982720 Rosenberg et al. Jul 2011 B2
7986303 Braun et al. Jul 2011 B2
7986306 Eich et al. Jul 2011 B2
7989181 Blattner et al. Aug 2011 B2
7999660 Cybart et al. Aug 2011 B2
8002089 Jasso et al. Aug 2011 B2
8004492 Kramer et al. Aug 2011 B2
8013843 Pryor Sep 2011 B2
8020095 Braun et al. Sep 2011 B2
8022933 Hardacker et al. Sep 2011 B2
8031181 Rosenberg et al. Oct 2011 B2
8044826 Yoo Oct 2011 B2
8047849 Ahn et al. Nov 2011 B2
8049734 Rosenberg et al. Nov 2011 B2
8059104 Shahoian et al. Nov 2011 B2
8059105 Rosenberg et al. Nov 2011 B2
8063892 Shahoian et al. Nov 2011 B2
8063893 Rosenberg et al. Nov 2011 B2
8068605 Holmberg Nov 2011 B2
8077154 Emig et al. Dec 2011 B2
8077440 Krabbenborg et al. Dec 2011 B2
8077941 Assmann Dec 2011 B2
8094121 Obermeyer et al. Jan 2012 B2
8094806 Levy Jan 2012 B2
8103472 Braun et al. Jan 2012 B2
8106787 Nurmi Jan 2012 B2
8115745 Gray Feb 2012 B2
8123660 Kruse et al. Feb 2012 B2
8125347 Fahn Feb 2012 B2
8125461 Weber et al. Feb 2012 B2
8130202 Levine et al. Mar 2012 B2
8144129 Hotelling et al. Mar 2012 B2
8144271 Han Mar 2012 B2
8154512 Olien et al. Apr 2012 B2
8154527 Ciesla et al. Apr 2012 B2
8159461 Martin et al. Apr 2012 B2
8162009 Chaffee Apr 2012 B2
8164573 Dacosta et al. Apr 2012 B2
8166649 Moore May 2012 B2
8169306 Schmidt et al. May 2012 B2
8169402 Shahoian et al. May 2012 B2
8174372 Da Costa May 2012 B2
8174495 Takashima et al. May 2012 B2
8174508 Sinclair et al. May 2012 B2
8174511 Takenaka et al. May 2012 B2
8178808 Strittmatter May 2012 B2
8179375 Ciesla et al. May 2012 B2
8179377 Ciesla et al. May 2012 B2
8188989 Levin et al. May 2012 B2
8195243 Kim et al. Jun 2012 B2
8199107 Xu et al. Jun 2012 B2
8199124 Ciesla et al. Jun 2012 B2
8203094 Mittleman et al. Jun 2012 B2
8203537 Tanabe et al. Jun 2012 B2
8207950 Ciesla et al. Jun 2012 B2
8212772 Shahoian Jul 2012 B2
8217903 Ma et al. Jul 2012 B2
8217904 Kim Jul 2012 B2
8223278 Kim et al. Jul 2012 B2
8224392 Kim et al. Jul 2012 B2
8228305 Pryor Jul 2012 B2
8232976 Yun et al. Jul 2012 B2
8243038 Ciesla et al. Aug 2012 B2
8253052 Chen Aug 2012 B2
8253703 Eldering Aug 2012 B2
8279172 Braun et al. Oct 2012 B2
8279193 Birnbaum et al. Oct 2012 B1
8310458 Faubert et al. Nov 2012 B2
8345013 Heubel et al. Jan 2013 B2
8350820 Deslippe et al. Jan 2013 B2
8362882 Heubel et al. Jan 2013 B2
8363008 Ryu et al. Jan 2013 B2
8367957 Strittmatter Feb 2013 B2
8368641 Tremblay et al. Feb 2013 B2
8378797 Pance et al. Feb 2013 B2
8384680 Paleczny et al. Feb 2013 B2
8390594 Modarres et al. Mar 2013 B2
8395587 Cauwels et al. Mar 2013 B2
8395591 Kruglick Mar 2013 B2
8400402 Son Mar 2013 B2
8400410 Taylor et al. Mar 2013 B2
8547339 Ciesla Oct 2013 B2
8587541 Ciesla et al. Nov 2013 B2
8587548 Ciesla et al. Nov 2013 B2
8749489 Ito et al. Jun 2014 B2
8856679 Sirpal et al. Oct 2014 B2
20010008396 Komata Jul 2001 A1
20010043189 Brisebois et al. Nov 2001 A1
20020063694 Keely et al. May 2002 A1
20020104691 Kent et al. Aug 2002 A1
20020106614 Prince et al. Aug 2002 A1
20020110237 Krishnan Aug 2002 A1
20020149570 Knowles et al. Oct 2002 A1
20020180620 Gettemy et al. Dec 2002 A1
20030087698 Nishiumi et al. May 2003 A1
20030117371 Roberts et al. Jun 2003 A1
20030179190 Franzen Sep 2003 A1
20030206153 Murphy Nov 2003 A1
20030223799 Pihlaja Dec 2003 A1
20040001589 Mueller et al. Jan 2004 A1
20040056876 Nakajima Mar 2004 A1
20040056877 Nakajima Mar 2004 A1
20040106360 Farmer et al. Jun 2004 A1
20040114324 Kusaka et al. Jun 2004 A1
20040164968 Miyamoto Aug 2004 A1
20040178006 Cok Sep 2004 A1
20050007339 Sato Jan 2005 A1
20050007349 Vakil et al. Jan 2005 A1
20050020325 Enger et al. Jan 2005 A1
20050030292 Diederiks Feb 2005 A1
20050057528 Kleen Mar 2005 A1
20050073506 Durso Apr 2005 A1
20050088417 Mulligan Apr 2005 A1
20050110768 Marriott et al. May 2005 A1
20050162408 Martchovsky Jul 2005 A1
20050212773 Asbill Sep 2005 A1
20050231489 Ladouceur et al. Oct 2005 A1
20050253816 Himberg et al. Nov 2005 A1
20050270444 Miller et al. Dec 2005 A1
20050285846 Funaki Dec 2005 A1
20060026521 Hotelling et al. Feb 2006 A1
20060087479 Sakurai et al. Apr 2006 A1
20060097991 Hotelling et al. May 2006 A1
20060098148 Kobayashi et al. May 2006 A1
20060118610 Pihlaja et al. Jun 2006 A1
20060119586 Grant et al. Jun 2006 A1
20060152474 Saito et al. Jul 2006 A1
20060154216 Hafez et al. Jul 2006 A1
20060197753 Hotelling Sep 2006 A1
20060214923 Chiu et al. Sep 2006 A1
20060238495 Davis Oct 2006 A1
20060238510 Panotopoulos et al. Oct 2006 A1
20060238517 King et al. Oct 2006 A1
20060256075 Anastas et al. Nov 2006 A1
20060278444 Binstead Dec 2006 A1
20070013662 Fauth Jan 2007 A1
20070036492 Lee Feb 2007 A1
20070085837 Ricks et al. Apr 2007 A1
20070108032 Matsumoto et al. May 2007 A1
20070122314 Strand et al. May 2007 A1
20070130212 Peurach et al. Jun 2007 A1
20070152983 Mckillop et al. Jul 2007 A1
20070165004 Seelhammer et al. Jul 2007 A1
20070171210 Chaudhri et al. Jul 2007 A1
20070182718 Schoener et al. Aug 2007 A1
20070229233 Dort Oct 2007 A1
20070229464 Hotelling et al. Oct 2007 A1
20070236466 Hotelling Oct 2007 A1
20070236469 Woolley et al. Oct 2007 A1
20070247429 Westerman Oct 2007 A1
20070254411 Uhland et al. Nov 2007 A1
20070257634 Leschin et al. Nov 2007 A1
20070273561 Philipp Nov 2007 A1
20070296702 Strawn et al. Dec 2007 A1
20070296709 Guanghai Dec 2007 A1
20080010593 Uusitalo et al. Jan 2008 A1
20080024459 Poupyrev et al. Jan 2008 A1
20080054875 Saito Mar 2008 A1
20080062151 Kent Mar 2008 A1
20080136791 Nissar Jun 2008 A1
20080138774 Ahn et al. Jun 2008 A1
20080143693 Schena Jun 2008 A1
20080150911 Harrison Jun 2008 A1
20080165139 Hotelling et al. Jul 2008 A1
20080174570 Jobs et al. Jul 2008 A1
20080202251 Serban et al. Aug 2008 A1
20080238448 Moore et al. Oct 2008 A1
20080248836 Caine Oct 2008 A1
20080251368 Holmberg et al. Oct 2008 A1
20080252607 De Jong et al. Oct 2008 A1
20080266264 Lipponen et al. Oct 2008 A1
20080286447 Alden et al. Nov 2008 A1
20080291169 Brenner et al. Nov 2008 A1
20080297475 Woolf et al. Dec 2008 A1
20080303796 Fyke Dec 2008 A1
20090002140 Higa Jan 2009 A1
20090002205 Klinghult et al. Jan 2009 A1
20090002328 Ullrich et al. Jan 2009 A1
20090002337 Chang Jan 2009 A1
20090009480 Heringslack Jan 2009 A1
20090015547 Franz et al. Jan 2009 A1
20090028824 Chiang et al. Jan 2009 A1
20090033617 Lindberg et al. Feb 2009 A1
20090059495 Matsuoka Mar 2009 A1
20090066672 Tanabe et al. Mar 2009 A1
20090085878 Heubel et al. Apr 2009 A1
20090106655 Grant et al. Apr 2009 A1
20090115733 Ma et al. May 2009 A1
20090115734 Fredriksson et al. May 2009 A1
20090128376 Caine et al. May 2009 A1
20090128503 Grant et al. May 2009 A1
20090129021 Dunn May 2009 A1
20090132093 Arneson et al. May 2009 A1
20090135145 Chen et al. May 2009 A1
20090140989 Ahlgren Jun 2009 A1
20090160813 Takashima et al. Jun 2009 A1
20090167508 Fadell et al. Jul 2009 A1
20090167509 Fadell et al. Jul 2009 A1
20090167567 Halperin et al. Jul 2009 A1
20090167677 Kruse et al. Jul 2009 A1
20090167704 Terlizzi et al. Jul 2009 A1
20090174673 Ciesla Jul 2009 A1
20090174687 Ciesla et al. Jul 2009 A1
20090181724 Pettersson Jul 2009 A1
20090182501 Fyke et al. Jul 2009 A1
20090195512 Pettersson Aug 2009 A1
20090207148 Sugimoto et al. Aug 2009 A1
20090215500 You et al. Aug 2009 A1
20090231305 Hotelling et al. Sep 2009 A1
20090243998 Wang Oct 2009 A1
20090250267 Heubel et al. Oct 2009 A1
20090289922 Henry Nov 2009 A1
20090303022 Griffin et al. Dec 2009 A1
20090309616 Klinghult Dec 2009 A1
20100043189 Fukano Feb 2010 A1
20100045613 Wu et al. Feb 2010 A1
20100073241 Ayala et al. Mar 2010 A1
20100078231 Yeh et al. Apr 2010 A1
20100079404 Degner et al. Apr 2010 A1
20100097323 Edwards et al. Apr 2010 A1
20100103116 Leung et al. Apr 2010 A1
20100103137 Ciesla et al. Apr 2010 A1
20100109486 Polyakov et al. May 2010 A1
20100121928 Leonard May 2010 A1
20100141608 Huang et al. Jun 2010 A1
20100142516 Lawson et al. Jun 2010 A1
20100162109 Chatterjee et al. Jun 2010 A1
20100171719 Craig et al. Jul 2010 A1
20100171720 Craig et al. Jul 2010 A1
20100177050 Heubel et al. Jul 2010 A1
20100182245 Edwards et al. Jul 2010 A1
20100232107 Dunn Sep 2010 A1
20100237043 Garlough Sep 2010 A1
20100295820 Kikin-Gil Nov 2010 A1
20100296248 Campbell et al. Nov 2010 A1
20100298032 Lee et al. Nov 2010 A1
20100302199 Taylor et al. Dec 2010 A1
20100321335 Lim et al. Dec 2010 A1
20110001613 Ciesla et al. Jan 2011 A1
20110011650 Klinghult Jan 2011 A1
20110012851 Ciesla et al. Jan 2011 A1
20110018813 Kruglick Jan 2011 A1
20110029862 Scott et al. Feb 2011 A1
20110043457 Oliver et al. Feb 2011 A1
20110060998 Schwartz et al. Mar 2011 A1
20110074691 Causey et al. Mar 2011 A1
20110120784 Osoinach et al. May 2011 A1
20110148793 Ciesla et al. Jun 2011 A1
20110148807 Fryer Jun 2011 A1
20110157056 Karpfinger Jun 2011 A1
20110157080 Ciesla et al. Jun 2011 A1
20110163978 Park et al. Jul 2011 A1
20110175838 Higa Jul 2011 A1
20110175844 Berggren Jul 2011 A1
20110181530 Park et al. Jul 2011 A1
20110193787 Morishige et al. Aug 2011 A1
20110194230 Hart et al. Aug 2011 A1
20110241442 Mittleman et al. Oct 2011 A1
20110254672 Ciesla et al. Oct 2011 A1
20110254709 Ciesla et al. Oct 2011 A1
20110254789 Ciesla et al. Oct 2011 A1
20120032886 Ciesla et al. Feb 2012 A1
20120038583 Westhues et al. Feb 2012 A1
20120043191 Kessler et al. Feb 2012 A1
20120056846 Zaliva Mar 2012 A1
20120062483 Ciesla et al. Mar 2012 A1
20120080302 Kim et al. Apr 2012 A1
20120098789 Ciesla et al. Apr 2012 A1
20120105333 Maschmeyer et al. May 2012 A1
20120120357 Jiroku May 2012 A1
20120154324 Wright et al. Jun 2012 A1
20120193211 Ciesla et al. Aug 2012 A1
20120200528 Ciesla et al. Aug 2012 A1
20120200529 Ciesla et al. Aug 2012 A1
20120206364 Ciesla et al. Aug 2012 A1
20120218213 Ciesla et al. Aug 2012 A1
20120218214 Ciesla et al. Aug 2012 A1
20120223914 Ciesla et al. Sep 2012 A1
20120235935 Ciesla et al. Sep 2012 A1
20120242607 Ciesla et al. Sep 2012 A1
20120306787 Ciesla et al. Dec 2012 A1
20130019207 Rothkopf et al. Jan 2013 A1
20130127790 Wassvik May 2013 A1
20130141118 Guard Jun 2013 A1
20130215035 Guard Aug 2013 A1
20130275888 Williamson et al. Oct 2013 A1
20140043291 Ciesla et al. Feb 2014 A1
20140160044 Yairi et al. Jun 2014 A1
20140160063 Yairi et al. Jun 2014 A1
20140160064 Yairi et al. Jun 2014 A1
20140176489 Park Jun 2014 A1
20150009150 Cho et al. Jan 2015 A1
20150091834 Johnson Apr 2015 A1
20150205419 Calub et al. Jul 2015 A1
Foreign Referenced Citations (27)
Number Date Country
1260525 Jul 2000 CN
1530818 Sep 2004 CN
1882460 Dec 2006 CN
2000884 Dec 2008 EP
10255106 Sep 1998 JP
H10255106 Sep 1998 JP
2006268068 Oct 2006 JP
2006285785 Oct 2006 JP
2009064357 Mar 2009 JP
20000010511 Feb 2000 KR
100677624 Jan 2007 KR
2004028955 Apr 2004 WO
2006082020 Aug 2006 WO
2008037275 Apr 2008 WO
2009002605 Dec 2008 WO
2009044027 Apr 2009 WO
2009067572 May 2009 WO
2009088985 Jul 2009 WO
2010077382 Jul 2010 WO
2010078596 Jul 2010 WO
2010078597 Jul 2010 WO
2011003113 Jan 2011 WO
2011087816 Jul 2011 WO
2011087817 Jul 2011 WO
2011112984 Sep 2011 WO
2011133604 Oct 2011 WO
2011133605 Oct 2011 WO
Non-Patent Literature Citations (5)
Entry
Essilor. “Ophthalmic Optic Files Materials,” Essilor International, Ser 145 Paris France, Mar. 1997, pp. 1-29, [retrieved on Nov. 18, 2014]. Retrieved from the internet. URL: <http://www.essiloracademy.eu/sites/default/files/9.Materials.pdf>.
Lind. “Two Decades of Negative Thermal Expansion Research: Where Do We Stand?” Department of Chemistry, the University of Toledo, Materials 2012, 5, 1125-1154; doi:10.3390/ma5061125, Jun. 20, 2012 pp. 1125-1154, [retrieved on Nov. 18, 2014]. Retrieved from the internet. URL: <https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=materials-05-01125.pdf>.
“Sharp Develops and Will Mass Produce New System LCD with Embedded Optical Sensors to Provide Input Capabilities Including Touch Screen and Scanner Functions,” Sharp Press Release, Aug. 31, 2007, 3 pages, downloaded from the Internet at: http://sharp-world.com/corporate/news/070831.html.
Jeong et al., “Tunable Microdoublet Lens Array,” Optical Society of America, Optics Express; vol. 12, No. 11. May 31, 2004, 7 Pages.
Preumont, A. Vibration Control of Active Structures: An Introduction, Jul. 2011.
Related Publications (1)
Number Date Country
20140210789 A1 Jul 2014 US
Provisional Applications (1)
Number Date Country
61325772 Apr 2010 US
Continuations (2)
Number Date Country
Parent 14054591 Oct 2013 US
Child 14242352 US
Parent 13090208 Apr 2011 US
Child 14054591 US