This application claims the benefit of priority under 35 U.S.C. § 119 of European Patent Application EP 13 188 784.6 filed Oct. 15, 2013, the entire contents of which are incorporated herein by reference.
The invention relates to a method for adjusting the setpoint temperature of a heat transfer medium and to a heating system.
In prior art, heat pumps are employed in heating systems for heating interior spaces in buildings. In order to maximize the efficiency of the heat pump, or specifically the so-called coefficient of performance (COP), a heating system should be chosen which requires only a low final water temperature, since the hotter the water delivered by the heat pump, the lower the COP will be. Thus, usually heat pumps are set so as to supply water as cold as possible while nevertheless providing the necessary heating energy in order to provide the desired room temperature in the area heated by the heating system.
However, the heating demand for heating interior spaces or rooms in a building changes with changing weather conditions. Thus, also the set-point for the water temperature needs to be changed accordingly depending on the outside temperature whereby the setpoint for the water temperature is determined by the heat curve on the basis of the outside temperature. Thus, in a normal control structure of a heat pump for e.g., a family house is such that the outside temperature Tout is mapped to a setpoint for the water temperature Tw,ref by the heat curve, and the compressor is adjusted such that the water temperature reaches the setpoint and a specific room temperature Tn is achieved. As the shape of the heat curve, however, depends on factors such as the heating system and insulation, the user has to manually adjust the heat curve to each system in order to achieve the desired room temperature.
In order to provide feedback of the room temperature, it is known in prior art to employ a single temperature sensor. The temperature sensor provides feedback of the room temperature at a distinct single location in the house or room, respectively, which feedback is used to adjust the water temperature setpoint. This increases the comfort in the area surrounding the location of the temperature sensor and provides the ability to compensate for temperature changes.
However, this approach has the drawback that it only provides feedback with respect to a single location. If the temperature nearby the sensor rises due to free heat, the compensation in the water temperature can result in water which is too cold for heating areas with less free heat than at the location where the temperature sensor is arranged.
Thus, it is an object of the present invention to provide an improved method for automatically adjusting the setpoint temperature of a heat transfer medium circulating in a heating system, and corresponding heating system.
According to the present invention, a method for adjusting the setpoint temperature of a heat transfer medium circulating in a heating or cooling system inside a building or at least inside a surrounding part of a building is provided wherein the heating or cooling circuit comprises a plurality of heat transferring units each being equipped with a temperature controlled valve, characterized in that the sum opening degree of all temperature controlled valves is determined in a time dependent manner and the setpoint temperature of heat transferring medium is controlled according to a predetermined sum opening degree of all temperature controlled valves. According to the inventive method, the heat curve is adapted automatically based on the condition of the hydronic heating system whereby the desired indoor temperature is maintained in the entire house, i.e., in all areas to which heat is to be delivered, and not only at a single location. According to the inventive method, feedback from the heating system is provided which is used to adapt the water temperature setpoint to achieve the desired room temperature according to the outside temperature. Specifically, the estimation of the flow and head in the heating system provides a feedback of the average opening of all radiator valves or floor valves respectively in the heating system. The feedback by flow and head estimations is used to change the water temperature setpoint based on the actual need of the heating system. The water temperature is slowly adjusted to keep the temperature controlled valves at an opening degree at which they provide an optimal working condition. Also, the automatic adaptation eliminates the need for the user to manually adjust the heat curve.
According to a preferred embodiment, the time dependent sum valve opening degree is based on an actual estimated hydraulic system resistance compared with an estimated minimum and/or maximum hydraulic system resistance.
Further, the estimation of the minimum and/or maximum hydraulic system resistance may be based on estimated hydraulic systems valves registered in e.g., the last 5 to 25 days.
It is also advantageous, if the estimation of the minimum and/or maximum hydraulic system resistance is done by filtering peak values of the continuously determined hydraulic system resistance.
According to a further preferred embodiment, the setpoint temperature is also adjusted according to the outside temperature of the building. For this, a measurement of the outside temperature is provided to the heat pump which then estimates the flow and head of the system and uses it to change the output such that the heating system is maintained in an optimal operating condition.
Preferably, a heat transfer system comprises a heat compensation curve which outputs the setpoint temperature in relation to the outside temperature of the building.
Moreover, the setpoint temperature may be controlled based on the sum valve opening degree and the heat compensation curve.
The heat compensation curve may be adapted in dependency of the outside temperatures and the sum opening valve degree.
It is also preferred, if the sum opening degree of all temperature controlled valves is determined on the basis of the flow and/or the head through the heating or cooling circuit.
According to still a further preferred embodiment, the sum opening degree of all temperature controlled valves is determined by a pump of the heating system, especially by sensor based data and/or electrical data of the pump.
Preferably, there is a first phase when the minimum and maximum hydraulic system resistances are estimated and a second phase when the sum opening degree of all temperature controlled valves is determined.
According to the invention, there is also provided a heating system for supplying heat to a building or a part of the building by means of a liquid heat transfer medium circulated in a circuit, the heating system comprising a plurality of heat transferring units each being equipped with a temperature controlled valve wherein the system is controllable according to the above described method. The heating system which implements an automatic adaptation of the heat curve according to changes in free heat provides the advantages already discussed above. Specifically, the heating system may always be operated with a maximized COP while maintaining a comfortable temperature in all areas to be heated in a house or building.
The heating system preferably comprises a pump in which an adaptation algorithm is implemented, wherein the pump has a temperature sensor input for the temperature measured by an outside temperature sensor.
Further, the pump may have an output for a temperature which indicates the compensated outside temperature.
According to a preferred embodiment, the temperature controlled valves are thermostatic valves. The thermostatic valves are used to control the room temperature in all areas of a building. This provides feedback of the room temperature and thereby, the ability to compensate for changes in temperature resulting, e.g., from free heat.
The invention is not limited to the described embodiments which can be modified in many ways. Preferred embodiments of the present invention will now be more particularly described, by way of example, with reference to the accompanying drawings. The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which preferred embodiments of the invention are illustrated.
Referring to the drawings in particular,
Both embodiments which are illustrated in
The above described embodiments of the invention can be used in heating systems with changing media temperatures. The control system also works with heating systems with floor heating instead of radiators as the floor heating system provides the same feedback of the room temperatures. Further, the control system is not limited to heat pumps, but also may be implemented in other types of heating or cooling devices.
While specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
1 heat pump according to prior art
2 compressor according to prior art
3 heating system according to prior art
4 opening degree estimation means
5 heat curve
6 heat pump
7 regulator
8 compressor control
9 heating system
10 pump
Number | Date | Country | Kind |
---|---|---|---|
13188784 | Oct 2013 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4122892 | Delaporte | Oct 1978 | A |
7315793 | Jean | Jan 2008 | B2 |
8024161 | Pekar | Sep 2011 | B2 |
20150293505 | Acosta Gonzalez | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
36 43 434 | Jun 1988 | DE |
195 07 247 | Sep 1996 | DE |
196 53 052 | Jun 1998 | DE |
197 10 646 | Aug 1998 | DE |
197 56 104 | Jun 1999 | DE |
101 44 595 | Apr 2003 | DE |
101 63 987 | Jul 2003 | DE |
0 594 885 | May 1994 | EP |
0 594 886 | May 1994 | EP |
0 864 955 | Sep 1998 | EP |
1 108 962 | Jun 2001 | EP |
1 456 727 | Sep 2004 | EP |
03052536 | Jun 2003 | WO |
Entry |
---|
Machine Translation of EP0594866A1, Google Patents, retrieved Mar. 4, 2017. |
Number | Date | Country | |
---|---|---|---|
20150102120 A1 | Apr 2015 | US |