This is a National Phase Application in the United States of International Patent Application PCT/EP2012/067327 filed Sep. 5, 2012, which claims priority on European Patent Application No. 11180071.0 of Sep. 5, 2011, the entire contents of each of which are incorporated herein by reference.
The method concerns a method for adjusting the oscillation frequency of a timepiece sprung balance assembly formed at random from among a total output of balance springs and an output of balance wheels.
The invention concerns the field of the manufacture of timepiece components and in particular the manufacture of regulating assemblies, and the operation of adjusting the frequency setting thereof.
Conventionally, as described in particular in “The Theory of Horology” by C. A. Reymondin et al., ISBN 978-2-940025-10-7, published by the Swiss Federation of Technical Colleges, Lausanne, the balances and balance springs are manufactured, and then sorted into a large number of grades. To form a sprung balance assembly capable of oscillating close to a certain oscillation frequency, a balance and a balance spring should thus each be taken from a grade capable of achieving close to this frequency, then the pair thereby formed should be adjusted to obtain the actual desired frequency, by adjusting the length of the balance spring, and/or by modifying the moment of inertia of the balance.
Consequently, a huge volume of goods in production is required to satisfy demand. Despite the goods in production, it is still necessary to carry out operations on the balance spring and balance, which are not ready for use.
The precision of frequency adjustment naturally depends on the range of each grade of balance spring and balance, which explains the high number of grades.
The invention proposes to obviate the need for these extremely expensive goods in production, and to set in place a new method which makes it possible, extremely quickly and economically, to manufacture sprung balances which are correctly set at a given oscillation frequency.
The invention also proposes to address the necessary problem of poising the balances at the same time.
The invention therefore concerns a method of adjusting the oscillation frequency of a timepiece sprung balance assembly formed at random from among a total output of balance springs and an output of balance wheels, characterized in that, to avoid the need for any grading of balances and balance springs:
in order to form a sprung balance assembly capable of oscillating at said oscillation frequency after said inertia adjustment operation has been performed on said balance.
The Figure shows a schematic view of the statistical distribution of the total balance spring population and of the total balance population in the implementation of the invention.
The invention concerns a method for adjusting the oscillation frequency of a timepiece sprung balance assembly.
This timepiece sprung balance assembly is formed at random from a total output of balance springs and an output of balances.
According to this method, to avoid the need to grade the balances and balance springs, the following operations are performed:
in order to form a sprung balance assembly capable of oscillating at the oscillation frequency N0 after the inertia adjustment operation has been performed on the balance.
The production follows a normal law, whose parameters are peculiar to each batch output. It is clear that the amplitude may vary according to the batch output. Some batches will thus have greater sample standard deviations than others.
The advantage of the invention is that it samples a balance spring from among the total balance spring output without having to break down the total balance spring population into grades, as in the prior art. The same is true for sampling a balance, which is taken at random from among a total output. The goods in production are consequently limited to a single output of balance springs, and to a single balance output.
According to a particular feature of the invention, the inertia adjustment operation consists in carrying out, simultaneously or in series:
so as to form a sprung balance assembly Sx-By capable of oscillating at oscillation frequency N0 after the inertia adjustment operation.
According to a particular feature of the invention, the difference corresponding to an allowable decrease in inertia for each balance is limited to the maximum unbalance tolerance value.
According to a particular feature of the invention, a material-removal machining process is carried on balance By for a first implementation without poising, and then, after measuring the unbalance of balance By and calculating the machining definition, there is a machining operation for poising and setting the inertia a second time to a value calculated so that the sprung balance assembly Sx-By oscillates at oscillation frequency N0.
Any material-removal machining process can be performed here by laser, milling, turning or other means.
According to a particular feature of the invention, in a particular embodiment, particularly to expose counterfeiting, a material-removal machining process is performed on balance By reserving certain first surfaces of balance By for this first inertia setting machining operation, and reserving certain second surfaces of balance By for this poising and second inertia setting machining operation.
According to a particular feature of the invention, the first surfaces are determined as being distinct from the second surfaces of balance By.
According to a particular feature of the invention, the first surfaces and the second surfaces of balance By are defined by at least prohibiting any machining in certain third areas of balance By reserved for areas of reduction or for receiving poising inertia blocks or additional components.
According to a particular feature of the invention, the first surfaces and second surfaces of balance By are defined by at least prohibiting any machining on the arms of balance By.
According to a particular feature of the invention, the poising adjustment machining process is performed symmetrically relative to a plane passing through the pivot axis of balance By and in proximity to said plane.
According to a particular feature of the invention, at least the first inertia setting machining operation is performed symmetrically relative to the pivot axis of balance By.
According to a particular feature of the invention, the volume of material to be removed from each machining area is calculated, and the flow of material is distributed over a sufficient surface area to respect the minimum predefined sections in the various areas of balance By, so as to prevent any problem of fatigue resistance.
According to a particular feature of the invention, the volume of material to be removed from each machining area is calculated so as not to exceed a certain predefined mass flow relative to the total mass of balance By, and the flow of material on the surfaces is distributed sufficiently far away from the pivot axis of balance By to attain the inertia value calculated for balance By.
According to a particular feature of the invention, after the final inertia adjustment of balance By to form a sprung balance assembly Sx-By with oscillation frequency N0, depending on the measured torque of balance spring Sx, balance spring Sx and balance By are driven onto each other up to the mark.
According to a particular feature of the invention, to perform the inertia setting, machining operations of order n symmetry are carried out.
According to a particular feature of the invention, a primary elementary frequency amplitude AP is defined, corresponding to a relative reference period variation VR0, and a tolerance is attributed to:
According to a particular feature of the invention, the fourth factor k4 is defined to be close to double the value of the first factor k1, which is in turn close to double the value of second factor k2, which is close to four times the value of third factor k3.
According to a particular feature of the invention, the third factor k3 is defined with a value of two.
According to a particular feature of the invention, primary amplitude AP is defined to correspond to a relative reference period variation VR0 close to 100 seconds per day.
According to a particular feature of the invention, the difference between the second range and the first range, which is a multiple by the third factor k3 of primary amplitude AP, is employed to adjust the poising of the random balance sample By.
According to a particular feature of the invention, the poising adjustment of random balance sample By is performed by material removal, and the inertia adjustment of balance By is also performed by material-removal to form a sprung balance assembly Sx-By of oscillation frequency N0, according to the measured torque of balance spring Sx.
The invention makes it possible to drastically reduce the number of goods in production. The invention makes it possible to almost instantaneously obtain a sprung balance assembly tuned to a particular frequency, with high reliability and high precision.
Number | Date | Country | Kind |
---|---|---|---|
11180071 | Sep 2011 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/067327 | 9/5/2012 | WO | 00 | 2/20/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/034597 | 3/14/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2554033 | Kohlhagen | May 1951 | A |
2745287 | Kohlhagen | May 1956 | A |
Number | Date | Country |
---|---|---|
702 708 | Aug 2011 | CH |
Entry |
---|
Human Translation of XP002511514 Pairing of the Pendulum and the Balance Spring, Jan. 1998. |
Reymondin, C.A., Ed, et al., “Theorie d'horlogerie, L'appairage du balancier et du spiral”, Theorie D'Horlogerie, Federation Des Ecoles Techniques De Suisse, p. 146, (Jan. 1, 1998) XP 002511514. |
Reymondin, C.A., Ed, et al., “Theorie d'horlogerie, Le balancier”, Theorie D'Horlogerie, Federation Des Ecoles Techniques De Suisse, pp. 136-137, (Jan. 1, 1998) XP 002671773. |
Reymondin, C.A., Ed, et al., “Theorie d'horlogerie, Le spiral”, Theorie D'Horlogerie, Federation Des Ecoles Techniques De Suisse, pp. 138-141, (Jan. 1, 1998), XP 002671774. |
Benguin, P., “Le balancier modern”, Journal Suisse D'Horlogerie et de Bijouterie pp. 569-575, (Sep. 1968) XP 001219610. |
International Search Report Issued Oct. 9, 2012 in PCT/EP12/067327 Filed Sep. 5, 2012. |
Number | Date | Country | |
---|---|---|---|
20140157601 A1 | Jun 2014 | US |