A current problem with speech and audio codecs is that they are used in adverse environments where the acoustic input signal is distorted by background noise and other artifacts. This causes several problems. Since the codec now has to encode both the desired signal and the undesired distortions, the coding problem is more complicated because the signal now consists of two sources and that will decrease encoding quality. But even if we could encode the combination of the two courses with the same quality as a single clean signal, the speech part would still be lower quality than the clean signal. The lost encoding quality is not only perceptually annoying but, importantly, it also increases listening effort and, in the worst case, decreases the intelligibility or increases the listening effort of the decoded signal.
WO 2005/031709 A1 shows a speech coding method applying noise reduction by modifying the codebook gain. In detail, an acoustic signal containing a speech component and a noise component is encoded by using an analysis through synthesis method, wherein for encoding the acoustic signal a synthesized signal is compared with the acoustic signal for a time interval, said synthesized signal being described by using a fixed codebook and an associated fixed gain.
US 2011/076968 A1 shows a communication device with reduced noise speech coding. The communication device includes a memory, an input interface, a processing module, and a transmitter. The processing module receives a digital signal from the input interface, wherein the digital signal includes a desired digital signal component and an undesired digital signal component. The processing module identifies one of a plurality of codebooks based on the undesired digital signal component. The processing module then identifies a codebook entry from the one of the plurality of codebooks based on the desired digital signal component to produce a selected codebook entry. The processing module then generates a coded signal based on the selected codebook entry, wherein the coded signal includes a substantially unattenuated representation of the desired digital signal component and an attenuated representation of the undesired digital signal component
US 2001/001140 A1 shows a modular approach to speech enhancement with an application to speech coding. A speech coder separates input digitized speech into component parts on an interval by interval basis. The component parts include gain components, spectrum components and excitation signal components. A set of speech enhancement systems within the speech coder processes the component parts such that each component part has its own individual speech enhancement process. For example, one speech enhancement process can be applied for analyzing the spectrum components and another speech enhancement process can be used for analyzing the excitation signal components.
U.S. Pat. No. 5,680,508 A discloses an enhancement of speech coding in background noise for low-rate speech coder. A speech coding system employs measurements of robust features of speech frames whose distribution are not strongly affected by noise/levels to make voicing decisions for input speech occurring in a noisy environment. Linear programing analysis of the robust features and respective weights are used to determine an optimum linear combination of these features. The input speech vectors are matched to a vocabulary of codewords in order to select the corresponding, optimally matching codeword. Adaptive vector quantization is used in which a vocabulary of words obtained in a quiet environment is updated based upon a noise estimate of a noisy environment in which the input speech occurs, and the “noisy” vocabulary is then searched for the best match with an input speech vector. The corresponding clean codeword index is then selected for transmission and for synthesis at the receiver end.
US 2006/116874 A1 shows a noise-dependent postfiltering. A method involves providing a filter suited for reduction of distortion caused by speech coding, estimating acoustic noise in the speech signal, adapting the filter in response to the estimated acoustic noise to obtain an adapted filter, and applying the adapted filter to the speech signal so as to reduce acoustic noise and distortion caused by speech coding in the speech signal.
U.S. Pat. No. 6,385,573 B1 shows an adaptive tilt compensation for synthesized speech residual. A multi-rate speech codec supports a plurality of encoding bit rate modes by adaptively selecting encoding bit rate modes to match communication channel restrictions. In higher bit rate encoding modes, an accurate representation of speech through CELP (code excited linear prediction) and other associated modeling parameters are generated for higher quality decoding and reproduction. To achieve high quality in lower bit rate encoding modes, the speech encoder departs from the strict waveform matching criteria of regular CELP coders and strives to identify significant perceptual features of the input signal.
U.S. Pat. No. 5,845,244 A relates to adapting noise masking level in analysis-by-synthesis employing perceptual weighting. In an analysis-by-synthesis speech coder employing a short-term perceptual weighting filter, the values of the spectral expansion coefficients are adapted dynamically on the basis of spectral parameters obtained during short-term linear prediction analysis. The spectral parameters serving in this adaptation may in particular comprise parameters representative of the overall slope of the spectrum of the speech signal, and parameters representative of the resonant character of the short-term synthesis filter
U.S. Pat. No. 4,133,976 A shows a predictive speech signal coding with reduced noise effects. A predictive speech signal processor features an adaptive filter in a feedback network around the quantizer. The adaptive filter essentially combines the quantizing error signal, the formant related prediction parameter signals and the difference signal to concentrate the quantizing error noise in spectral peaks corresponding to the time-varying formant portions of the speech spectrum so that the quantizing noise is masked by the speech signal formants.
WO 9425959 A1 shows use of an auditory model to improve quality or lower the bit rate of speech synthesis systems. A weighting filter is replaced with an auditory model which enables the search for the optimum stochastic code vector in the psychoacoustic domain. An algorithm, which has been termed PERCELP (for Perceptually Enhanced Random Codebook Excited Linear Prediction), is disclosed which produces speech that is of considerably better quality than obtained with a weighting filter.
US 2008/312916 A1 shows a receiver intelligibility enhancement system, which processes an input speech signal to generate an enhanced intelligent signal. In frequency domain, the FFT spectrum of the speech received from the far-end is modified in accordance with the LPC spectrum of the local background noise to generate an enhanced intelligent signal. In time domain, the speech is modified in accordance with the LPC coefficients of the noise to generate an enhanced intelligent signal.
US 2013/030800 1A shows an adaptive voice intelligibility processor, which adaptively identifies and tracks formant locations, thereby enabling formants to be emphasized as they change. As a result, these systems and methods can improve near-end intelligibility, even in noisy environments.
In [Atal, Bishnu S., and Manfred R. Schroeder. “Predictive coding of speech signals and subjective error criteria”. Acoustics, Speech and Signal Processing, IEEE Transactions on 27.3 (1979): 247-254] methods for reducing the subjective distortion in predictive coders for speech signals are described and evaluated. Improved speech quality is obtained: 1) by efficient removal of formant and pitch-related redundant structure of speech before quantizing, and 2) by effective masking of the quantizer noise by the speech signal.
In [Chen, Juin-Hwey and Allen Gersho. “Real-time vector APC speech coding at 4800 bps with adaptive postfiltering”. Acoustics, Speech and Signal Processing, IEEE International Conference on ICASSP'87. Vol. 12, IEEE, 1987] an improved Vector APC (VAPC) speech coder is presented, which combines APC with vector quantization and incorporates analysis-by-synthesis, perceptual noise weighting, and adaptive postfiltering.
An embodiment may have an audio encoder for providing an encoded representation on the basis of an audio signal, wherein the audio encoder is configured to acquire a noise information describing a noise included in the audio signal, and wherein the audio encoder is configured to adaptively encode the audio signal in dependence on the noise information, such that encoding accuracy is higher for parts of the audio signal that are less affected by the noise included in the audio signal than for parts of the audio signal that are more affected by the noise included in the audio signal; wherein frequency components that are less corrupted by the noise are quantized with less error whereas components which are likely to contain errors from the noise have a lower weight in the quantization process.
According to another embodiment, a method for providing an encoded representation on the basis of an audio signal may have the steps of: acquiring a noise information describing a noise included in the audio signal; and adaptively encoding the audio signal in dependence on the noise information, such that encoding accuracy is higher for parts of the audio signal that are less affected by the noise included in the audio signal than parts of the audio signal that are more affected by the noise included in the audio signal, wherein frequency components that are less corrupted by the noise are quantized with less error whereas components which are likely to contain errors from the noise having a lower weight in the quantization process.
Another embodiment may have a non-transitory digital storage medium having a computer program stored thereon to perform the method for providing an encoded representation on the basis of an audio signal, the method including: acquiring a noise information describing a noise included in the audio signal; and adaptively encoding the audio signal in dependence on the noise information, such that encoding accuracy is higher for parts of the audio signal that are less affected by the noise included in the audio signal than parts of the audio signal that are more affected by the noise included in the audio signal, wherein frequency components that are less corrupted by the noise are quantized with less error whereas components which are likely to contain errors from the noise having a lower weight in the quantization process, when said computer program is run by a computer.
Another embodiment may have a data stream carrying an encoded representation of an audio signal, wherein the encoded representation of the audio signal adaptively codes the audio signal in dependence on a noise information describing a noise included in the audio signal, such that encoding accuracy is higher for parts of the audio signal that are less affected by the noise included in the audio signal than parts of the audio signal that are more affected by the noise included in the audio signal, wherein frequency components that are less corrupted by the noise are quantized with less error whereas components which are likely to contain errors from the noise having a lower weight in the quantization process.
Another embodiment may have an audio encoder for providing an encoded representation on the basis of an audio signal, wherein the audio encoder is configured to acquire a noise information describing a background noise, and wherein the audio encoder is configured to adaptively encode the audio signal in dependence on the noise information by adjusting, in dependence on the noise information, a perceptual weighting filter used for encoding the audio signal; wherein the audio signal is a speech signal, and wherein the audio encoder is configured to derive a residual signal from the speech signal and to encode the residual signal using a codebook; wherein the audio encoder is configured to select a codebook entry of a plurality of codebook entries of a codebook for encoding the residual signal in dependence on the noise information; wherein the audio encoder is configured to adjust the perceptual weighing filter such that parts of the speech signal that are less affected by the noise are weighted more for the selection of the codebook entry than parts of the speech signal that are more affected by the noise; wherein the audio encoder is configured to select the codebook entry for the residual signal such that a synthesized weighted quantization error of the residual signal weighted with the perceptual weighting filter W is reduced or minimized.
Another embodiment may have an audio encoder for providing an encoded representation on the basis of an audio signal, wherein the audio encoder is configured to acquire a noise information describing a noise included in the audio signal, and wherein the audio encoder is configured to adaptively encode the audio signal in dependence on the noise information, such that encoding accuracy is higher for parts of the audio signal that are less affected by the noise included in the audio signal than for parts of the audio signal that are more affected by the noise included in the audio signal; wherein the audio signal is a speech signal, and wherein the audio encoder is configured to derive a residual signal from the speech signal and to encode the residual signal using a codebook; wherein the audio encoder is configured to select a codebook entry of a plurality of codebook entries of a codebook for encoding the residual signal in dependence on the noise information; wherein the audio encoder is configured to select the codebook entry using a perceptual weighting filter; wherein the audio encoder is configured to adjust the perceptual weighing filter such that parts of the speech signal that are less affected by the noise are weighted more for the selection of the codebook entry than parts of the speech signal that are more affected by the noise; wherein the audio encoder is configured to select the codebook entry for the residual signal such that a synthesized weighted quantization error of the residual signal weighted with the perceptual weighting filter W is reduced or minimized.
Another embodiment may have an audio encoder for providing an encoded representation on the basis of an audio signal, wherein the audio encoder is configured to acquire a noise information describing a noise included in the audio signal, and wherein the audio encoder is configured to adaptively encode the audio signal in dependence on the noise information, such that encoding accuracy is higher for parts of the audio signal that are less affected by the noise included in the audio signal than for parts of the audio signal that are more affected by the noise included in the audio signal; wherein the audio signal is a speech signal, and wherein the audio encoder is configured to derive a residual signal from the speech signal and to encode the residual signal using a codebook; wherein the audio encoder is configured to select a codebook entry of a plurality of codebook entries of a codebook for encoding the residual signal in dependence on the noise information; wherein the audio encoder is configured to derive linear prediction coefficients from the noise information, to thereby determine a linear prediction fit (ABCK), and to use the linear prediction fit (ABCK) in the perceptual weighting filter; and wherein the audio encoder is configured to adjust the perceptual weighting filter using the formula: W(z)=A(z/γ1)ABCK(z/γ2)Hde-emph(z), wherein W represents the perceptual weighting filter, wherein A represents a vocal tract model, ABCK represents the linear prediction fit, Hde-emph represents a quantized vocal tract synthesis filter, γ1=0.92, and γ2 is a parameter with which an amount of noise suppression is adjustable.
Embodiments provide an audio encoder for providing an encoded representation on the basis of an audio signal. The audio encoder is configured to obtain a noise information describing a noise included in the audio signal, wherein the audio encoder is configured to adaptively encode the audio signal in dependence on the noise information, such that encoding accuracy is higher for parts of the audio signal that are less affected by the noise included in the audio signal than for parts of the audio signal that are more affected by the noise included in the audio signal.
According to the concept of the present invention, the audio encoder adaptively encodes the audio signal in dependence on the noise information describing the noise included in the audio signal, in order to obtain a higher encoding accuracy for those parts of the audio signal, which are less affected by the noise (e.g., which have a higher signal-to-noise ratio), than for parts of the audio signal, which are more affected by the noise (e.g., which have a lower signal-to-noise ratio).
Communication codecs frequently operate in environments where the desired signal is corrupted by background noise. Embodiments disclosed herein address situations where the sender/encoder side signal has background noise already before coding.
For example, according to some embodiments, by modifying the perceptual objective function of a codec the coding accuracy of those portions of the signal which have higher signal-to-noise ratio (SNR) can be increased, thereby retaining quality of the noise-free portions of the signal. By saving the high SNR portions of the signal, an intelligibility of the transmitted signal can be improved and the listening effort can be decreased. While conventional noise suppression algorithms are implemented as a pre-processing block to the codec, the current approach has two distinct advantages. First, by joint noise-suppression and encoding tandem effects of suppression and coding can be avoided. Second, since the proposed algorithm can be implemented as a modification of perceptual objective function, it is of very low computational complexity. Moreover, often communication codecs estimate background noise for comfort noise generators in any case, whereby a noise estimate is already available in the codec and it can be used (as noise information) at no extra computational cost.
Further embodiments relate to a method for providing an encoded representation on the basis of an audio signal. The method comprises obtaining a noise information describing a noise included in the audio signal and adaptively encoding the audio signal in dependence on the noise information, such that encoding accuracy is higher for parts of the audio signal that are less affected by the noise included in the audio signal than for parts of the audio signal that are more affected by the noise included in the audio signal.
Further embodiments relate to a data stream carrying an encoded representation of an audio signal, wherein the encoded representation of the audio signal adaptively codes the audio signal in dependence on a noise information describing a noise included in the audio signal, such that encoding accuracy is higher for parts of the audio signal that are less affected by the noise included in the audio signal than for parts of the audio signal that are more affected by the noise included in the audio signal.
Embodiments of the present invention will be detailed subsequently referring to the appended drawings, in which:
Equal or equivalent elements or elements with equal or equivalent functionality are denoted in the following description by equal or equivalent reference numerals.
In the following description, a plurality of details are set forth to provide a more thorough explanation of embodiments of the present invention. However, it will be apparent to one skilled in the art that embodiments of the present invention may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form rather than in detail in order to avoid obscuring embodiments of the present invention. In addition, features of the different embodiments described hereinafter may be combined with each other unless specifically noted otherwise.
For example, the audio encoder 100 can comprise a noise estimator (or noise determiner or noise analyzer) 110 and a coder 112. The noise estimator 110 can be configured to obtain the noise information 106 describing the noise included in the audio signal 104. The coder 112 can be configured to adaptively encode the audio signal 104 in dependence on the noise information 106 such that encoding accuracy is higher for parts of the audio signal 104 that are less affected by the noise included in the audio signal 104 than for parts of the audio signal 104 that are more affected by the noise included in the audio signal 104.
The noise estimator 110 and the coder 112 can be implemented by (or using) a hardware apparatus such as, for example, an integrated circuit, a field programmable gate array, a microprocessor, a programmable computer or an electronic circuit.
In embodiments, the audio encoder 100 can be configured to simultaneously encode the audio signal 104 and reduce the noise in the encoded representation 102 of the audio signal 104 (or encoded audio signal) by adaptively encoding the audio signal 104 in dependence on the noise information 106.
In embodiments, the audio encoder 100 can be configured to encode the audio signal 104 using a perceptual objective function. The perceptual objective function can be adjusted (or modified) in dependence on the noise information 106, thereby adaptively encoding the audio signal 104 in dependence on the noise information 106. The noise information 106 can be, for example, a signal-to-noise ratio or an estimated shape of the noise included in the audio signal 104.
Embodiments of the present invention attempt to decrease listening effort or respectively increase intelligibility. Here it is important to note that embodiments may not in general provide the most accurate possible representation of the input signal but try to transmit such parts of the signal that listening effort or intelligibility is optimized. Specifically, embodiments may change the timbre of the signal, but in such a way that the transmitted signal reduces listening effort or is better for intelligibility than the accurately transmitted signal.
According to some embodiments, the perceptual objective function of the codec is modified. In other words, embodiments do not explicitly suppress noise, but change the objective such that accuracy is higher in parts of the signal where signal to noise ratio is best. Equivalently, embodiments decrease signal distortion at those parts where SNR is high. Human listeners can then more easily understand the signal. Those parts of the signal which have low SNR are thereby transmitted with less accuracy but, since they contain mostly noise anyway, it is not important to encode such parts accurately. In other words, by focusing accuracy on high SNR parts, embodiments implicitly improve the SNR of the speech parts while decreasing the SNR of noise parts.
Embodiments can be implemented or applied in any speech and audio codec, for example, in such codecs which employ a perceptual model. In effect, according to some embodiments the perceptual weighting function can be modified (or adjusted) based on the noise characteristic. For example, the average spectral envelope of the noise signal can be estimated and used to modify the perceptual objective function.
Embodiments disclosed herein are applicable to speech codecs of the CELP-type (CELP=code-excited linear prediction) or other codecs in which the perceptual model can be expressed by a weighting filter. Embodiments however also can be used in TCX-type codecs (TCX=transform coded excitation) as well as other frequency-domain codecs. Further, a use case of embodiments may be speech coding but embodiments also can be employed more generally in any speech and audio codec. Since ACELP (ACELP =algebraic code excited linear prediction) is a typical application, application of embodiments in ACELP will be described in detail below. Application of embodiments in other codecs, including frequency domain codecs will then be obvious for those skilled in the art.
A conventional approach for noise suppression in speech and audio codecs is to apply it as a separate pre-processing block with the purpose of removing noise before coding. However, by separating it to separate blocks there are two main disadvantages. First, since the noise-suppressor will generally not only remove noise but also distort the desired signal, the codec will thus attempt to encode a distorted signal accurately. The codec will therefore have a wrong target and efficiency and accuracy is lost. This can also be seen as a case of tandeming problem where subsequent blocks produce independent errors which add up. But joint noise suppression and coding embodiments avoid tandeming problems. Second, since the noise-suppressor is conventionally implemented in a separate pre-processing block, computational complexity and delay is high. In contrast to that, since according to embodiments the noise-suppressor is embedded in the codec it can be applied with very low computational complexity and delay. This will be especially beneficial in low-cost devices which do not have the computational capacity for conventional noise suppression.
The description will further discuss application in the context of the AMR-WB codec (AMR-WB=adaptive multi-rate wideband), because that is at the date of writing the most commonly used speech codec. Embodiments can readily be applied on top of other speech codecs as well, such as 3GPP Enhanced Voice Services or G.718. Note that a usage of embodiments may be an add-on to existing standards since embodiments can be applied to codecs without changing the bitstream format.
The audio encoder 100 can be configured to estimate a contribution of a vocal tract on the speech signal 104 and to remove the estimated contribution of the vocal tract from the speech signal 104 in order to obtain the residual signal 120. For example, the audio encoder 100 can comprise a vocal tract estimator 130 and a vocal tract remover 132. The vocal tract estimator 130 can be configured to receive the speech signal 104, to estimate a contribution of the vocal tract on the speech signal 104 and to provide the estimated contribution of the vocal tract 128 on the speech signal 104 to the vocal tract remover 132. The vocal tract remover 132 can be configured to remove the estimated contribution of the vocal tract 128 from the speech signal 104 in order to obtain the residual signal 120. The contribution of the vocal tract on the speech signal 104 can be estimated, for example, using linear prediction.
The audio encoder 100 can be configured to provide the quantized residual 126 and the estimated contribution of the vocal tract 128 (or filter parameters describing the estimated contribution 128 of the vocal tract 104) as encoded representation on the basis of the speech signal (or encoded speech signal).
∥WH(x−{circumflex over (x)})∥2
wherein x represents the residual signal, wherein {circumflex over (x)} represents the quantized residual signal, wherein W represents the perceptual weighting filter, and wherein H represents a quantized vocal tract synthesis filter. Thereby, W and H can be convolution matrices.
The codebook entry determiner 124 can comprise a quantized vocal tract synthesis filter determiner 144 configured to determine a quantized vocal tract synthesis filter H from the estimated contribution of the vocal tract A(z).
Further, the codebook entry determiner 124 can comprise a perceptual weighting filter adjuster 142 configured to adjust the perceptual weighting filter W such that an effect of the noise on the selection of the codebook entry is reduced. For example, the perceptual weighting filter W can be adjusted such that parts of the speech signal that are less affected by the noise are weighted more for the selection of the codebook entry than parts of the speech signal that are more affected by the noise. Further (or alternatively), the perceptual weighting filter W can be adjusted such that an error between the parts of the residual signal 120 that are less affected by the noise and the corresponding parts of the quantized residual 126 signal is reduced.
The perceptual weighting filter adjuster 142 can be configured to derive linear prediction coefficients from the noise information (106), to thereby determine a linear prediction fit (A_BCK), and to use the linear prediction fit (A_BCK) in the perceptual weighting filter (W). For example, perceptual weighting filter adjuster 142 can be configured to adjust the perceptual weighting filter W using the formula:
W(z)=A(z/γ1)ABCK(z/γ2)Hde-emph(z)
wherein W represents the perceptual weighting filter, wherein A represents a vocal tract model, ABCK represents the linear prediction fit, Hde-emph represents a de-emphasis filter, γ1=0.92, and γ2 is a parameter with which an amount of noise suppression is adjustable. Thereby, Hde-emph can be equal to 1/(1−0.68z−1).
In other words, the AMR-WB codec uses algebraic code-excited linear prediction (ACELP) for parametrizing the speech signal 104. This means that first the contribution of the vocal tract, A(z), is estimated with linear prediction and removed and then the residual signal is parametrized using an algebraic codebook. For finding the best codebook entry, a perceptual distance between the original residual and the codebook entries can be minimized. The distance function can be written as ∥WH(x−{circumflex over (x)})∥2, where x and {circumflex over (x)} are the original and quantized residuals, W and H are the convolution matrices corresponding, respectively, to H(z)=1/Â(z), the quantized vocal tract synthesis filter and W(z), the perceptual weighting, which is typically chosen as W(z)=A(z/γ1)Hde-emph(z) with γ1=0.92. The residual x has been computed with the quantized vocal tract analysis filter.
In an application scenario, additive far-end noise may be present in the incoming speech signal. Thus, the signal is y(t)=s(t)+n(t). In this case, both the vocal tract model, A(z), and the original residual contain noise. Starting from the simplification of ignoring the noise in the vocal tract model and focusing on the noise in the residual, the idea (according to an embodiment) is to guide the perceptual weighting such that the effects of the additive noise are reduced in the selection of the residual. Whereas normally the error between the original and quantized residual is wanted to resemble the speech spectral envelope, according to embodiments the error in the region which is considered more robust to noise is reduced. In other words, according to embodiments, the frequency components that are less corrupted by the noise are quantized with less error whereas components with low magnitudes which are likely to contain errors from the noise have a lower weight in the quantization process.
To take into account the effect of noise on the desired signal, first an estimate of the noise signal is needed. Noise estimation is classic topic for which many methods exist. Some embodiments provide a low-complexity method according to which information that already exists in the encoder is used. In an approach, the estimate of the shape of the background noise which is stored for the voice activity detection (VAD) can be used. This estimate contains the level of the background noise in 12 frequency bands with increasing width. A spectrum can be constructed from this estimate by mapping it to a linear frequency scale with interpolation between the original data points. An example of the original background estimate and the reconstructed spectrum is shown in
The obtained LP fit, ABCK(z) can be used as part of the weighting filter such that the new weighting filter can be calculated to
W(z)=A(z/γ1)ABCK(z/γ2)Hde-emph(z).
Here γ2 is a parameter with which the amount of noise suppression can be adjusted. With γ2→0 the effect is small, while for γ2≈1 a high noise suppression can be obtained.
In
Although some aspects have been described in the context of an apparatus, it is clear that these aspects also represent a description of the corresponding method, where a block or device corresponds to a method step or a feature of a method step. Analogously, aspects described in the context of a method step also represent a description of a corresponding block or item or feature of a corresponding apparatus. Some or all of the method steps may be executed by (or using) a hardware apparatus, like for example, a microprocessor, a programmable computer or an electronic circuit. In some embodiments, one or more of the most important method steps may be executed by such an apparatus.
The inventive encoded audio signal can be stored on a digital storage medium or can be transmitted on a transmission medium such as a wireless transmission medium or a wired transmission medium such as the Internet.
Depending on certain implementation requirements, embodiments of the invention can be implemented in hardware or in software. The implementation can be performed using a digital storage medium, for example a floppy disk, a DVD, a Blu-Ray, a CD, a ROM, a PROM, an EPROM, an EEPROM or a FLASH memory, having electronically readable control signals stored thereon, which cooperate (or are capable of cooperating) with a programmable computer system such that the respective method is performed. Therefore, the digital storage medium may be computer readable.
Some embodiments according to the invention comprise a data carrier having electronically readable control signals, which are capable of cooperating with a programmable computer system, such that one of the methods described herein is performed.
Generally, embodiments of the present invention can be implemented as a computer program product with a program code, the program code being operative for performing one of the methods when the computer program product runs on a computer. The program code may for example be stored on a machine readable carrier.
Other embodiments comprise the computer program for performing one of the methods described herein, stored on a machine readable carrier.
In other words, an embodiment of the inventive method is, therefore, a computer program having a program code for performing one of the methods described herein, when the computer program runs on a computer.
A further embodiment of the inventive methods is, therefore, a data carrier (or a digital storage medium, or a computer-readable medium) comprising, recorded thereon, the computer program for performing one of the methods described herein. The data carrier, the digital storage medium or the recorded medium are typically tangible and/or non-transitionary.
A further embodiment of the inventive method is, therefore, a data stream or a sequence of signals representing the computer program for performing one of the methods described herein. The data stream or the sequence of signals may for example be configured to be transferred via a data communication connection, for example via the Internet.
A further embodiment comprises a processing means, for example a computer, or a programmable logic device, configured to or adapted to perform one of the methods described herein.
A further embodiment comprises a computer having installed thereon the computer program for performing one of the methods described herein.
A further embodiment according to the invention comprises an apparatus or a system configured to transfer (for example, electronically or optically) a computer program for performing one of the methods described herein to a receiver. The receiver may, for example, be a computer, a mobile device, a memory device or the like. The apparatus or system may, for example, comprise a file server for transferring the computer program to the receiver.
In some embodiments, a programmable logic device (for example a field programmable gate array) may be used to perform some or all of the functionalities of the methods described herein. In some embodiments, a field programmable gate array may cooperate with a microprocessor in order to perform one of the methods described herein. Generally, the methods may be performed by any hardware apparatus.
The apparatus described herein may be implemented using a hardware apparatus, or using a computer, or using a combination of a hardware apparatus and a computer.
The methods described herein may be performed using a hardware apparatus, or using a computer, or using a combination of a hardware apparatus and a computer.
The above described embodiments are merely illustrative for the principles of the present invention. It is understood that modifications and variations of the arrangements and the details described herein will be apparent to others skilled in the art. It is the intent, therefore, to be limited only by the scope of the impending patent claims and not by the specific details presented by way of description and explanation of the embodiments herein.
While this invention has been described in terms of several embodiments, there are alterations, permutations, and equivalents which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and compositions of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations and equivalents as fall within the true spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
15163055 | Apr 2015 | EP | regional |
This application is a continuation of copending International Application No. PCT/EP2016/057514, filed Apr. 6, 2016, which is incorporated herein by reference in its entirety, and additionally claims priority from European Application No. EP 15 163 055.5, filed Apr. 9, 2015, which is incorporated herein by reference in its entirety. Embodiments relate to an audio encoder for providing an encoded representation on the basis of an audio signal. Further embodiments relate to a method for providing an encoded representation on the basis of an audio signal. Some embodiments relate to a low-delay, low-complexity, far-end noise suppression for perceptual speech and audio codecs.
Number | Name | Date | Kind |
---|---|---|---|
4133976 | Atal et al. | Jan 1979 | A |
5105463 | Veldhuis | Apr 1992 | A |
5369724 | Lim | Nov 1994 | A |
5621853 | Gardner | Apr 1997 | A |
5680508 | Liu | Oct 1997 | A |
5790759 | Chen | Aug 1998 | A |
5845244 | Proust | Dec 1998 | A |
5848387 | Nishiguchi | Dec 1998 | A |
6167375 | Miseki | Dec 2000 | A |
6298322 | Lindemann | Oct 2001 | B1 |
6385573 | Su et al. | May 2002 | B1 |
6523003 | Chandran | Feb 2003 | B1 |
6704705 | Kabal | Mar 2004 | B1 |
7392180 | Accardi et al. | Jun 2008 | B1 |
8724828 | Furuta | May 2014 | B2 |
8781842 | Taleb | Jul 2014 | B2 |
20010001140 | Accardi et al. | May 2001 | A1 |
20020116182 | Su et al. | Aug 2002 | A1 |
20020143527 | Gao | Oct 2002 | A1 |
20060116874 | Samuelsson et al. | Jun 2006 | A1 |
20080015855 | Suzuki | Jan 2008 | A1 |
20080312916 | Konchitsky et al. | Dec 2008 | A1 |
20090265167 | Ehara et al. | Oct 2009 | A1 |
20100174538 | Vos | Jul 2010 | A1 |
20110076968 | Seshadri | Mar 2011 | A1 |
20120253797 | Geiger | Oct 2012 | A1 |
20130030800 | Tracey et al. | Jan 2013 | A1 |
20130308001 | Jelinek | Nov 2013 | A1 |
20140214413 | Atti | Jul 2014 | A1 |
20180075854 | Bruhn | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
2001109496 | Apr 2001 | JP |
2469419 | Dec 2012 | RU |
9425959 | Nov 1994 | WO |
2005031709 | Apr 2005 | WO |
Entry |
---|
Atal, Bishnu S. et al., “Predictive coding of speech signals and subjective error criteria”, Acoustics, Speech and Signal Processing, IEEE Transactions on 27.3 (1979), 1979, pp. 247-254. |
Chen, Juin-Hwey et al., “Real-time vector APC speech coding at 4800 bps with adaptive postfiltering”, Acoustics, Speech and Signal Processing, IEEE International Conference on ICASSP'87.; vol. 12, IEEE, 1987. |
Raju, P. et al., “A modified EVRC algorithm for enhanced noise suppression and increased robustness”, International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT); 2011, XP032115138, Dec. 17, 2011, pp. 260-263. |
Number | Date | Country | |
---|---|---|---|
20180033444 A1 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2016/057514 | Apr 2016 | US |
Child | 15725115 | US |