In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the following description, various embodiments of the present invention are described with reference to the following drawings, in which:
In one embodiment of the invention, a multi-layer snack food product precursor is extruded from an extrusion machine in the form of a single, long bar, with an outer layer surrounding one or more inner portions. A cross-section of the bar may be substantially rectangular, square, oblong, circular, or any other appropriate shape.
The outer layer of a snack food product may be formed from a dough jacket, an outer covering formed from oatmeal embedded in a bonding material (such as, but not limited to, a sugar based syrup), or any other appropriate outer covering. The central portion of the snack bar may include a fruit filling (either as a solid or a jam), an oatmeal filling (possibly with fruit or other materials embedded within the oatmeal), or another appropriate snack food filling. Fat, carbohydrate, and protein based filings are also contemplated and are within the scope of the invention.
As the snack food product is extruded from an extrusion machine, the outer portion and/or the inner portion of the snack food product may not have set into a final form, but rather still be setting and/or cooling from a precursor form into a final, set form. While in this precursor form, the materials comprising the outer layer and inner layer may be soft, pliable, and easily cut and/or deformable.
As the snack food product precursor is extruded from the extrusion machine, a slit blade may be lowered into the outer layer of the product precursor to block the outer layer for a brief period and, therefore, expose a portion of the center of the snack food. An example of this embodiment can be seen in
In this embodiment, a snack food product precursor 100 including an inner layer 110 and an outer layer 120 is extruded from an extrusion machine 130 in the form of a long single bar of material. As the product precursor 100 is extruded, a slit blade 140 may be lowered into the material to block a portion of the material from leaving the extrusion machine 130. The depth 150 to which the slit blade 140 projects into the material can be accurately controlled to allow the slit blade 140 to block all of a portion of the outer layer 120 while leaving the inner portion 110 of the food product substantially untouched.
As the product precursor 100 continues to be extruded, the positioning of the slit blade 140 will have the effect of producing a cavity 160 behind the slit blade 140, exposing the inner portion 110 of the material within that cavity 160. The length 170 of the cavity 160 can be controlled by holding the slit blade 140 in place for a given length of time and then removing it from the material. If the snack food product 100 is extruded from the extrusion machine 130 at a constant velocity, then the length of the cavity 160 is linearly related to the length of time the slit blade 140 is held within the outer layer 120 of the product precursor 100. Lengthening the time that the slit blade 140 is held in place will result in a longer cavity 160, while shortening the time will result in a shorter cavity 160. In an alternative embodiment, the length 170 of the cavity 160 formed within the food product precursor 100 can be varied by holding the slit blade 140 within the outer layer 120 of the material for a set length of time, while varying the extrusion speed of the material.
The width 180 of the cavity 160 is determined by the width of the slit blade 140. As a result, cavities of different widths can be created easily by using slit blades of greater of lesser width. The depth of the cavity 160 can be increased or decreased by simply changing the distance by which the slit blade 140 is lowered.
In one embodiment of the invention, the slit blade 140 may be raised and lowered using a motor and gear assembly. The motor may be controlled by an extrusion machine controller, providing accurate, repeatable motion of the slit blade 140. In an alternative embodiment, any other appropriate means of repeatably raising and lowering the slit blade 140 may be utilized. As a result, the depth 150 of travel of the slit blade 140 into the material, the frequency at which the slit blade 140 is lowered (controlling the number and regularity of cavities), and the length of time that the slit blade 140 is lowered for each cavity 160, can be controlled by the motor controller. The slit blade 140 can, therefore, easily be adjusted to create different sized and shaped cavities at different frequencies, as required. The slit blade 140 may be manufactured from a metal, such as, but not limited to, stainless steel or aluminum, a plastic, or any other appropriate food grade material.
The slit blade 140 may be moved in and out of the food product material in a number of different ways. In one embodiment of the invention, as shown in
In the embodiment of
In the embodiments of
The angle at which the slit blade impacts the outer layer of the food product precursor 100 may also be varied. Example impact angles are shown in
In one embodiment of the invention, a slit blade may be formed in different shapes, to provide differently shaped cavities within the final food product. An example of an alternative slit blade can be seen in
In an alternative embodiment, the shape of the slit blade may also be changed. For example, the slit blade may be manufactured from a sheet of metal as a simple rectangular plate, or be fashioned with a sharp or curve edge, as required. In a further alternative embodiment, the slit blade may be slideable across the width of the extruded food product precursor 100, allowing slits to be created at different locations across the width of the food product, as required by a user.
In the above embodiments of the invention, the slit blade was located outside the exit of the extrusion machine; however, the slit blade may also be located at other locations within the extrusion process to create the slit cavities. Example slit blade locations are shown in
In the embodiment of
In an alternative embodiment of the invention, the snack food product may include a plurality of inner layers, with one or more intermediate layers being placed between the outer layer and the central portion. In this embodiment, a slit blade may be configured to provide a slit down to the boundary of any one of the inner layers. In an alternative embodiment, the depth of the slit blade may be varied such that different slits provide a view of the surface of different interior layers, allowing a consumer to view all the materials making up the snack food product. Multiple layered food products may be produced by, for example, triple or quadruple extrusion processes. Additionally, multiple slit blades may be used to provide openings or varying shape and depth, as shown in
The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments, therefore, are to be considered in all respects illustrative rather than limiting the invention described herein. Scope of the invention is thus indicated by the appended claims, rather than by the foregoing description, and all changes that come within the meaning and range of equivalency of the claims are intended to be embraced therein.
This application claims priority to and the benefit of U.S. provisional patent application Ser. No. 60/836,476, filed Aug. 9, 2006, the disclosure of which is being incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60836476 | Aug 2006 | US |