The invention relates to molecular biology and biotechnology and is related to the amplification and analysis of DNA and RNA molecules. It may be used for sequencing DNA, for DNA diagnostics in medicine, veterinary science, in sanitary and epidemiological studies, in the food industry for detecting food products made from genetically modified organisms, for determining raw material quality, for detecting the agents of dangerous infections, including potential bio-terrorist attacks, and in criminalistics for identifying criminals, etc.
The existing methods for sequencing DNA and DNA diagnostics are based primarily on amplification of specific DNA or RNA fragments with the aid of polymerase chain reaction (PCR) and modification thereof. In recent years, the real time PCR is being used more and more, wherein the detection of the target product is carried out directly during amplification with the aid of special DNA thermocyclers equipped with an optical module. One of the important advantages of such an approach is the absence of the necessity of carrying out the step of electrophoretic separation of the reaction products, which presumes opening the test tubes and manipulating the content thereof in air, as a result of which the working zone of the place is contaminated with PCR products—amplicons, which are billions or even trillions of copies, resulting in their being followed in the course of subsequent analyses by the obtainment of falsely-positive results, which were obtained because new reaction mixtures may be initially contaminated in a droplet manner with amplicons produced during preceding positive reactions and circulating in the air. In addition to this, the possibility of not conducting electrophoretic analysis significantly reduces the time for the whole procedure. Another important advantage is the possibility for the exact quantitative determination with the aid of real time PCR of the number of copies of that or other target, for example, the content of the genetically modified ingredients or any other impurities in the raw material or in the food products.
Upon the use of PCR products for sequencing, it is desirable to use single-stranded DNA, which can be achieved in different ways. So, in order to separate amplicon chains, one of which carries a biotin label in the structure of the primer, magnetic particles are used that are coated with streptavidin [Hultman et al., 1989]. Simpler methods of obtaining the single-stranded DNA for sequencing are provided by different variants of asymmetrical DNA amplification with the aid of PCR [Gyllensten, Erlich, 1988; Mazars et al., 1991; Sanchez et al., 2006], providing however only the main accumulation of one of the chains and on the whole reducing the effectiveness of the PCR itself.
In the overwhelming majority of cases, classical PCR is carried out with a pair or primers, which are generally designated as “forward” and “reverse”. The sequences of the primers are selected on such a basis so that they would anneal on corresponding DNA fragments against one another, thus providing exponential amplification. Usually the primers are completely homologous to the places of annealing, with the exception of special cases directed either to the discrimination of some or other DNA fragments, which differ by single or multiple replacements of nucleotides, and in that case the unpaired nucleotides may be arranged at the 3′-end of the primer or near it [Gibbs et al., 1989; Huang et al., 1992]. Another reason for the incomplete homology of the primer with the place of annealing is the conducted site-directed mutagenesis and then the unpaired nucleotide on which it is desired that a specific sequence be changed is usually positioned in the middle part of the primer [Hemsley et al., 1989]. Primers with unpaired parts at the 5′-end are usually used in those cases when it is desired to introduce a recognition site of one or another restriction endonuclease for the subsequent use thereof in molecular cloning [Scharf et al., 1986]. An unpaired section at the 5′-end of the primer may also serve as a place for annealing some universal hybridization probe [Zhang et al., 2003].
In addition to the usually used in PCR pair of primers, in some cases with the aim of achieving enhanced specificity of the reaction of an enhanced sensitivity, two pairs of primers are used that are external and internal in respect to one another and such a method of carrying out PCR is called “nested” [Erlich et al., 1991]. Wherein, when such PCR is carried out there are variants with stopping the reaction and adding a second pair of primers that are internal in respect to the first. A simpler and more convenient variant is the use of pairs of primers, which significantly differ in respect to their temperature of annealing. As a result of this at the first step with a high temperature of annealing, amplification takes place only with pairs of external primers, while in the second step upon a corresponding reduction of the temperature of annealing, the second pair of internal primers is included in the amplification [Yourno, 1992].
A method of amplifying is also known, which is called by the authors Linked Linear Amplification or abbreviated LLA [Reyes et al., 2001; Killen et al., 2003], at the base of which is essentially the same PCR, but multiple pairs of nested primers (up to 7-9 pairs) are used that are characterized in that near the 3′-end of each of them instead of a corresponding nitrogenous base there is an element that is not replicable, blocking the structure of a new DNA chain based thereon in the following cycle. So, new places for annealing for these primers do not arise in the course of amplification, which does not make it possible for exponential amplification to take place. Nevertheless, due to the large number of pairs of primers, the sum reproduction of the central part of the required DNA fragment may be compared with the same in PCR. It was noted by other authors that if only one primer is made from each pair with an element that is not replicable, then the multiplication coefficient increases [Behlke et al., 2006], which, by the way, is not surprising. The increased specificity of these reactions is underlined by the authors of these published materials, but the specificity was reached at a high price, since an increase of the number of pairs of primers makes the reaction significantly more expensive and in the case of using at least a part of the primers of full worth (without an element that is not replicable) makes it in fact more unpredictable.
So, the LLA method together with the nested PCR to a certain degree serves as prototype of the new reaction that we have proposed, wherein PCR is the base thereof, but due to the fact that there are relatively sharp distinctions, consisting mainly in the character of accumulating target products, exceeding PCR in that respect by several orders, we decided to name this reaction in another way—Recurrent Chain Reaction or abbreviated RCR. Actually, the majority of existing reactions of amplification of nucleic acids with a more than linear accumulation of target products are essentially recurrent or recursive. However, in addition to the existing mathematical term “recurrent,” the main meaning of this word characterizes events taking place as “repeating periodically, from event to event,” which to a certain degree corresponds to the character of annealing primers in the RCR. So, in order to eliminate the long name of this reaction as the type “PCR with an increasing in each cycle coefficient of amplifying DNA molecules (or with an increasing in each cycle number of places for annealing primers within an amplicon)” and to distinguish this new wording from the usual PCR we took the decision to name it in a rather standard and short manner—RCR. Strictly speaking, the name PCR is not sufficiently capacious, since only the used enzyme—polymerase, is mentioned therein and there is not any information at all concerning DNA as another, not less important, component of the reaction mixture. The name of the reaction LLA, for example, is even less informative. Therefore, it is our opinion that the introduced designation RCR may have the right to exist and in the case of broad use of this reaction, it seems to us that after some time upon the mention of this abbreviation it will immediately be clear what consideration is being given to and there will be no need to decipher what this PCR is.
The object of the invention consists in the possibility of carrying out amplification of specific DNA (or RNA with the participation of reverse transcriptase or DNA polymerase, having such activity) fragments with increasing with each cycle coefficient of replication, due to which accumulation of target amplicons takes place significantly faster. On the one hand this reduces the reaction time and on the other increases the sensitivity thereof, making it possible to confidently detect single molecules of nucleic acids in only 20-25 cycles without using the nested PCR or without the second step of PCR with an aliquot part from the first reaction with new ingredients. In addition to this in one of the variants of this reaction there is mainly accumulation of one of the DNA chains, which may be used upon enzymatic sequencing DNA with dideoxy terminators.
The essence of the invention consists in that instead of the primers that are usual for a standard PCR, which as a rule are completely homologous in respect to the places of annealing, primers are used in the RCR as forward and reverse or only as one of them, which primers are in tandem repeating sequences of a single (main) primer with the positioning of repeats in them according to the “head to tail” type and consisting of two or a larger number of such elements. If for a usual primer the whole sequence of nucleotides therein is shown in the form of the letter “a,” then the duplicate primer will be designated as “aa,” the triplicate—“aaa”. In the form of a nucleotide record they may be presented, for example, as 5′-gttcgtcgagtctcgtgtta-3′ (usual, here—single or main), 5′-gttcgtcgagtctcgtgttagttcgtcgagtctcgtgtta-3′ (doublet), 5′-gttcgtcgagtctcgtgtta-3′ (triplet), where the two underlined (differently) parts are complete copies of the not underlined. In addition to the fact that with each cycle elongation of the amplicon also takes place by the length of a single primer (upon use of a doublet or by the length of a doublet upon use of a triplet) and there is an increase of the annealing places for them in the structure of the amplicon, the use of a thermostable DNA polymerase of the Vent type with strand displacement activity results in the occurrence of a double-stranded amplicon in each cycle, and also amplified single-stranded DNA chains before annealed primers, displaced by such polymerase, wherein the number of such amplicons in the form of single-stranded DNA chains grows with each cycle.
As is evident from
An RCR using one singular (common) and one doublet primer is designated by us as RCR 2/1. An RCR using doublet primers as the forward and reverse is designated in a similar manner as RCR 2/2. An increase of the accumulation of amplicons in these reactions significantly exceeds the same in a common PCR, which is evident from
In reality, the effectiveness of the replication of the DNA molecules even in the initial RCR cycles will significantly differ from the theoretically calculated in view of the fact that annealing the primers at repeating annealing places takes place recurrently and not always in an ideal manner, as is shown in the diagram in
The proposed method of amplification with the aid of a recurrent chain reaction of specific DNA or RNA fragments together with their detection within the real time mode and production of single-stranded amplicons is illustrated by the following examples.
RCR was carried out in 25 μl of a reaction mixture containing a buffer (40 mM of Tris-HCl pH8, 0.25 mM MgCl2, 25 mM KCl); 1 unit of activity Vent exo− DNA polymerase; 0.5 pmol of each of two doublet primers, each marked with its fluorochrome (with a donor and acceptor or a dye and quencher) and a corresponding amount of distilled water. Instead of the primers labeled with fluorochromes, unlabeled were also used. Wherein, a change of the fluorescence was controlled with the aid of an intercalating dye SYBR Green I. RCR was carried out in the DNA thermocycler of the model iCycler iQ (Bio-Rad Laboratories) under the following conditions: denaturation of the double-stranded DNA in the first cycle was carried out at 95° C. during 30 sec, then the primers were annealed (55° C., 10 sec), elongated (72° C., 20 sec) with detection of the fluorescence at the end of that step, denaturation of the target product, 20 sec, the number of cycles in different experiments varied from 20 to 30.
The RCR 2/1 differed from RCR 2/2 only by the use of one doublet primer, while the second primer of the pair was singular, which provided for the primary accumulation of one of the DNA chains.
Electrophoretic separation of the RCR products was carried out in an 8% polyacrylamide gel in a tris-acetate buffer pH 7.8 in undenaturating conditions at a voltage gradient of 4 V per cm length of the gel in a vertical type device during 4 hours. After completion of electrophoresis, the gel after staining with ethidium bromide is photographed in a photo-documentation system Gel Camera System (UVP, Inc.).
Number | Date | Country | Kind |
---|---|---|---|
2007121892 | Jun 2007 | RU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/RU2008/000461 | 7/11/2008 | WO | 00 | 2/22/2011 |