This invention relates to chemical-thermal treatment techniques of porous metal materials. For the first time, it proposes adjusting pore diameters of porous metal materials by chemical-thermal treatments, so as to not only ensure filtration precision, but also improve the surface properties of the porous metal materials. Furthermore, this invention relates to the pore structures of the porous metal materials after the chemical-thermal treatments.
Chemical-thermal treatment is a thermal treatment process in which a metallic workpiece is placed in an active medium with a certain temperature, and one or more elements permeate into its surface. Thus, its chemical composition, microstructure and properties are changed. There are many kinds of chemical-thermal treatment methods, and the most common methods are carburizing, nitriding and carbonitriding. The purpose for chemical-thermal treatments in general is to improve the surface wear resistance, fatigue strength, corrosion resistance and high temperature oxidation resistance. The article “Behavior and Mechanism of TiAl Based Alloy Surface Carburization” by Yao Jiang, Yuehui He, et. al., published in Vol. 19, No. 2, Chinese Journal of Materials Research, April 2005, proposed that the high temperature oxidation resistance of TiAl based alloy can be improved through carburizing. Another article, “The Surface Carburizing Treatment Methods of TiAl Based Alloys” by Qiang Xu, Xin-yan Tang and Yang Pu present a similar view. Currently, chemical-thermal treatment processes are mainly used to improve surface properties of relatively dense metallic materials, whereas its application on porous metal materials has not been reported yet.
On the other hand, due to the permeability of porous metal materials, a variety of filter elements made of porous metal materials have been developed. Common porous metal materials are stainless steels, copper and copper alloys, nickel and nickel alloys, titanium and titanium alloys. These kinds of porous metal materials have relatively good machinability but relatively poor corrosion resistance. Another kind of porous metal materials are aluminum-based intermetallic compound porous materials, mainly including TiAl intermetallic compound porous materials, NiAl intermetallic compound porous materials and FeAl intermetallic compound porous materials. These porous metal materials have both excellent machinability and good corrosion resistance. Both the common porous metal materials and the Al-based intermetallic compound porous materials are manufactured by powder metallurgy methods, and in the manufacturing process many factors can affect the final pore diameters of the porous metal materials, such as the average particle size, particle size distribution, particle shape and sintering temperature.
In summary, for now people in this field usually adjust the pore diameters only from the perspective of powder metallurgy processes to fit different filtering requirements. Since adjusting the powder metallurgy processes would easily change the mechanical properties of the materials, feasible solutions can be ascertained usually through a lot of trials, and the range of adjustable pore diameters is limited.
This invention intends to provide a method for adjusting pore diameters of porous metal materials through chemical-thermal treatments.
For this purpose, the method for adjusting pore diameters of porous metal materials is permeating at least one element into the pores of the materials, and the average pore diameter is reduced within a certain range. When an element permeates into the pore surfaces of the porous metal materials, lattice distortion inflation or new phase layers form on the inner surfaces of the pores, so the original pores of the porous metal materials shrink and the purpose of adjusting pore diameters is realized. Therefore, this method for adjusting pore diameters referred in the invention is more convenient and controllable than the current methods for adjusting pore diameters; further, because the method only treats the surfaces of the materials, the mechanical properties of the materials will not be significantly affected.
Considering the general needs of filtration, the preferred method in the current invention is that by permeating at least one element into the pore surfaces of the materials, the average pore diameter is reduced to 0.05˜100 μm.
The amount of reduction of the average pore diameter is related to the particular chemical-thermal treatment process. If the amount of reduction of the average pore diameter of the materials is very small, the practical effect of the current invention in the aspect of adjusting pore diameters is reduced. Whereas if the amount of reduction of the average pores diameter of the materials is very large, the original pores of the porous metal material might be closed, resulting in significant reduction of the filtration flux. Thus, the preferred solution of the current invention is that by permeating at least one element into the pore surfaces of the materials, the average pore diameter is reduced by 0.1˜100 μm.
Furthermore, the porous metal materials are the Al-based porous intermetallic compound materials. Preferably, the Al-based porous intermetallic compound materials are one type of TiAl porous intermetallic compound materials, NiAl porous intermetallic compound materials or FeAl porous intermetallic compound materials.
Preferably, the permeating element is at least one of carbon, nitrogen, boron, sulfur, silicon, aluminum and chromium.
The specific process of the current invention for carburizing TiAl intermetallic compound porous material is: first the TiAl intermetallic compound porous material was placed in an active carburizing atmosphere and maintained at 800˜1200° C. for 1˜12 h in the furnace with controlled carbon potential of 0.8%˜1.0%, and the and the final thickness of the carburized layers obtained are thickness 1˜30μm.
The specific process of the current invention for carburizing NiAl intermetallic compound porous material is: first the NiAl intermetallic compound porous material was placed in an active carburizing atmosphere and maintained at 800˜1200° C. for 2˜10 h in the furnace with carbon potential of 1.0%˜1.2%, and the final thickness of the carburized layers obtained are thickness 0.5˜25 μm.
The specific process of the current invention for carburizing FeAl intermetallic compound porous material is: first the FeAl intermetallic compound porous material was placed in an active carburizing atmosphere and maintained at 800˜1200° C. for 1˜9 h in the furnace with controlled carbon potential of 0.8%˜1.2%, and the final thickness of the carburized layers obtained are thickness 1˜50 μm,
The above-described carburizing processes for porous TiAl intermetallic compound porous materials, NiAl intermetallic compound porous materials and FeAl intermetallic compound porous materials can result in carburized layers of the thickness of 10−1 μm˜10 μm, so that precise control of the thickness of the carburized layers can be achieved. Also, maintaining the thickness of carburized layers within this range can significantly improve the high temperature oxidation resistance and corrosion resistance of the materials.
The specific process of the current invention for nitriding TiAl intermetallic compound porous material is: first the TiAl intermetallic compound porous material was placed in an active nitriding atmosphere and maintained at 800˜1000° C. for 4˜20 h, while the nitrogen potential in the furnace, with controlled nitrogen potential of 0.8%˜1.0%, and the final nitrided layers obtained thickness are 0.5˜20 μm.
The specific process of the current invention for nitriding NiAl intermetallic compound porous material is: first the NiAl intermetallic compound porous material was placed in an active nitriding atmosphere and maintained at 700˜900° C. for 2˜26 h in the furnace with controlled carbon potential of 1.0%˜1.2%, and the final nitrided layers obtained are thickness 0.5˜15 μm.
The specific process of the current invention for nitriding FeAl intermetallic compound porous material is: first the FeAl intermetallic compound porous material was placed in an active nitriding atmosphere and maintained at 550˜750° C. for 2˜18 h in the furnace with controlled carbon potential of 0.8%˜1.2%, and the final nitrided layers obtained are thickness 1˜25 μm.
The above-described nitriding processes for porous TiAl intermetallic compound porous materials, NiAl intermetallic compound porous materials and FeAl intermetallic compound porous materials can result in nitrided layers of the thickness of 10−1 μm˜10 μm, so that precise control of the thickness of the nitride layers are achieved. Also, maintaining the thickness of the nitride layers to be within this range can significantly improve the corrosion resistance of the materials.
The specific process of the current invention for carbonitriding TiAl intermetallic compound porous material is: first the TiAl intermetallic compound porous material was placed in an active carbonitriding atmosphere and maintained at 800˜1000° C. for 1˜16 h in the furnace with controlled carbon potential of 0.8%˜1.0%, and the final carbonitrided layers obtained are thickness 0.5˜25 μm.
The specific process of the current invention for carbonitriding NiAl intermetallic compound porous material is: first the NiAl intermetallic compound porous material was placed in an active carbonitriding atmosphere and maintained at 750˜950° C. for 2˜18 h in the furnace with controlled carbon potential and nitrogen potential of 1.0%˜1.2%, and the final carbonitrided layers obtained are thickness 0.5˜20 μm.
The specific process of the current invention for carbonitriding FeAl intermetallic compound porous material is: first the FeAl intermetallic compound porous material was placed in an active carbonitriding atmosphere and maintained at 700˜900° C. for 2˜10 h in the furnace with controlled carbon potential and nitrogen potential of 0.8%˜1.2% and the final carbonitrided layers obtained are thickness 1˜35 μm.
The above-described carbonitriding process of porous TiAl, NiAl, and FeAl intermetallic compound porous materials can result in thickness of the carbonitrided layers of 10−1 μm˜10 μm, such that price control of the thickness of the carbonitrided layers is achieved. Also, maintaining the thickness of the carbonitrided layers to be within this range can significantly improve the corrosion resistance and the high-temperature oxidation resistance of the materials.
Furthermore, in this invention, by localized anti-permeation treatments on the porous metal materials, thickness of the permeated layers finally formed in an asymmetrical manner between the front and the back. Here, “front and back” means the front and the back of the pores in which the permeated layers are disposed. The term “asymmetrical” mean that the thickness of the permeated layers decrease gradually from the front to the back along the directions of the pores. Thus, the morphology of the porous metal materials after the chemical-thermal treatments is formed to be similar to that of an “asymmetric membrane,” wherein the pores on one side of the surface of the porous metal materials have relatively smaller pore diameters due to the larger thickness of the permeated layers, whereas the pores on the other side of the surface have relatively larger pore diameters due to thinner permeated layers. When the porous materials are used for filtration, the side with relatively smaller pore diameters can be used to achieve separation of the medium to be filtered, so that the permeability of the porous metal materials can be improved, as well as the backwash effect can be improved.
Above are the methods for adjusting pore diameters of porous metal materials provided by the current invention. Besides, the current invention additionally provides a type of pore structures of porous metal materials, wherein the pore structures have the required pore diameters.
For this, the pore structures of the porous metal materials in the current invention include pores distributed on the surfaces of the materials, with permeated layers covered on the surfaces of the pores. Because permeated layers are covered on the surfaces of the pores of the porous metal materials, and lattice distortion inflation occurs on the surface layers of the pores of the porous metal materials, or new phase layers form on the inner surface layers of the pores, thus the original pores of the porous metal materials are shrunk so that the purpose of adjusting pore diameters is achieved.
Considering the general needs of filtering, the average pore diameter of the pores is 0.05˜100 μm.
Further, the porous metal materials refer to Al-based intermetallic compound porous materials. Preferably, the Al-based intermetallic compound porous materials are one type of TiAl intermetallic compound porous materials, NiAl intermetallic compound porous materials or FeAl intermetallic compound porous materials.
Preferably, the permeated layer is one type of carburized layers, nitrided layers, boride layers, sulfide layers, siliconized layers, aluminized layers or a chromized layers or co-permeated layers of at least two of the elements stated above, for example, a carbonitrided layer.
The first type of pore structures of porous metals material specifically provided by this invention is: the porous metal material is TiAl intermetallic compound porous material with carburized layers of the thickness of 1˜30 μm covered on the pore surfaces.
The second type of pore structures of porous metal materials specifically provided by this invention is: the porous metal material is NiAl intermetallic compound porous material with carburized layers of the thickness of 0.5˜25 μm covered on the pore surfaces.
The third type of pore structures of porous metal materials specifically provided by this invention is: the porous metal material is FeAl intermetallic compound porous material with carburized layers of the thickness of 1˜50 μm covered on the pore surfaces.
The fourth type of pore structures of porous metal materials specifically provided by this invention is: the porous metal material is TiAl intermetallic compound porous material with nitrided layers of the thickness of 0.5˜20 μm covered on the pore surfaces.
The fifth type of pore structures of porous metal materials specifically provided by this invention is: the porous metal material is NiAl intermetallic compound porous material with nitrided layers of the thickness of 0.5˜15 μm covered on the pore surfaces.
The sixth type of pore structures of porous metal materials specifically provided by this invention is: the porous metal material is FeAl intermetallic compound porous material with nitrided layers of the thickness of 1˜25 μm covered on the surfaces of the pores.
The seventh type of pore structures of porous metal materials specifically provided in this invention is: the porous metal material is FeAl intermetallic compound porous material with carbonitrided layers of the thickness of 0.5˜25 μm covered on the surfaces of the pores.
The eighth type of pore structures of porous metal materials specifically provided in this invention is: the porous metal material is NiAl intermetallic compound porous material with carbonitrided layers of the thickness of 0.5˜20 μm covered on the surfaces of the pores.
The ninth type of pore structures of porous metal materials specifically provided in this invention is: the porous metal material is FeAl intermetallic compound porous material with carbonitrided layers of the thickness of 1˜35 μm covered on the surfaces of the pores.
Furthermore, the thickness of the permeated layers gradually decreases from front to back along the directions of the pores. Thus, the morphology of the porous metal materials of the current invention is formed similarly to that of an “asymmetric membrane,” wherein the pores on one side of the surface of the porous metal material are of relatively smaller pore diameters due to the thicker permeated layers, whereas the pores on the other side of the surface are of relatively larger pore diameters due to the thinner permeated layers. When the porous metal materials are used for filtration, the side with relatively smaller pore diameters can be used to realize the separation of the medium to be filtered, so that the permeability of the porous metal materials can be improved, as well as the backwash effect can be improved.
Below, further illustrations are given through the Figures and the embodiments. Additional aspects and advantages of the present application will be partially given in the following part of the description, while some will become obvious from the following descriptions, or through practice of the current application.
Below, the methods of the current invention for adjusting pore diameters are explained further through the multiple groups of embodiments.
The first group of embodiments treated titanium porous materials with carburizing, nitriding and carbonitriding processes separately. Before the carburizing, nitriding and carbonitriding porcesses, the initial average pore diameter of the materials was 20 μm, and the initial porosity of the materials was 30%. The specific processing parameters, the average pore diameters after the chemical-thermal treatments and the porosities after the chemical-thermal treatments of this group of embodiments are shown in Table 1.
The second group of embodiments treated TiAl intermetallic compound porous materials with carburizing processes. Before the carburizing processes, the initial average pore diameter of the materials was 15 μm, and the initial porosity of the materials was 45%. The specific processing parameters, the average pore diameters after the chemical-thermal treatment and the porosities after the chemical-thermal treatments of this group of embodiments are shown in Table 2.
The third group of embodiments treated TiAl intermetallic compound porous materials with nitriding processes. Before the nitriding processes, the initial average pore diameter of the materials was 15 μm, and the initial porosity of the materials was 45%. The specific processing parameters, the average pore diameters after the chemical-thermal treatments and the porosities after the chemical-thermal treatments of this group of embodiments are shown in Table 3.
The fourth group of embodiments treated TiAl intermetallic compound porous materials with carbonitriding processes. Before the carbonitriding processes, the initial average pore diameter of the materials was 15 μm and the initial porosity of the materials was 45%. The specific processing parameters, the average pore diameters after the chemical-thermal treatments and the porosities after the chemical-thermal treatments of this group of embodiments are shown in Table 4.
The fifth group of embodiments treated porous TiAl materials with boronization processes. Before the boronization processes, the initial average pore diameter of the materials was 15 μm and the initial porosity of the materials was 45%. The specific processing parameters, the average pore diameters after the chemical-thermal treatments and the porosities after the chemical-thermal treatments of this group of embodiments are shown in Table 5.
The sixth group of embodiments treated NiAl intermetallic compound porous materials with carburizing processes. Before the carburizing processes, the average pore diameter of the materials was 15 μm and the initial porosity of the materials was 45%. The specific processing parameters, the average pore diameters after the chemical-thermal treatments and the porosities after the chemical-thermal treatments of this group of embodiments are shown in Table 6.
The seventh group of embodiments treated NiAl intermetallic compound porous materials with nitriding processes. Before the nitriding processes, the average pore diameter of the materials was 15 μm and the initial porosity of the materials was 45%. The specific processing parameters, the average pore diameters after the chemical-thermal treatments and the porosities after the chemical-thermal treatments of this group of embodiments are shown in Table 7.
The eighth group of embodiments treated porous NiAl intermetallic compound porous materials with carbonitriding processes. Before the carbonitriding processes, the average pore size of the materials was 15 μm and the initial porosity of the materials was 45%. The specific processing parameters, the average pore diameters after the chemical-thermal treatments and the porosities after the chemical-thermal treatments of this group of embodiments are shown in Table 8.
The ninth group of embodiments treated porous NiAl intermetallic compound porous materials with boronization processes. Before the boronization processes, the initial average pore diameter of the materials was 15 μm and the initial porosity of the materials was 45%. The specific processing parameters, the average pore diameters after the chemical-thermal treatments and the porosities after the chemical-thermal treatments of this group of embodiments are shown in Table 9.
The tenth group of embodiments treated FeAl intermetallic compound porous materials with carburizing processes. Before the carburizing processes, the average pore diameter of the materials was 15 μm and the initial porosity of the materials was 45%. The specific processing parameters, the average pore diameters after the chemical-thermal treatments and the porosities after the chemical-thermal treatments of this group of embodiments are shown in Table 10.
The seventh group of embodiments treated FeAl intermetallic compound porous materials with nitriding processes. Before the nitriding processes, the average pore size of the materials was 15 μm, and the initial porosity of the materials was 45%. The specific processing parameters, the average pore diameters after the chemical-thermal treatments and the porosities after the chemical-thermal treatments of this group of embodiments are shown in Table 11.
The twelfth group of embodiments treated FeAl intermetallic compound porous materials with carbonitriding processes. Before the carbonitriding processes, the average pore diameter of the materials was 15 μm and the initial porosity of the materials was 45%. The specific processing parameters, the average pore diameters after the chemical-thermal treatments and the porosities after the chemical-thermal treatments of this group of embodiments are shown in Table 12.
Then the pore structures of the porous metal materials obtained through the methods described above will be explained in detail combined with
As shown in
This invention can apply localized anti-permeation treatments to the porous metal materials during chemical-thermal treatments of the porous metal materials. For example, as shown in
The changes of the surface properties of the materials after chemical-thermal treatments are proven below through experiments.
Number | Date | Country | Kind |
---|---|---|---|
201110448049.X | Dec 2011 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN2011/085105 | 12/31/2011 | WO | 00 | 6/24/2014 |