Method for actuating a tactile interface layer

Information

  • Patent Grant
  • 9448630
  • Patent Number
    9,448,630
  • Date Filed
    Monday, March 2, 2015
    10 years ago
  • Date Issued
    Tuesday, September 20, 2016
    9 years ago
Abstract
A method for actuating a tactile interface layer of a device that defines a surface with a deformable region, comprising the steps of deforming a deformable region of the surface into a formation tactilely distinguishable from the surface, detecting a force from the user on a deformed deformable region, interpreting the force as a command for the deformable region, and manipulating the deformable region of the surface based on the command.
Description
TECHNICAL FIELD

This invention relates generally to tactile user interfaces, and more specifically to a new and useful method for interpreting gestures as commands for a tactile interface layer with a deformable region.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a schematic representation of the method of the first preferred embodiment.



FIG. 2 is a schematic representation of the method of the second preferred embodiment.



FIG. 3 is a top view of a variation of the tactile interface layer.



FIG. 4 is a cross sectional view of a variation of the tactile interface layer.



FIGS. 5A-5C are cross-sectional views illustrating the operation of a deformable region of a tactile interface layer.



FIG. 6 is a cross sectional view of a variation of the tactile interface layer with a valve.



FIGS. 7A-9B are schematic representations of a first, second, and third variation in the manipulation of the firmness of the deformed particular region in the first preferred embodiment.



FIGS. 10A-11C are schematic representations of a first and second variation in the manipulation of a first and second particular region in the second preferred embodiment.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following description of the preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.


As shown in FIGS. 1 and 2, the method S100 for actuating a tactile interface layer 100 of a device that defines a surface with a deformable region of the preferred embodiments includes deforming a deformable region of the surface into a formation tactilely distinguishable from the surface Step S110 and S210, detecting a force from the user on the deformed region of the surface Steps S120 and S220, interpreting a command for the deformable region of the surface based on the detected force, and manipulating the deformable regions based on the command. In the first preferred embodiment, as shown in FIG. 1, the step of interpreting a command includes interpreting the force on the deformable region as a command for the firmness of the deformed deformable region Step S130 and the step of manipulating the deformable regions based on the command includes manipulating the firmness of the deformable region of the surface based on the command Step S140. In the second preferred embodiment, as shown in FIG. 2, the tactile interface layer includes a first and second deformable region and the step of interpreting a command includes interpreting the force on the deformed deformable region as a command to undeform the first deformable region and to deform the second deformable region into formation tactilely distinguishable from the surface Step S230 and the step of manipulating the deformable regions based on the command includes manipulating the first and second deformable regions based on the command Step S240. The method S100 for actuating a tactile interface layer 100 of a device may also include detecting a force from the user on a plurality of deformed deformable regions, which may also include the step of detecting the sequence in which a force is detected on each of the deformed deformable regions. In this variation, the step of interpreting a command may include interpreting a command for at least one deformable region of the surface based on the detected sequence of forces. However, any other suitable type of force detection relative to the deformed deformable regions of the surface may be used.


The method S100 of the first and second preferred embodiments for actuating a tactile interface layer 100 may also include the step of receiving a user input for a particular interpretation of a force as a command Step S150. The step of receiving a user input for a particular interpretation of a force as a command Step S150 may include receiving a user input from the user of the device, but may alternatively include receiving a user input from a person remote from the device, for example, a third party such as the manufacturer or a second user. However, the user input for a particular interpretation of a force as a command may be received from any other suitable user. The method S100 is preferably applied to a tactile interface layer 100 that is to be used with an electronic device. More preferably, in an electronic device that benefits from an adaptive user interface. The electronic device may or may not include a display and/or a touch sensor, for example, an automotive console, a steering wheel, a desktop computer, a laptop computer, a tablet computer, a television, a radio, a desk phone, a mobile phone, a PDA, a personal navigation device, a personal media player, a camera, a watch, a remote control, a mouse, a trackpad, or a keyboard. The tactile interface layer 100 may, however, be used as the user interface for any suitable device that interfaces with a user in a tactile and/or visual manner. The tactile interface layer 100 is preferably integrated with the device, for example, in the variation wherein the tactile interface layer 100 includes a sensor 140, the tactile interface layer 100 is preferably assembled into the device and presented to the user as one unit. Alternatively, the tactile interface layer 100 may function as an accessory to a device, the user may be presented the tactile interface layer 100 and the device as two separate units wherein, when coupled to each other, the tactile interface layer 100 functions to provide tactile guidance to the user and/or to receive user inputs. However, the method S100 may be applied to any other suitable arrangement of the tactile interface layer 100.


The method S100 of the preferred embodiments is preferably applied to any suitable tactile interface layer that includes deformable regions. In particular, as shown in FIGS. 3-5, the method S100 of the preferred embodiments may be applied to the user interface system as described in U.S. application Ser. Nos. 11/969,848, 12/319,334, and 12/497,622. The tactile interface layer 100 of this variation preferably includes a layer 110 that defines a surface 115, a substrate 120 that supports the layer 110 and at least partially defines a fluid vessel 127 that includes a volume of fluid 112, and a displacement device 130 coupled to the fluid vessel 127 that manipulates the volume of fluid 112 to expand and/or contract at least a portion of the fluid vessel 127, thereby deforming a particular region 113 of the surface 115. The substrate 115 may also function to substantially prevent the layer 110 from inwardly deforming, for example, into the fluid vessel 127. In this variation of the tactile interface layer 100, the steps of manipulating the deformable region of the surface based on the command Steps S140 and S240 preferably include manipulating the fluid within the fluid vessel 127. In particular, the displacement device 130 is preferably actuated to manipulate the fluid within the fluid vessel 127 to deform a particular region 113 of the surface. The fluid vessel 127 preferably includes a cavity 125 and the displacement device 130 preferably influences the volume of fluid 112 within the cavity 125 to expand and retract the cavity 125. However, any other suitable method of manipulating the fluid 112 may be used.


The fluid vessel 127 may alternatively be a channel 138 or a combination of a channel 138 and a cavity 125, as shown in FIG. 4. The fluid vessel 127 may also include a second cavity 125b in addition to a first cavity 125a. When the second cavity 125b is expanded, a second particular region 113 on the surface 115 is preferably deformed. The displacement device 130 preferably influences the volume of fluid 112 within the second cavity 125b independently of the first cavity 125a. As shown in FIG. 6, the tactile interface layer of this variation may include a valve 139 that functions to direct fluid within the tactile interface layer 100. In this variation, the step of manipulating the fluid within the fluid vessel 127 may include actuating the valve 139 to direct fluid within the tactile interface layer 100. Alternatively, the user interface enhancement system 100 may include a second displacement device 130 that functions to influence the volume of fluid 112 within the second cavity 125b to expand and retract the second cavity 125b, thereby deforming a second particular region 113b of the surface. The second cavity 125b is preferably similar or identical to the cavity 125, but may alternatively be any other suitable kind of cavity. The following examples may be described as expanding a fluid vessel 127 that includes a cavity 125 and a channel 138, but the fluid vessel 127 may be any other suitable combination of combination of cavity 125 and/or channel 138. However, any other suitable type of tactile interface layer 100 may be used.


The tactile interface layer 100 preferably functions to provide tactile guidance to the user when using a device that tactile interface layer 100 to. As shown in FIG. 5, the surface 115 of the tactile interface layer 100 preferably remains flat until tactile guidance is to be provided to the user at the location of the particular region 113. In the variation of the tactile interface layer 100 as described above, the displacement device 130 then preferably expands the cavity 125 (or any other suitable portion of the fluid vessel 127) to expand the particular region 113 outward, forming a deformation that may be felt by a user (referenced throughout this document as a “tactilely distinguishable formation”), and providing tactile guidance for the user. The expanded particular region 113 preferably also provides tactile feedback to the user when he or she applies force onto the particular region 113 to provide input. This tactile feedback may be the result of Newton's third law, whenever a first body (the user's finger) exerts a force on a second body (the surface 115), the second body exerts an equal and opposite force on the first body, or, in other words, a passive tactile response. Alternatively, the displacement device 130 may retract the cavity 125 to deform the particular region 113 inward. However, any other suitable method of deforming a particular region 113 of the tactile interface layer 100 may be used.


The tactile interface layer 100 preferably includes a sensor that functions to detect the force applied to the deformed particular region 113 by the user. The force may be a force that substantially inwardly deforms the deformed particular region 113 of the surface, but may alternatively be a force that does not substantially inwardly deform the deformed particular region 113. However, any other suitable type of force may be detected. At a sensor coupled to the tactile interface layer, an input may be detected that is applied at the deformable region in the expanded setting. Substantially simultaneously, an increase in pressure of fluid in the fluid vessel may be detected. For example, in the variation of the tactile layer as described above, the sensor may be a pressure sensor that functions to detect the increased pressure within the fluid 112 that results from an inward deformation of the deformed particular region 113. Alternatively, the sensor may be a capacitive sensor that detects the presence of a finger on the deformed particular region 113. In this variation, the presence of a force is deduced from the detected presence of the finger of the user. Alternatively, the sensor may be a sensor included in the device to which the tactile interface layer 100 is applied to, for example, the device may include a touch sensitive display onto which the tactile interface layer 100 is overlaid. The force of the user may be detected using the sensing capabilities of the touch sensitive display. However, any other suitable force detection may be used.


Similarly, the tactile interface layer 100 preferably includes a processor that functions to interpret the detected gesture as a command. The processor may include a storage device that functions to store a plurality of force types (for example, the magnitude of the force or the duration of the applied force) and command associations and/or user preferences for interpretations of the force as commands. The processor may be any suitable type of processor and the storage device may be any suitable type of storage device, for example, a flash memory device, a hard drive, or any other suitable type. The processor and/or storage device may alternatively be a processor and/or storage device included into the device that the tactile interface layer 100 is applied to. However, any other suitable arrangement of the processor and/or storage device may be used.


As shown in FIGS. 7-9, in the first preferred embodiment of the method S100, the force on the deformed particular region is interpreted as a command for the firmness of the deformed particular region Step S130 and the firmness of the deformed particular region is manipulated based on the command Step S140. The manipulation of the firmness of the deformed particular region may alternatively be thought of as manipulating the degree of deformation of the deformed particular region. For example, a fully deformed particular region 113 is of the highest firmness degree while a medium deformed particular region 113 is of a medium firmness degree. In the variation of the tactile interface layer as described above, manipulating the deformed particular region based on the command to change the firmness of the deformed particular region preferably includes manipulating the volume of fluid 112 within the fluid vessel 127. As the pressure within the volume of fluid 112 is increased, the firmness of the resulting deformed particular region 113 will also increase. Similarly, as the pressure within the volume of fluid 112 is decreased, the firmness of the resulting deformed particular region 113 will also decrease. As shown in FIGS. 7 and 8, as the pressure of the volume of fluid 112 is changed, size of the deformed particular region 113 may change due to the elasticity of the layer no. In this variation, a change in firmness of the deformed particular region 113 may also be thought of as a change in the size and/or height of the deformed particular region 113. For example, as shown in FIG. 7, the pressure of the volume of fluid 112 corresponding to the deformable region is increased and the resulting deformed particular region 113 is both stiffer and taller than the original deformed particular region 113. In a second example as shown in FIG. 8, the pressure of the volume of fluid 112 is decreased and the resulting deformed particular region 113 is both less stiff and less tall than the original deformed particular region 113. In a third example, the pressure of the volume of fluid 112 corresponding to the deformable region is increased to increase the surface area of the deformed particular region 113. In this variation, the height of the deformed particular region 113 may change, but it may alternatively remain the same. However, any other suitable combination of firmness and size of the deformed particular region resulting from the manipulation of the firmness of the deformed particular region 113 in Step S140 may be used.


In a variation of the first preferred embodiment, as shown in FIG. 9, the step of manipulating the deformable region may include undeforming the deformed particular region 113 such that the particular region of the surface 113 is no longer deformed. In other words, the firmness and/or the height of the deformed particular region is “removed” or decreased to zero. This may be a useful tactile experience where the user is to select items from a list, for example, a check box or a “YES/NO” selection box to tactilely indicate to the user when a certain selection has already been made. However, any other suitable application of this variation of the first preferred embodiment may be used.


As shown in FIGS. 10-11, in the second preferred embodiment of the method S100, the tactile interface layer preferably includes a first and a second particular region 113a and 113b, and the force on the first deformed particular region 113a is interpreted as a command to undeform the first particular region 113a and to deform the second particular region 113b Step S230, and the first and second particular regions 113a and 113b are manipulated based on the command Step S240. The first and second particular regions 113a and 113b may be substantially proximal to each other, for example, along the same face of the device. Alternatively, the first and second particular regions 113a and 113b may be substantially distal fro each other, for example, the first particular region 113a may be on a first face of the device and the second particular region 113b may be on a second face of the device. In this variation, the first face of the device may include a display and the second face of the device may not include a display. However, any other suitable arrangement of the first and second particular regions 113a and 113b may be used. The force may alternatively be interpreted as a command to further deform the first particular region 113a and to undeform the second particular region 113b. However, any other suitable combination of deformation and undeformation of the first and second particular regions 113a and 113b may be used. The interpreted command may be to fully undeform the first particular region 113a and to fully deform the second particular region 113b, which may provide the user with a “rocker switch” type of experience, as shown in FIG. 10. In this variation, both the first and second particular regions 113a and 113b may be located on the same device, for example, to provide a tactile experience where the user is to toggle between two selections for a particular, for example, “Audio ON” and “Audio OFF” to toggle a location within a game, for example, selecting tiles within the popular Minesweeper game. Alternatively, the second particular region 113b may be located on a second tactile interface layer 100 that is applied to a second device, where the second device is linked to the first device, for example, through the Internet, through a WiFi connection, through a Bluetooth connection, or any other suitable connection. Control of the second tactile interface layer 100 is may be independent of the control of the first user interface 100; for example, the second particular region 113b may be deformed independently of the first particular region 113a. Alternatively, control of the second tactile interface layer may be linked to the control of the first tactile interface layer 100. This may be a useful tactile experience where the first device and the second device are transmitting tactile communication, for example, when a user using the first device creates a pattern by undeforming a pattern of deformed particular regions 113 and another user using the second device “sees” the pattern that the first user is creating deformable particular regions 113 corresponding to the undeformed particular regions 113 on the first device are deformed. This type of feature may be used in a gaming device or gaming application where a first player uses tactile communication with a second player. However, any other suitable application of a “rocker switch” type active response may be used.


Alternatively, the interpreted command may be to undeform the first particular region 113a to a particular degree and to deform the second particular region 113b to a particular degree, as shown in FIGURE ii. The degree to which to undeform and deform the first and second particular regions 113a and 113b may be determined based on the detected attributes of the force. In a first example, the magnitude of the force may determine the particular degrees. In the variation where the tactile interface layer includes fluid 112 and a pressure sensor, the pressure increase within the fluid 112 may be used to determine the magnitude of the force. However, the magnitude of the force may be determined using any other suitable method, for example, the applied force may displace the volume of fluid 112 from one location within the fluid vessel 127 to another. The magnitude of the force may be determined by measuring the amount of fluid displacement. In a second example, the duration of the applied force may be used to determine the particular degrees. In the variation where the tactile interface layer includes a sensor that is a capacitive sensor, the presence of the finger of the user may be detected and the period of time for which the presence of the finger is detected may be used to determine the particular degrees. In a third example, the rate at which the force is applied may be used to determine the particular degrees. As described above, the volume of fluid 112 displaced by the applied force may be measured. In this variation, the rate at which the force is applied may be determined by detecting the rate at which the volume of fluid 112 is displaced. However, the particular degrees to which to undeform and deform the first and second particular regions 113a and 113b may be interpreted from the detected force using any other suitable method.


Additionally, the particular degrees to undeform and deform the first and second particular regions 113a and 113b may be percentages of the full deformation of each of the particular regions 113a and 113b, where the sum of the percentage of deformation of the first and second particular regions 113a and 113b is 100%. In other words, the command may include undeforming the first particular region 113a to 25% of full deformation and deforming the second particular region 113b to 75% of the full deformation. This may provide a tactile experience to the user that is similar to pushing a mass from one location to another location, where there is a conservation of mass. Alternatively, the percentages may have a sum of greater than or less than 100%. For example, the command may include deforming each of the first and second particular regions 113a and 113b to 60% of full deformation. However, any other suitable command for the undeformation and deformation of the first and second particular regions 113a and 113b may be interpreted.


In the variation of the tactile interface layer 100 as described above, the fluid vessel 127 includes a first cavity 125a that corresponds to the first particular region 113a and a second cavity 125b that corresponds to the second particular region 113b. The displacement device 130 is preferably actuated to expand the second cavity 125b and retract the first cavity 125a. Retraction of the first cavity 125a (or the undeformation of the first particular region 113a) and the expansion of the second cavity 125b (or the deformation of the second particular region 113b) preferably happen substantially concurrently, as shown in FIG. 10. In this variation, when the force and command are interpreted on the deformed first particular region, as shown in FIGURE boa, the volume of fluid within the first cavity 125a is decreased while the volume of fluid within the second cavity 125b is increased, as shown in FIG. 10b. A volume of fluid 112 may be transferred between the first and second cavities 125a and 125b by the displacement device 130, but the displacement device 130 may alternatively displace any other suitable volume of fluid 112 from and to the first and second cavities 125a and 125b. For example, the displacement device 130 may displace a volume of fluid towards the first and second cavities 125a and 125b through the valve 139, and the valve 139 directs a first portion of the fluid towards the first cavity 125a and a second portion of the fluid towards the second cavity 125b.


As described in the first preferred embodiment, a change in the volume of fluid within the first and second cavities 125a and 125b may also be thought of as a change in the firmness of the corresponding deformed particular region 113a and 113b, respectively. In a variation of the second preferred embodiment, the undeformation and deformation of the first and second particular regions 113a and 113b may alternatively be thought of as a decrease in firmness of the first particular region 113a and an increase in firmness of the second particular region 113b. An exemplary usage of this variation of the second preferred embodiment may be in a user interface that includes two buttons for increasing and decreasing a particular feature of the device, for example, the volume of sound output. The deformed first particular region 113a may represent the “increase volume” button and the second particular region 113b may represent the “decrease volume” button. As a force is detected on the first particular region 113a, the firmness of the first particular region 113a may be increased and the firmness of a second particular region 113 corresponding to a “decrease volume” button decreases, representing the shift towards the higher range along the range of available volume outputs. However, any other suitable application of this variation may be used.


In the method S100 of the first and second preferred embodiments, the interpretation of the force detected on the deformed deformable region as a command may be adjusted based on the state of the deformed deformable region. For example, if a force is detected when the deformed deformable region is not fully deformed, the command may be to increase the firmness and if a force is detected when the deformed deformable region is fully deformed, the interpreted command may be to decrease the firmness. In a second example, the interpretation of a command when a force is detected as a deformable region is being expanded may be different from when a force is detected as a deformable region is being undeformed. However, any other suitable interpretation of the force as a command based on the state of the deformed deformable region may be used.


While the interpretation of a force detected on a deformed particular region 113 as a command is preferably one of the variations described above, the interpretation may alternatively be a combination of the variations described above or any other suitable combination of gestures and commands, for example, a force may be detected on an undeformed deformable region and then interpreted as a command for the deformable region. However, any other suitable type of force detection and force interpretation may be used.


As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.

Claims
  • 1. A method for actuating a tactile interface layer coupled to a device, the tactile interface layer comprising a surface and a substrate, the surface defining a deformable region and a second region adjacent the deformable region, the substrate defining a fluid vessel adjacent the deformable region, the method comprising: displacing fluid into the fluid vessel to transition the deformable region from a retracted setting to an expanded setting tactilely distinguishable from the second region and offset above the second region by a first height;at a sensor coupled to the tactile interface layer, detecting a user input which applies a force at the deformable region in the expanded setting;substantially simultaneously, detecting an increase in pressure of fluid in the fluid vessel by a second sensor;in response to the force, displacing fluid out of the fluid vessel to transition the deformable region from the expanded setting offset above the second region by the first height to a second setting offset above the second region by a second height less than the first height, a change in height between the expanded setting and the second setting proportional to the detected increase in pressure.
  • 2. The method of claim 1, further comprising, in response to displacing fluid out of the fluid vessel to transition the deformable region from the expanded setting to the second setting, displacing fluid into the fluid vessel to increase pressure within the fluid vessel adjacent the deformable region in the second setting.
  • 3. The method of claim 2, wherein displacing fluid into the fluid vessel to increase pressure increases resistance to depression of the deformable region toward the substrate.
  • 4. The method of claim 1, wherein detecting an increase in pressure in the fluid vessel comprises, at a pressure sensor fluidly coupled to the fluid vessel, detecting a change in pressure and, in response to the change in pressure greater than a threshold pressure change, interpreting the change in pressure as a command to displace fluid out of the fluid vessel, the second sensor including the pressure sensor.
  • 5. The method of claim 1, further comprising detecting an initial pressure in the fluid vessel corresponding to the deformable region in the expanded setting; wherein displacing fluid out of the fluid channel comprises displacing a volume of fluid out of the fluid vessel, the volume of fluid substantially proportional to the increase in pressure in the fluid to restore the initial pressure in the fluid vessel.
  • 6. The method of claim 1, wherein displacing fluid out of the fluid vessel comprises displacing fluid out the fluid vessel to transition the deformable region from the expanded setting to the second setting offset above the second region by a second height less than the first height; wherein pressure in the fluid vessel at the second height is greater than pressure in the fluid vessel at the first height.
  • 7. A method for actuating a tactile interface layer coupled to a device, the tactile interface layer comprising a surface and a substrate, the surface defining a deformable region and a second region adjacent the deformable region, the substrate defining a fluid vessel adjacent the deformable region, the method comprising: displacing fluid into the fluid vessel at a first pressure to transition the deformable region from a retracted setting to an expanded setting tactilely distinguishable from the second region and the deformable region in the retracted setting;at a sensor coupled to the tactile interface layer, detecting an input which applies a force at the deformable region, the force displacing the deformable region from the expanded setting to a second setting tactilely distinguishable from the expanded setting;substantially simultaneously, detecting by a second sensor an increase in pressure from the first pressure to a second pressure in the fluid vessel;with the deformable region in the second setting, displacing fluid into the fluid vessel to change pressure in the fluid vessel from the second pressure to a third pressure in response to the detected increase in pressure, the deformable region stable in the second setting at the third pressure.
  • 8. The method of claim 7, wherein displacing fluid into the fluid vessel comprises increasing pressure in the fluid vessel from the second pressure to the third pressure, greater than the second pressure by a magnitude proportional to the increase in pressure from the first pressure to the second pressure.
  • 9. The method of claim 7, wherein displacing fluid into the fluid vessel comprises displacing fluid into the fluid vessel to increase pressure in the fluid vessel from the second pressure to the third pressure greater than the second pressure by a magnitude proportional to the increase in pressure from the first pressure to the second pressure.
  • 10. The method of claim 9, wherein displacing fluid into the fluid vessel comprises increasing pressure in the fluid vessel from the second pressure to the third pressure greater than the second pressure by a magnitude substantially equal to the increase in pressure from the first pressure to the second pressure.
  • 11. A method for actuating a tactile layer coupled to a computing device and comprising a surface defining a first deformable region, a second deformable region, and a third region adjacent the first deformable region and the second deformable region, the tactile interface layer defining a first fluid vessel adjacent the first deformable region and a second fluid vessel adjacent the second deformable region, the method comprising: at a sensor, detecting a user input at the first deformable region in an expanded setting, the input applying a force displacing the first deformable region toward the substrate, the first deformable region offset above the third region in the expanded setting, the second deformable region in a retracted setting substantially flush with the first region, the input pressing the deformable region toward the substrate;substantially simultaneously, detecting by a second sensor a change in pressure in the fluid vessel corresponding to the input;in response to the change in pressure, displacing a first volume of fluid from the first fluid vessel to transition the deformable region from the expanded setting to a second setting tactilely distinguishable from the expanded setting;substantially simultaneously, displacing a second volume of fluid into the second fluid vessel to transition the second deformable region from the retracted setting to a third setting tactilely distinguishable from the retracted setting, a ratio of the second volume of fluid to the first volume of fluid proportional to the detected change in pressure.
  • 12. The method of claim 11, further comprising rendering a first graphical icon and a second graphical icon on a display coupled to the tactile layer substrate opposite the surface, the first graphical icon substantially aligned with the first deformable region and second graphical icon substantially aligned with the second deformable region; wherein detecting an input at the first deformable region comprises detecting the input at the first deformable region and defining the input as a selection of the first graphical icon; wherein displacing a second volume of fluid into the second fluid vessel to transition the second deformable region from the retracted setting to a third setting comprises defining an input button detect selecting the second graphical icon.
  • 13. The method of claim 12, wherein rendering the first graphical icon and the second graphical icon comprises rendering a graphical toggle switch, a first button of the toggle switch corresponding to the first graphical icon, a second button of the toggle switch corresponding to the second graphical icon.
  • 14. The method of claim 11, wherein displacing the second volume of fluid into the second fluid vessel comprises displacing the first volume of fluid from the first fluid vessel into the second fluid vessel to transition the first deformable region from the expanded setting to the retracted setting and substantially simultaneously transition the second deformable region from the retracted setting to expanded setting.
  • 15. The method of claim 11, wherein displacing the first volume of fluid from the first fluid vessel comprises gradually decreasing the first volume of fluid in the first fluid vessel; and wherein displacing a second volume of fluid into the second fluid vessel comprises gradually increasing the second volume of fluid in the second fluid vessel.
  • 16. The method of claim 11, wherein displacing the first volume of fluid from the first fluid vessel comprises retracting the first deformable region by a degree of deformation to the second setting offset above the third region by a first height; and wherein displacing the second volume of fluid into the second vessel comprises expanding the second deformable region to a second height offset above the third region and corresponding to the degree of deformation.
  • 17. The method of claim 11, further comprising detecting a duration of the input; wherein displacing fluid from the first fluid vessel comprises displacing a volume of fluid proportional to the duration of the input; and wherein displacing fluid into the second vessel comprises displacing the second volume of fluid of a volume proportional to the duration of the input.
  • 18. The method of claim 11, wherein displacing the first volume of fluid from the first fluid vessel comprises displacing the first volume of fluid of a volume proportional to the magnitude of the change in pressure.
  • 19. The method of claim 11, wherein displacing the first volume of fluid from the first fluid vessel comprises displacing the first volume of fluid and decreasing pressure in the fluid vessel by a first pressure magnitude; wherein displacing the second volume of fluid into the second fluid vessel comprises displacing the second volume of fluid and increasing pressure in the fluid vessel by a second pressure magnitude proportional to the first pressure magnitude.
  • 20. The method of claim 19, wherein displacing fluid into the second fluid vessel comprises displacing the second volume of fluid and increasing pressure in the fluid vessel by the second pressure magnitude greater than the first pressure magnitude.
  • 21. The method of claim 11, wherein displacing the second volume of fluid into the second fluid vessel comprises displacing the second volume of fluid corresponding to a first ratio in response to the second volume of fluid greater than a threshold volume of fluid and corresponding to a second ratio in response to the second volume of fluid less than a threshold volume of fluid.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/090,217, filed on 19 Apr. 2011, which claims the benefit of U.S. Provisional Application No. 61/325,772, filed on 19 Apr. 2010, which are both incorporated in their entireties by this reference. This application is related to U.S. patent application Ser. No. 11/969,848 filed on 4 Jan. 2008, U.S. patent application Ser. No. 12/319,334 filed on 5 Jan. 2009, U.S. patent application Ser. No. 12/497,622 filed on 3 Jul. 2009, which are all incorporated in their entirety by this reference.

US Referenced Citations (565)
Number Name Date Kind
2885967 Vogel May 1959 A
3034628 Wadey May 1962 A
3441111 Spalding Apr 1969 A
3453967 Spurlock Jul 1969 A
3490733 Berthaud Jan 1970 A
3659354 Sutherland May 1972 A
3759108 Borom et al. Sep 1973 A
3780236 Gross Dec 1973 A
3818487 Brody et al. Jun 1974 A
4109118 Kley Aug 1978 A
4181476 Malbec Jan 1980 A
4209819 Seignemartin Jun 1980 A
4290343 Gram Sep 1981 A
4307268 Harper Dec 1981 A
4467321 Volnak Aug 1984 A
4477700 Balash et al. Oct 1984 A
4517421 Margolin May 1985 A
4543000 Hasenbalg Sep 1985 A
4584625 Kellogg Apr 1986 A
4700025 Hatayama et al. Oct 1987 A
4743895 Alexander May 1988 A
4772205 Chlumsky et al. Sep 1988 A
4920343 Schwartz Apr 1990 A
4940734 Ley et al. Jul 1990 A
5090297 Paynter Feb 1992 A
5194852 More et al. Mar 1993 A
5195659 Eiskant Mar 1993 A
5212473 Louis May 1993 A
5222895 Fricke Jun 1993 A
5286199 Kipke Feb 1994 A
5346476 Elson Sep 1994 A
5369228 Faust Nov 1994 A
5412189 Cragun May 1995 A
5459461 Crowley et al. Oct 1995 A
5470212 Pearce Nov 1995 A
5488204 Mead et al. Jan 1996 A
5496174 Garner Mar 1996 A
5666112 Crowley et al. Sep 1997 A
5717423 Parker Feb 1998 A
5729222 Iggulden et al. Mar 1998 A
5742241 Crowley et al. Apr 1998 A
5754023 Roston et al. May 1998 A
5766013 Vuyk Klaas Jun 1998 A
5767839 Rosenberg Jun 1998 A
5835080 Beeteson et al. Nov 1998 A
5880411 Gillespie et al. Mar 1999 A
5889236 Gillespie et al. Mar 1999 A
5917906 Thornton Jun 1999 A
5943043 Furuhata et al. Aug 1999 A
5977867 Blouin Nov 1999 A
5982304 Selker et al. Nov 1999 A
6067116 Yamano et al. May 2000 A
6154198 Rosenberg Nov 2000 A
6154201 Levin et al. Nov 2000 A
6160540 Fishkin et al. Dec 2000 A
6169540 Rosenberg et al. Jan 2001 B1
6187398 Eldridge Feb 2001 B1
6188391 Seely et al. Feb 2001 B1
6218966 Goodwin et al. Apr 2001 B1
6243074 Fishkin et al. Jun 2001 B1
6243078 Rosenberg Jun 2001 B1
6268857 Fishkin et al. Jul 2001 B1
6271828 Rosenberg et al. Aug 2001 B1
6278441 Gouzman et al. Aug 2001 B1
6300937 Rosenberg Oct 2001 B1
6310614 Maeda et al. Oct 2001 B1
6323846 Westerman et al. Nov 2001 B1
6337678 Fish Jan 2002 B1
6354839 Schmidt et al. Mar 2002 B1
6356259 Maeda et al. Mar 2002 B1
6359572 Vale Mar 2002 B1
6366272 Rosenberg et al. Apr 2002 B1
6369803 Brisebois et al. Apr 2002 B2
6384743 Vanderheiden May 2002 B1
6414671 Gillespie et al. Jul 2002 B1
6429846 Rosenberg et al. Aug 2002 B2
6437771 Rosenberg et al. Aug 2002 B1
6462294 Davidson et al. Oct 2002 B2
6469692 Rosenberg Oct 2002 B2
6486872 Rosenberg et al. Nov 2002 B2
6498353 Nagle et al. Dec 2002 B2
6501462 Garner Dec 2002 B1
6509892 Kamper et al. Jan 2003 B1
6529183 MacLean et al. Mar 2003 B1
6573844 Venolia et al. Jun 2003 B1
6636202 Ishmael et al. Oct 2003 B2
6639581 Moore et al. Oct 2003 B1
6655788 Freeman Dec 2003 B1
6657614 Ito et al. Dec 2003 B1
6667738 Murphy Dec 2003 B2
6681031 Cohen et al. Jan 2004 B2
6683627 Ullmann et al. Jan 2004 B1
6686911 Levin et al. Feb 2004 B1
6697086 Rosenberg et al. Feb 2004 B2
6700556 Richley et al. Mar 2004 B2
6703924 Tecu et al. Mar 2004 B2
6743021 Prince et al. Jun 2004 B2
6788295 Inkster Sep 2004 B1
6819316 Schulz et al. Nov 2004 B2
6850222 Rosenberg Feb 2005 B1
6861961 Sandbach et al. Mar 2005 B2
6877986 Fournier et al. Apr 2005 B2
6881063 Yang Apr 2005 B2
6930234 Davis Aug 2005 B2
6937225 Kehlstadt et al. Aug 2005 B1
6975305 Yamashita Dec 2005 B2
6979164 Kramer Dec 2005 B2
6982696 Shahoian Jan 2006 B1
6995745 Boon et al. Feb 2006 B2
7004655 Ferrara Feb 2006 B2
7027032 Rosenberg et al. Apr 2006 B2
7056051 Fiffie Jun 2006 B2
7061467 Rosenberg Jun 2006 B2
7064655 Murray et al. Jun 2006 B2
7079111 Ho Jul 2006 B2
7081888 Cok et al. Jul 2006 B2
7096852 Gregorio Aug 2006 B2
7102541 Rosenberg Sep 2006 B2
7104152 Levin et al. Sep 2006 B2
7106305 Rosenberg Sep 2006 B2
7106313 Schena et al. Sep 2006 B2
7109967 Hioki et al. Sep 2006 B2
7112737 Ramstein Sep 2006 B2
7113166 Rosenberg et al. Sep 2006 B1
7116317 Gregorio et al. Oct 2006 B2
7124425 Anderson, Jr. et al. Oct 2006 B1
7129854 Arneson et al. Oct 2006 B2
7131073 Rosenberg et al. Oct 2006 B2
7136045 Rosenberg et al. Nov 2006 B2
7138977 Kinerk et al. Nov 2006 B2
7138985 Nakajima Nov 2006 B2
7143785 Maerkl et al. Dec 2006 B2
7144616 Unger et al. Dec 2006 B1
7148875 Rosenberg et al. Dec 2006 B2
7151432 Tierling Dec 2006 B2
7151527 Culver Dec 2006 B2
7151528 Taylor et al. Dec 2006 B2
7154470 Tierling Dec 2006 B2
7158112 Rosenberg et al. Jan 2007 B2
7159008 Wies et al. Jan 2007 B1
7161276 Face Jan 2007 B2
7161580 Bailey et al. Jan 2007 B2
7168042 Braun et al. Jan 2007 B2
7176903 Katsuki et al. Feb 2007 B2
7182691 Schena Feb 2007 B1
7191191 Peurach et al. Mar 2007 B2
7193607 Moore et al. Mar 2007 B2
7195170 Matsumoto et al. Mar 2007 B2
7196688 Schena Mar 2007 B2
7198137 Olien Apr 2007 B2
7199790 Rosenberg et al. Apr 2007 B2
7202851 Cunningham et al. Apr 2007 B2
7205981 Cunningham Apr 2007 B2
7208671 Chu Apr 2007 B2
7209028 Boronkay et al. Apr 2007 B2
7209113 Park Apr 2007 B2
7209117 Rosenberg et al. Apr 2007 B2
7209118 Shahoian et al. Apr 2007 B2
7210160 Anderson, Jr. et al. Apr 2007 B2
7215326 Rosenberg May 2007 B2
7216671 Unger et al. May 2007 B2
7218310 Tierling et al. May 2007 B2
7218313 Marcus et al. May 2007 B2
7233313 Levin et al. Jun 2007 B2
7233315 Gregorio et al. Jun 2007 B2
7233476 Goldenberg et al. Jun 2007 B2
7236157 Schena et al. Jun 2007 B2
7245202 Levin Jul 2007 B2
7245292 Custy Jul 2007 B1
7249951 Bevirt et al. Jul 2007 B2
7250128 Unger et al. Jul 2007 B2
7253803 Schena et al. Aug 2007 B2
7253807 Nakajima Aug 2007 B2
7265750 Rosenberg Sep 2007 B2
7280095 Grant Oct 2007 B2
7283120 Grant Oct 2007 B2
7283123 Braun et al. Oct 2007 B2
7283696 Ticknor et al. Oct 2007 B2
7289106 Bailey et al. Oct 2007 B2
7289111 Asbill Oct 2007 B2
7307619 Cunningham et al. Dec 2007 B2
7308831 Cunningham et al. Dec 2007 B2
7319374 Shahoian Jan 2008 B2
7336260 Martin et al. Feb 2008 B2
7336266 Hayward et al. Feb 2008 B2
7339572 Schena Mar 2008 B2
7339580 Westerman et al. Mar 2008 B2
7342573 Ryynanen Mar 2008 B2
7355595 Bathiche et al. Apr 2008 B2
7369115 Cruz-Hernandez et al. May 2008 B2
7382357 Panotopoulos et al. Jun 2008 B2
7390157 Kramer Jun 2008 B2
7391861 Levy Jun 2008 B2
7397466 Bourdelais et al. Jul 2008 B2
7403191 Sinclair Jul 2008 B2
7432910 Shahoian Oct 2008 B2
7432911 Skarine Oct 2008 B2
7432912 Cote et al. Oct 2008 B2
7433719 Dabov Oct 2008 B2
7453442 Poynter Nov 2008 B1
7471280 Prins Dec 2008 B2
7489309 Levin et al. Feb 2009 B2
7511702 Hotelling Mar 2009 B2
7522152 Olien et al. Apr 2009 B2
7545289 Mackey et al. Jun 2009 B2
7548232 Shahoian et al. Jun 2009 B2
7551161 Mann Jun 2009 B2
7561142 Shahoian et al. Jul 2009 B2
7567232 Rosenberg Jul 2009 B2
7567243 Hayward Jul 2009 B2
7589714 Funaki Sep 2009 B2
7592999 Rosenberg et al. Sep 2009 B2
7605800 Rosenberg Oct 2009 B2
7609178 Son et al. Oct 2009 B2
7656393 King et al. Feb 2010 B2
7659885 Kraus et al. Feb 2010 B2
7671837 Forsblad et al. Mar 2010 B2
7679611 Schena Mar 2010 B2
7679839 Polyakov et al. Mar 2010 B2
7688310 Rosenberg Mar 2010 B2
7701438 Chang et al. Apr 2010 B2
7728820 Rosenberg et al. Jun 2010 B2
7733575 Heim et al. Jun 2010 B2
7743348 Robbins et al. Jun 2010 B2
7755602 Tremblay et al. Jul 2010 B2
7808488 Martin et al. Oct 2010 B2
7834853 Finney et al. Nov 2010 B2
7843424 Rosenberg et al. Nov 2010 B2
7864164 Cunningham et al. Jan 2011 B2
7869589 Tuovinen Jan 2011 B2
7890257 Fyke et al. Feb 2011 B2
7890863 Grant et al. Feb 2011 B2
7920131 Westerman Apr 2011 B2
7924145 Yuk et al. Apr 2011 B2
7944435 Rosenberg et al. May 2011 B2
7952498 Higa May 2011 B2
7956770 Klinghult et al. Jun 2011 B2
7973773 Pryor Jul 2011 B2
7978181 Westerman Jul 2011 B2
7978183 Rosenberg et al. Jul 2011 B2
7978186 Vassallo et al. Jul 2011 B2
7979797 Schena Jul 2011 B2
7982720 Rosenberg et al. Jul 2011 B2
7986303 Braun et al. Jul 2011 B2
7986306 Eich et al. Jul 2011 B2
7989181 Blattner et al. Aug 2011 B2
7999660 Cybart et al. Aug 2011 B2
8002089 Jasso et al. Aug 2011 B2
8004492 Kramer et al. Aug 2011 B2
8013843 Pryor Sep 2011 B2
8020095 Braun et al. Sep 2011 B2
8022933 Hardacker et al. Sep 2011 B2
8031181 Rosenberg et al. Oct 2011 B2
8044826 Yoo Oct 2011 B2
8047849 Ahn et al. Nov 2011 B2
8049734 Rosenberg et al. Nov 2011 B2
8059104 Shahoian et al. Nov 2011 B2
8059105 Rosenberg et al. Nov 2011 B2
8063892 Shahoian et al. Nov 2011 B2
8063893 Rosenberg et al. Nov 2011 B2
8068605 Holmberg Nov 2011 B2
8077154 Emig et al. Dec 2011 B2
8077440 Krabbenborg et al. Dec 2011 B2
8077941 Assmann Dec 2011 B2
8094121 Obermeyer et al. Jan 2012 B2
8094806 Levy Jan 2012 B2
8103472 Braun et al. Jan 2012 B2
8106787 Nurmi Jan 2012 B2
8115745 Gray Feb 2012 B2
8123660 Kruse et al. Feb 2012 B2
8125347 Fahn Feb 2012 B2
8125461 Weber et al. Feb 2012 B2
8130202 Levine et al. Mar 2012 B2
8144129 Hotelling et al. Mar 2012 B2
8144271 Han Mar 2012 B2
8154512 Olien et al. Apr 2012 B2
8154527 Ciesla et al. Apr 2012 B2
8159461 Martin et al. Apr 2012 B2
8162009 Chaffee Apr 2012 B2
8164573 Dacosta et al. Apr 2012 B2
8166649 Moore May 2012 B2
8169306 Schmidt et al. May 2012 B2
8169402 Shahoian et al. May 2012 B2
8174372 Da Costa May 2012 B2
8174495 Takashima et al. May 2012 B2
8174508 Sinclair et al. May 2012 B2
8174511 Takenaka et al. May 2012 B2
8178808 Strittmatter May 2012 B2
8179375 Ciesla et al. May 2012 B2
8179377 Ciesla et al. May 2012 B2
8188989 Levin et al. May 2012 B2
8195243 Kim et al. Jun 2012 B2
8199107 Xu et al. Jun 2012 B2
8199124 Ciesla et al. Jun 2012 B2
8203094 Mittleman et al. Jun 2012 B2
8203537 Tanabe et al. Jun 2012 B2
8207950 Ciesla et al. Jun 2012 B2
8212772 Shahoian Jul 2012 B2
8217903 Ma et al. Jul 2012 B2
8217904 Kim Jul 2012 B2
8223278 Kim et al. Jul 2012 B2
8224392 Kim et al. Jul 2012 B2
8228305 Pryor Jul 2012 B2
8232976 Yun et al. Jul 2012 B2
8243038 Ciesla et al. Aug 2012 B2
8253052 Chen Aug 2012 B2
8253703 Eldering Aug 2012 B2
8279172 Braun et al. Oct 2012 B2
8279193 Birnbaum et al. Oct 2012 B1
8310458 Faubert et al. Nov 2012 B2
8345013 Heubel et al. Jan 2013 B2
8350820 Deslippe et al. Jan 2013 B2
8362882 Heubel et al. Jan 2013 B2
8363008 Ryu et al. Jan 2013 B2
8367957 Strittmatter Feb 2013 B2
8368641 Tremblay et al. Feb 2013 B2
8378797 Pance et al. Feb 2013 B2
8384680 Paleczny et al. Feb 2013 B2
8390594 Modarres et al. Mar 2013 B2
8395587 Cauwels et al. Mar 2013 B2
8395591 Kruglick Mar 2013 B2
8400402 Son Mar 2013 B2
8400410 Taylor et al. Mar 2013 B2
8547339 Ciesla Oct 2013 B2
8587541 Ciesla et al. Nov 2013 B2
8587548 Ciesla et al. Nov 2013 B2
8749489 Ito et al. Jun 2014 B2
8856679 Sirpal et al. Oct 2014 B2
8970403 Ciesla et al. Mar 2015 B2
9035898 Ciesla May 2015 B2
9075429 Karakotsios Jul 2015 B1
9116617 Ciesla et al. Aug 2015 B2
9274635 Birnbaum Mar 2016 B2
20010008396 Komata Jul 2001 A1
20010043189 Brisebois et al. Nov 2001 A1
20020063694 Keely et al. May 2002 A1
20020104691 Kent et al. Aug 2002 A1
20020106614 Prince et al. Aug 2002 A1
20020110237 Krishnan Aug 2002 A1
20020125084 Kreuzer et al. Sep 2002 A1
20020149570 Knowles et al. Oct 2002 A1
20020180620 Gettemy et al. Dec 2002 A1
20030087698 Nishiumi et al. May 2003 A1
20030117371 Roberts et al. Jun 2003 A1
20030179190 Franzen Sep 2003 A1
20030206153 Murphy Nov 2003 A1
20030223799 Pihlaja Dec 2003 A1
20040001589 Mueller et al. Jan 2004 A1
20040056876 Nakajima Mar 2004 A1
20040056877 Nakajima Mar 2004 A1
20040106360 Farmer et al. Jun 2004 A1
20040114324 Kusaka et al. Jun 2004 A1
20040164968 Miyamoto Aug 2004 A1
20040178006 Cok Sep 2004 A1
20050007339 Sato Jan 2005 A1
20050007349 Vakil et al. Jan 2005 A1
20050020325 Enger et al. Jan 2005 A1
20050030292 Diederiks Feb 2005 A1
20050057528 Kleen Mar 2005 A1
20050073506 Durso Apr 2005 A1
20050088417 Mulligan Apr 2005 A1
20050110768 Marriott et al. May 2005 A1
20050162408 Martchovsky Jul 2005 A1
20050212773 Asbill Sep 2005 A1
20050231489 Ladouceur et al. Oct 2005 A1
20050253816 Himberg et al. Nov 2005 A1
20050270444 Miller et al. Dec 2005 A1
20050285846 Funaki Dec 2005 A1
20060026521 Hotelling et al. Feb 2006 A1
20060026535 Hotelling et al. Feb 2006 A1
20060053387 Ording Mar 2006 A1
20060087479 Sakurai et al. Apr 2006 A1
20060097991 Hotelling et al. May 2006 A1
20060098148 Kobayashi et al. May 2006 A1
20060118610 Pihlaja et al. Jun 2006 A1
20060119586 Grant et al. Jun 2006 A1
20060152474 Saito et al. Jul 2006 A1
20060154216 Hafez et al. Jul 2006 A1
20060197753 Hotelling Sep 2006 A1
20060214923 Chiu et al. Sep 2006 A1
20060238495 Davis Oct 2006 A1
20060238510 Panotopoulos et al. Oct 2006 A1
20060238517 King et al. Oct 2006 A1
20060256075 Anastas et al. Nov 2006 A1
20060278444 Binstead Dec 2006 A1
20070013662 Fauth Jan 2007 A1
20070036492 Lee Feb 2007 A1
20070085837 Ricks et al. Apr 2007 A1
20070108032 Matsumoto et al. May 2007 A1
20070122314 Strand et al. May 2007 A1
20070130212 Peurach et al. Jun 2007 A1
20070152982 Kim et al. Jul 2007 A1
20070152983 Mckillop et al. Jul 2007 A1
20070165004 Seelhammer et al. Jul 2007 A1
20070171210 Chaudhri et al. Jul 2007 A1
20070182718 Schoener et al. Aug 2007 A1
20070229233 Dort Oct 2007 A1
20070229464 Hotelling et al. Oct 2007 A1
20070236466 Hotelling Oct 2007 A1
20070236469 Woolley et al. Oct 2007 A1
20070247429 Westerman Oct 2007 A1
20070257634 Leschin et al. Nov 2007 A1
20070273561 Philipp Nov 2007 A1
20070296702 Strawn et al. Dec 2007 A1
20070296709 Guanghai Dec 2007 A1
20080010593 Uusitalo et al. Jan 2008 A1
20080024459 Poupyrev et al. Jan 2008 A1
20080054875 Saito Mar 2008 A1
20080062151 Kent Mar 2008 A1
20080136791 Nissar Jun 2008 A1
20080138774 Ahn et al. Jun 2008 A1
20080143693 Schena Jun 2008 A1
20080150911 Harrison Jun 2008 A1
20080165139 Hotelling et al. Jul 2008 A1
20080174321 Kang et al. Jul 2008 A1
20080174570 Jobs et al. Jul 2008 A1
20080202251 Serban et al. Aug 2008 A1
20080238448 Moore et al. Oct 2008 A1
20080248836 Caine Oct 2008 A1
20080249643 Nelson Oct 2008 A1
20080251368 Holmberg et al. Oct 2008 A1
20080252607 De et al. Oct 2008 A1
20080266264 Lipponen et al. Oct 2008 A1
20080286447 Alden et al. Nov 2008 A1
20080291169 Brenner et al. Nov 2008 A1
20080297475 Woolf et al. Dec 2008 A1
20080303796 Fyke Dec 2008 A1
20080314725 Karhiniemi et al. Dec 2008 A1
20090002140 Higa Jan 2009 A1
20090002205 Klinghult et al. Jan 2009 A1
20090002328 Ullrich et al. Jan 2009 A1
20090002337 Chang Jan 2009 A1
20090009480 Heringslack Jan 2009 A1
20090015547 Franz et al. Jan 2009 A1
20090028824 Chiang et al. Jan 2009 A1
20090033617 Lindberg et al. Feb 2009 A1
20090059495 Matsuoka Mar 2009 A1
20090066672 Tanabe et al. Mar 2009 A1
20090085878 Heubel et al. Apr 2009 A1
20090106655 Grant et al. Apr 2009 A1
20090115733 Ma et al. May 2009 A1
20090115734 Fredriksson et al. May 2009 A1
20090128376 Caine et al. May 2009 A1
20090128503 Grant et al. May 2009 A1
20090129021 Dunn May 2009 A1
20090132093 Arneson et al. May 2009 A1
20090135145 Chen et al. May 2009 A1
20090140989 Ahlgren Jun 2009 A1
20090160813 Takashima et al. Jun 2009 A1
20090167508 Fadell et al. Jul 2009 A1
20090167509 Fadell et al. Jul 2009 A1
20090167567 Halperin et al. Jul 2009 A1
20090167677 Kruse et al. Jul 2009 A1
20090167704 Terlizzi et al. Jul 2009 A1
20090174673 Ciesla Jul 2009 A1
20090174687 Ciesla et al. Jul 2009 A1
20090181724 Pettersson Jul 2009 A1
20090182501 Fyke et al. Jul 2009 A1
20090195512 Pettersson Aug 2009 A1
20090207148 Sugimoto et al. Aug 2009 A1
20090215500 You et al. Aug 2009 A1
20090231305 Hotelling et al. Sep 2009 A1
20090243998 Wang Oct 2009 A1
20090250267 Heubel et al. Oct 2009 A1
20090256817 Perlin et al. Oct 2009 A1
20090273578 Kanda et al. Nov 2009 A1
20090289922 Henry Nov 2009 A1
20090303022 Griffin et al. Dec 2009 A1
20090309616 Klinghult Dec 2009 A1
20100043189 Fukano Feb 2010 A1
20100045613 Wu et al. Feb 2010 A1
20100073241 Ayala et al. Mar 2010 A1
20100078231 Yeh et al. Apr 2010 A1
20100079404 Degner et al. Apr 2010 A1
20100090814 Cybart et al. Apr 2010 A1
20100097323 Edwards et al. Apr 2010 A1
20100103116 Leung et al. Apr 2010 A1
20100103137 Ciesla et al. Apr 2010 A1
20100109486 Polyakov et al. May 2010 A1
20100121928 Leonard May 2010 A1
20100141608 Huang et al. Jun 2010 A1
20100142516 Lawson et al. Jun 2010 A1
20100162109 Chatterjee et al. Jun 2010 A1
20100171719 Craig et al. Jul 2010 A1
20100171720 Craig et al. Jul 2010 A1
20100171729 Chun Jul 2010 A1
20100177050 Heubel et al. Jul 2010 A1
20100182135 Moosavi Jul 2010 A1
20100182245 Edwards et al. Jul 2010 A1
20100225456 Eldering Sep 2010 A1
20100232107 Dunn Sep 2010 A1
20100237043 Garlough Sep 2010 A1
20100238367 Montgomery et al. Sep 2010 A1
20100295820 Kikin-Gil Nov 2010 A1
20100296248 Campbell et al. Nov 2010 A1
20100298032 Lee et al. Nov 2010 A1
20100302199 Taylor et al. Dec 2010 A1
20100321335 Lim et al. Dec 2010 A1
20110001613 Ciesla et al. Jan 2011 A1
20110011650 Klinghult Jan 2011 A1
20110012851 Ciesla et al. Jan 2011 A1
20110018813 Kruglick Jan 2011 A1
20110029862 Scott et al. Feb 2011 A1
20110043457 Oliver et al. Feb 2011 A1
20110060998 Schwartz et al. Mar 2011 A1
20110074691 Causey et al. Mar 2011 A1
20110102462 Birnbaum May 2011 A1
20110120784 Osoinach et al. May 2011 A1
20110148793 Ciesla et al. Jun 2011 A1
20110148807 Fryer Jun 2011 A1
20110157056 Karpfinger Jun 2011 A1
20110157080 Ciesla et al. Jun 2011 A1
20110163978 Park et al. Jul 2011 A1
20110175838 Higa Jul 2011 A1
20110175844 Berggren Jul 2011 A1
20110181530 Park et al. Jul 2011 A1
20110193787 Morishige et al. Aug 2011 A1
20110194230 Hart et al. Aug 2011 A1
20110234502 Yun et al. Sep 2011 A1
20110241442 Mittleman et al. Oct 2011 A1
20110248987 Mitchell Oct 2011 A1
20110254672 Ciesla et al. Oct 2011 A1
20110254709 Ciesla et al. Oct 2011 A1
20110254789 Ciesla et al. Oct 2011 A1
20110306931 Kamen et al. Dec 2011 A1
20120032886 Ciesla et al. Feb 2012 A1
20120038583 Westhues et al. Feb 2012 A1
20120043191 Kessler et al. Feb 2012 A1
20120044277 Adachi Feb 2012 A1
20120056846 Zaliva Mar 2012 A1
20120062483 Ciesla et al. Mar 2012 A1
20120080302 Kim et al. Apr 2012 A1
20120098789 Ciesla et al. Apr 2012 A1
20120105333 Maschmeyer et al. May 2012 A1
20120120357 Jiroku May 2012 A1
20120154324 Wright et al. Jun 2012 A1
20120193211 Ciesla et al. Aug 2012 A1
20120200528 Ciesla et al. Aug 2012 A1
20120200529 Ciesla et al. Aug 2012 A1
20120206364 Ciesla et al. Aug 2012 A1
20120218213 Ciesla et al. Aug 2012 A1
20120218214 Ciesla et al. Aug 2012 A1
20120223914 Ciesla et al. Sep 2012 A1
20120235935 Ciesla et al. Sep 2012 A1
20120242607 Ciesla et al. Sep 2012 A1
20120306787 Ciesla et al. Dec 2012 A1
20130019207 Rothkopf et al. Jan 2013 A1
20130127790 Wassvik May 2013 A1
20130141118 Guard Jun 2013 A1
20130215035 Guard Aug 2013 A1
20130275888 Williamson et al. Oct 2013 A1
20140043291 Ciesla et al. Feb 2014 A1
20140132532 Yairi et al. May 2014 A1
20140160044 Yairi et al. Jun 2014 A1
20140160063 Yairi et al. Jun 2014 A1
20140160064 Yairi et al. Jun 2014 A1
20140176489 Park Jun 2014 A1
20150009150 Cho et al. Jan 2015 A1
20150015573 Burtzlaff et al. Jan 2015 A1
20150091834 Johnson Apr 2015 A1
20150091870 Ciesla et al. Apr 2015 A1
20150138110 Yairi et al. May 2015 A1
20150145657 Levesque et al. May 2015 A1
20150205419 Calub et al. Jul 2015 A1
20150293591 Yairi et al. Oct 2015 A1
Foreign Referenced Citations (40)
Number Date Country
1260525 Jul 2000 CN
1530818 Sep 2004 CN
1882460 Dec 2006 CN
2000884 Dec 2008 EP
190403152 Dec 1904 GB
108771 Aug 1917 GB
1242418 Aug 1971 GB
S63164122 Jul 1988 JP
10255106 Sep 1998 JP
H10255106 Sep 1998 JP
2006268068 Oct 2006 JP
2006285785 Oct 2006 JP
200964357 Mar 2009 JP
2009064357 Mar 2009 JP
2010039602 Feb 2010 JP
2010072743 Apr 2010 JP
2011508935 Mar 2011 JP
20000010511 Feb 2000 KR
100677624 Jan 2007 KR
20090023364 Nov 2012 KR
2004028955 Apr 2004 WO
2006082020 Aug 2006 WO
2008037275 Apr 2008 WO
2009002605 Dec 2008 WO
2009044027 Apr 2009 WO
2009067572 May 2009 WO
2009088985 Jul 2009 WO
2010077382 Jul 2010 WO
2010078596 Jul 2010 WO
2010078597 Jul 2010 WO
2011003113 Jan 2011 WO
2011087816 Jul 2011 WO
2011087817 Jul 2011 WO
2011108382 Sep 2011 WO
2011112984 Sep 2011 WO
2011118382 Sep 2011 WO
2011133604 Oct 2011 WO
2011133605 Oct 2011 WO
2013173624 Nov 2013 WO
2014047656 Mar 2014 WO
Non-Patent Literature Citations (5)
Entry
“Sharp Develops and Will Mass Produce New System LCD with Embedded Optical Sensors to Provide Input Capabilities Including Touch Screen and Scanner Functions,” Sharp Press Release, Aug. 31, 2007, 3 pages, downloaded from the Internet at: http://sharp-world.com/corporate/news/070831.html.
Essilor. “Ophthalmic Optic Files Materials,” Essilor International, Ser 145 Paris France, Mar. 1997, pp. 1-29, [retrieved on Nov. 18, 2014].Retrieved from the internet. URL: <http://www.essiloracademy.eu/sites/default/files/9.Materials.pdf>.
Jeong et al., “Tunable Microdoublet Lens Array,” Optical Society of America, Optics Express; vol. 12, No. 11. May 31, 2004, 7 Pages.
Lind. “Two Decades of Negative Thermal Expansion Research: Where Do We Stand?” Deparment of Chemistry, the University of Toledo, Materials 2012, 5, 1125-1154; doi:10.3390/ma5061125, Jun. 20, 2012 pp. 1125-1154, ([retrieved on Nov. 18, 2014]. Retrieved from the internet. URL: <https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=materials-05-01125.pdf>.
Preumont, A. Vibration Control of Active Structures: An Introduction, Jul. 2011.
Related Publications (1)
Number Date Country
20150177839 A1 Jun 2015 US
Provisional Applications (1)
Number Date Country
61325772 Apr 2010 US
Continuations (1)
Number Date Country
Parent 13090217 Apr 2011 US
Child 14635304 US