Applicant claims priority under 35 U.S.C. § 119 of European Application No. 21177078.9 filed Jun. 1, 2021, the disclosure of which is incorporated by reference.
The invention pertains to a method for adjusting at least one parameter range of a device parameter of a floor treatment device for treating a surface, wherein said parameter range is available on the floor treatment device and depends on a floor type of the surface to be treated, and wherein the parameter range comprises a defined scope of device parameter values that can be selected by the user for the treatment of the surface.
In addition, the invention pertains to a floor treatment device with a control unit designed for carrying out such a method, as well as to a system with a floor treatment device and a terminal that is external to the floor treatment device, wherein an application designed for controlling a method of the aforementioned type is installed on the external terminal.
Methods of the aforementioned type are known from the prior art and usually carried out by a manufacturer of the floor treatment device in order to adjust defined parameter ranges for the operation of the floor treatment device for a surface treatment on the floor treatment device. In this case, suitable parameter ranges, within the parameter limits of which the user can adjust a device parameter of the floor treatment device for the treatment of the surface, are predefined for conventional household surfaces to be treated, particularly for the floor types installed on those surfaces such as carpeted floors, wooden floors, tiled floors, etc. For example, an adjustable device parameter may be a rotational speed of a rotating cleaning brush, a suction power of a fan of the floor treatment device, etc. The user can select the respective device parameter by means of an actuating element on the floor treatment device, e.g. by means of a rotary knob, a touchscreen, a sliding switch or the like. The actuating element can be adjusted between a minimum value and a maximum value for the respective device parameter as required. It is also known to provide multiple actuating elements of this type on a floor treatment device in order to enable the user to adjust different device parameters for the treatment of a surface.
Although the aforementioned methods and the corresponding floor treatment devices have proved to be successful in the prior art, they are only adapted to a limited number of different surfaces to be treated by the manufacturer such that there may also be surfaces, which do not fall in any of the pre-adjusted categories and therefore cannot be optimally treated. Alternatively, the user of the floor treatment device would have to manually try out device parameters without knowing which device parameters provide optimal prerequisites for the treatment of the respective floor surface.
Based on the above-described prior art, the invention therefore aims to enhance a method of the aforementioned type in such a way that the user can optimally adjust the floor treatment device to individual surfaces to be treated.
In order to attain this objective, the invention proposes that the user moves the floor treatment device over the surface to be treated during an adjustment process, wherein a limiting device parameter, which is dependent on the nature of the surface and upon its use for the treatment of the surface leads to a predefined fault, is automatically determined during the movement of the floor treatment device, and wherein the parameter range is automatically adjusted based on the determined limiting device parameter in that the limiting device parameter defines a range end of the parameter range.
According to the invention, the user therefore is able to adapt the floor treatment device to the requirements of his household, particularly to the floor types installed therein. It is obviously advantageous to adjust the floor treatment device differently for different types of floor coverings, e.g., for different carpeted floors, different hard floors such as tiled floors, wooden floors, PVC floors, etc. The different adjustments concern different device parameters that are particularly advantageous for a treatment of the respective surface. The surface may be treated, for example, by means of vacuuming, wet or dry wiping, polishing, grinding, waxing or the like. The user therefore can calibrate his personal floor treatment device to the floor coverings installed in his household in order to achieve the best floor treatment possible. This eliminates a disadvantage of the relevant prior art, namely that pre-adjusted parameter ranges on a commercially available floor treatment device basically only make it possible to optimally treat a finite portion of potential floor types. Due to the associated generalization, some floor types possibly are not optimally treated because the user has to choose one of multiple pre-adjustments that, however, may not be optimally adapted to his own floor coverings. According to the inventive method, the user is instructed to move the floor treatment device over the surface to be treated for an adjustment process such that properties of the traversed floor surface or a resulting behavior of the floor treatment device can be respectively determined. This in turn leads to the determination of the optimal parameter range for the surface.
An optimal device parameter for the respective surface can be adjusted by the user between certain range limits for a floor treatment activity, e.g. depending on whether a particularly careful, a particularly intensive, a particularly fast, a particularly thorough cleaning process or the like is desired. An exemplary device parameter that can be adjusted by the user is a suction power of a fan or a rotational speed of a cleaning brush. While the user moves the floor treatment device over the surface to be subsequently treated in the course of an adjustment process, the relevant device parameter of the floor treatment device is either adjusted automatically by a control unit of the floor treatment device or the user is instructed to adjust the device parameter himself by the floor treatment device or a terminal linked thereto. The adjustment of the device parameter preferably takes place automatically starting from a minimum limiting device parameter up to a maximum limiting device parameter, at which a fault occurs that can be detected by the user and/or a detection unit of the floor treatment device. For example, the minimum limiting device parameter may have the value zero, but can also be individually assigned a different value if the value “zero” of the device parameter or another low value causes a fault. In addition, the user may initially predefine rough minimum and maximum limits of the parameter range. For example, the user could already predefine a floor type of the surface to be treated, e.g. that the surface is a floor covering that does not adhere to a substructure. Relatively high values for brush rotational speeds and a moderate value for a volume flow of a suction fan can thereby be directly defined. On a very deep-pile floor or on a fur, for example, the rotational speed of a cleaning brush basically could be set to the value zero and only a volume flow of a suction fan could be adapted. The subsequent process for a precise adjustment of the parameter range then takes place as described herein. In this context, it is furthermore preferred that the limiting device parameter is the value of the device parameter, at which no fault has yet occurred the last time. The occurrence of a fault therefore can be precluded with high probability. A fault should not be interpreted in the strict sense, but rather may be a certain situation that the user defines for a termination of the adjustment process. For example, a “fault” may also be a manual termination of the adjustment process, which basically does not represent a fault in the strict sense. In addition, certain device states may likewise be defined as a fault by the user, e.g., because a noise emission of the floor treatment device or a power consumption of an electric consumer of the floor treatment device exceeds a desired value.
In addition to the above-described adjustment process, the user may also be provided with previously established parameter ranges for certain surface types to be selected in the course of the method, wherein the described adjustment process can then be started beginning at the parameter limits of said parameter ranges. For example, the previously established adjustments may also be stored in a memory in a user-dependent manner such that a specific preselection is made available to a respective user. In any case, the predefined adjustments are not binding, but rather can also be rejected or modified by the user. Predefined adjustments furthermore can be overwritten. It is likewise possible to change or overwrite the parameter ranges adjusted in the course of the inventive adjustment process such that the user has the option of repeating an adjustment process at any time. This is useful, in particular, when the user changes floor coverings in his residence due to wear or the like.
It is particularly proposed that two limiting device parameters, which define the range ends of the same parameter range, are determined in the course of the adjustment process by varying the device parameter from a minimum value, which can still be used without the occurrence of a fault, up to a maximum value, which can still be used without the occurrence of a fault. The variation of the device parameter may either take place in discrete value increments or continuously. If two or more device parameters, which a user usually would like to adjust, are essential for a surface treatment, for example, the adjustment process may take place in such a way that a parameter range for a first device parameter is initially determined while a second device parameter is kept constant. As soon as this parameter range is adjusted, the constant second device parameter can be set to a higher constant value and the first device parameter can in turn be varied in order to determine the relevant range limits. In this way, two or more device parameters can be adapted independently of one another.
It is advantageously proposed that the user adjusts the parameter range by means of an application installed on a terminal that is external to the floor treatment device. In the course of the adjustment process, the application can instruct the user to perform certain actions for varying the respective device parameter himself. Alternatively, the application can control a variation of the respective device parameter on the floor treatment device in a fully automated manner. To this end, the external terminal with the application installed thereon is connected to the floor treatment device via a communication link such as WLAN or Bluetooth. The floor treatment device and the external terminal particularly may be integrated into a home network of the user and communicate with one another via this home network. The application installed on the external terminal preferably provides a user interface, by means of which the user can make manual entries and/or retrieve information, on a touchscreen of the terminal. Previously established basic adjustments for certain floor types may also be offered to the user on a display of the external terminal such that the user can start an adjustment process beginning at predefined rough limit device parameters of a provisionally specified parameter range.
The application advantageously can control a predefined calibration process on the floor treatment device, wherein said calibration process includes the determination of the limiting device parameter to be adjusted on the floor treatment device by successively approximating the controlled device parameter to the limiting device parameter defined by an occurrence of a fault. Consequently, the application directly controls the adjustment process of the floor treatment device and acts upon a control unit of the floor treatment device. Furthermore, the application can also monitor the occurrence of a predefined fault. However, it is also possible that a fault is monitored by an evaluation unit of the floor treatment device itself. The evaluation unit of the floor treatment device can then notify the application of the external terminal of the detected fault such that the application can link the previously adjusted parameter values with the occurrence of the fault, as well as advantageously store the corresponding parameter values.
It is furthermore proposed that the device parameter being adjusted is a suction volume flow of a fan of the floor treatment device, a rotational speed of a rotating floor treatment element, a frequency of an oscillating floor treatment element, a moving speed of the floor treatment device over the surface to be treated and/or a fluid quantity applied on the surface to be treated by the floor treatment device. The aforementioned adjustable device parameters typically are relevant for a treatment quality of certain floor types. If the floor treatment device is a vacuum cleaner, for example, a suction volume flow of a fan and a rotational speed or oscillation frequency of a floor treatment element are particularly relevant device parameters. A quantity of a fluid applied on the surface to be treated or a floor treatment element is particularly relevant for wet wiping devices. In addition, a treatment quality also depends on the moving speed of a self-propelled floor treatment device over the surface to be treated. It is advantageous to keep the moving speed of the floor treatment device over the surface to be treated is slow as possible for floor types requiring particularly intensive treatment such that the exposure time per surface segment is as long as possible.
A fault or multiple faults are predefined as proposed above. These faults serve for specifying range limits of the parameter range to be adjusted. A drop of a suction volume flow of a fan of the floor treatment device below a minimum value, a blockage of a movable floor treatment element, a drop of a moving speed of the floor treatment device below a minimum value, an excessive energy consumption of an electrical consumer of the floor treatment device beyond a maximum value, an excessive moving resistance of the floor treatment device beyond a maximum value, a withdrawal of a floor covering from the surface to be treated, an excessive sound emission of the floor treatment device beyond a maximum value, an excessive degree of moisture of the surface to be treated beyond a maximum value, an excessive degree of moisture of a floor treatment element of the floor treatment device beyond a maximum value and/or a reception of a stop command of a user for terminating the adjustment process particularly may be defined as faults. The preceding list is not conclusive. Other faults may also be predefined within the scope of the invention. Faults typically cause the floor treatment device to function incorrectly or mean a manual termination by a user of the floor treatment device. The occurrence of a thusly defined fault leads an end of the inventive adjustment process. With respect to conventional vacuum cleaners, for example, the adjustment process may be carried out until a fault occurs, wherein this fault means that the maximum values for the volume flow of a suction fan and a rotational speed of a cleaning brush are reached, that a cleaning brush is blocked, e.g., due to an excessive engagement of the cleaning brush into a carpeted floor, that a force to be applied by a user for moving the floor treatment device is excessively high, that a vacuum in the floor treatment device increases excessively, e.g. when an unglued carpet is lifted off a substructure and then completely covers a suction channel of the cleaning device, or that the user manually terminates the adjustment process by pushing a button on the cleaning device or an external terminal.
The fault preferably is defined by a user prior to the adjustment process or may alternatively be predefined by the manufacturer. If faults are already predefined by the manufacturer of the floor treatment device, they are preferably stored in a local memory of the floor treatment device or can be retrieved from a server of the manufacturer by the floor treatment device or an external terminal that is communicatively linked to the floor treatment device.
In addition, the determined limiting device parameter may be stored in a memory of the floor treatment device and/or a memory of the external terminal and/or a memory of an external server. It is furthermore proposed that the adjusted parameter range is assigned to an actuating element of the floor treatment device that can be manually actuated by the user, wherein the user selects a desired value of the device parameter for a floor treatment of the surface within the limits of the pre-adjusted parameter range by actuating the actuating element. The assignments between certain actuating elements of the floor treatment device and the optimal parameter ranges determined by means of the adjustment process may be stored in a memory of the floor treatment device and/or a memory of the external terminal and/or a memory of an external server. An assignment particularly can be associated, for example, with one of multiple selectable stages of an actuating element by an application installed on the external terminal. In this case, each stage can be optimized for a certain floor type such as a hard floor, a short-pile carpeted floor, a deep-pile carpeted floor, etc. Assignments can be deleted again once they have been established and stored, but these assignments advantageously remain available in a memory for future access. In this way, assignments can be adjusted anew once they have been specified. It is particularly advantageous that assignments between actuating elements and predefined parameter ranges are also synchronized by means of a server such that they continue to be available for access by a user, e.g. in the event of a replacement of a mobile terminal.
In addition to the above-described inventive method for adjusting at least one parameter range available on the floor treatment device for treating a surface, the invention also proposes a floor treatment device with a control unit that is designed for carrying out a method of the aforementioned type. Furthermore, a system with a floor treatment device and a terminal that is external to the floor treatment device is proposed, wherein an application designed for controlling such an adjustment process for a parameter range is installed on the external terminal. In order to avoid unnecessary repetitions, we refer to the preceding explanations regarding the inventive method in this respect. The characteristics and advantages described with reference to the inventive method also apply accordingly to the inventive floor treatment device and the inventive system, respectively.
Other objects and features of the invention will become apparent from the following detailed description considered in connection with the accompanying drawings. It is to be understood, however, that the drawings are designed as an illustration only and not as a definition of the limits of the invention.
In the drawings,
The user can optimize his floor treatment device 1 for the individual floor coverings of the surfaces 2 to be cleaned in his household by using the application installed on the external terminal 9. To this end, device parameters 4 of the floor treatment device 1 used for the floor treatment of the surfaces 2 are adjusted, i.e. calibrated, to the individual properties of the surfaces 2 in the household of the user. However, the floor treatment device 1 can be analogously calibrated to surfaces 2 that do not form part of a household environment, but rather a commercial environment such as a store, an office, a storage building, etc. The function of the invention remains the same.
The application installed on the external terminal 9 enables the user to adjust his floor treatment device 1 to his individual surfaces 2 in a few simple steps and to thereby achieve an optimal floor treatment result. In the case of a cleaning device, an optimal floor treatment result may be interpreted, for example, based on a quantity of particles picked up by the floor treatment device 1. As a result of the invention, the user furthermore experiences optimal handling of the floor treatment device 1 and all components of the floor treatment device 1 function in a trouble-free manner. This includes, for example, that floor treatment element 10 such as the rotating cleaning brush does not jam, that the floor treatment device 1 can be moved over the surface 2 to be treated with a low expenditure of force, that carpets lying loosely on a substructure are not lifted off the substructure and the like. To this end, the user initially has to start the application on his external terminal 9 and carry out displayed calibration steps, which serve for adjusting at least one parameter range 3 of a device parameter 4 of the floor treatment device 1 available on his floor treatment device 1. The example according to
Furthermore, so-called faults are stored in the application by the manufacturer of the floor treatment device 1 or also by the user, wherein said faults should lead to the termination of an adjustment step during the calibration. Due to the definition of such a fault or multiple faults, the user can only operate the floor treatment device 1 in a parameter range 3 of the respective device parameter 4, which allows a trouble-free and successful treatment of the surface 2, at a later time, i.e. after the calibration is completed. In the present example, a fault may be defined as a blockage of the rotating floor treatment element 10 or the occurrence of a maximum force to be exerted by the user in order to move the floor treatment device 1 over the surface 2. Other faults may be characterized, for example, by a maximum value for the volume flow, a maximum value for the vacuum at the suction mouth 16, a withdrawal of the floor covering from a substructure, etc. However, a fault may also be a manual termination of the calibration process by the user although this does not represent a fault in the strict sense. For example, the user can terminate the calibration process for the respective device parameter 4 with a button on the floor treatment device 1 or with an entry on the display 13 of the external terminal 9. If a predefined fault for the usable parameter range 3 of the device parameter 4 is detected during the adjustment process, the calibration step is terminated and the last adjustment prior to the occurrence of the fault preferably is used as limiting device parameter 5, 6. This limiting device parameter 5, 6, which still allows an optimal treatment of the surface 2, respectively defines a lower range end 7 or an upper range end 8 of the parameter range 3 that is subsequently available to the user during the use of the floor treatment device 1. The application furthermore enables the user to select the actuating element 12 on the floor treatment device 1, by means of which the device parameter 4 should be controllable.
In
The user can also adjust certain combinations of base units 17 and attachments 15 to individual surfaces 2 just as described above. A person skilled in the art knows that the adjusted device parameters 4 may not only be a rotational speed of a floor treatment element 10 or a volume flow of a fan, but rather also any other type of device parameter 4 such as a frequency of an oscillating floor treatment element 10, a moving speed of a self-propelled floor treatment device 1 traveling over the surface 2, a fluid quantity applied on the surface 2 to be treated or on a floor treatment element 10 of the floor treatment device 1, etc. Furthermore, faults other than those mentioned above may also be defined.
Although only a few embodiments of the present invention have been shown and described, it is to be understood that many changes and modifications may be made thereunto without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
21177078 | Jun 2021 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
20180360283 | Hackert | Dec 2018 | A1 |
20190204851 | Afrouzi | Jul 2019 | A1 |
20190365177 | Gordon | Dec 2019 | A1 |
20200154968 | Terry | May 2020 | A1 |
20200315418 | Howard | Oct 2020 | A1 |
Number | Date | Country | |
---|---|---|---|
20230000300 A1 | Jan 2023 | US |