This application is a U.S. national phase application based on International Application No. PCT/SE2007/050819, filed 5 Nov. 2007, claiming priority from Swedish Patent Application No. 0602349-3, filed 7 Nov. 2006.
The present invention concerns a method for the production of cellulose pulp in a continuous system in an energy-efficient manner.
U.S. Pat. No. 7,112,256 B2 reveals a method for improving the heat economy in a continuous digestion system. The digestion system comprises an impregnation vessel and a digester. Chips are fed into the impregnation vessel and are there impregnated at a pre-determined impregnation temperature, before the impregnated chips are fed out from the impregnation vessel up to the top of the digester in order to be cooked. A dissolved cellulose pulp is fed out from the outlet at the bottom of the digester when the cooking process is complete. At least one black liquor withdrawal is taken from the digester, and this is added to the lower part of the impregnation vessel, in order to increase in this way the temperature of the chips before they are further fed upwards to the top of the digester vessel. The need to add hot steam at the top of the digester is in this way reduced. A part of the black liquor is then withdrawn from the top separator of the digester in order to be added in the impregnation vessel and there used as impregnation fluid. This invention allows the achievement of a “cold” black liquor impregnation, where the black liquor before it is taken to the impregnation vessel has to a large extent cooled by convection in the lines and through its mixing with the colder impregnation fluid and the chips. The requirement for the addition of steam at the top of the digester has at the same time been considerably reduced.
The use of a heat exchanger, known as a “reboiler”, that generates steam in cooking processes is known. U.S. Pat. No. 6,176,971 B1 reveals a cooking process in which hot black liquor, directly withdrawn from a digester vessel (and possibly having been cooled in a heat exchanger), is used to create pure steam with the aid of a reboiler (71). The pure steam (73) is then led to a steam pre-treatment vessel (17) in order there to heat the chips. The black liquor is sent after its passage through the reboiler to a recovery process.
A cooking process is shown also in U.S. Pat. No. 6,306,252,
A first object of the present invention is to produce pure steam in order to pre-treat the chips before the chips are to be impregnated in an impregnation vessel.
A second object is to exploit a withdrawal of digestion fluid from the top of the digester with the aim of obtaining the pure steam.
A third object is to produce the pure steam by using indirect exchange of heat between the withdrawal from the top of the digester and a pure fluid, where the pure fluid is converted to pure steam.
A fourth object is to obtain by indirect heat exchange a cooling of the cooking fluid withdrawn from the top of the digester, where the cooled withdrawal is subsequently used as impregnation fluid.
A fifth object is to exploit the heat energy in a more efficient manner.
A sixth object is to obtain an impregnation process in which the impregnation fluid that is led to the impregnation vessel has a low temperature.
The invention concerns a method for the production of cellulose pulp in a continuous digester system in an energy-efficient manner. The method comprises an impregnation vessel in which to impregnate the chips, which chips are then fed to a subsequent digester vessel in a transfer fluid. A black liquor withdrawal is taken from the digester, which withdrawal is led to the bottom in order there to heat the chips before they are fed out from the impregnation vessel. A withdrawal of the transfer fluid is taken from the top of the digester and led to a position in order there to act as impregnation fluid in the impregnation vessel. The invention is characterised in that at least a portion of the transfer fluid that is withdrawn from the top of the digester passes an indirect heat exchanger, in which the transfer fluid withdrawn from the top of the digester at a temperature of at least 125° C. exchanges heat indirectly with a first fluid for the production of steam from the first fluid. The steam that is produced is then led to a steam pre-treatment position, upstream of the impregnation process, in order to heat the chips at the said steam pre-treatment position.
The following positive advantages over the prior art technology are obtained with the use of the invention:
After being fed out from the impregnation vessel 10 the impregnated chips are fed, together with a transfer fluid, in a transfer line 11 to an inlet at the top of a subsequent digester vessel 20. The pressurisation of the chips and the transfer fluid in the transfer line 11 is carried out with a pressurising means 13 such as, for example, a sluice feeder tap or with at least one pump. The chips are cooked in the digester vessel at a pre-determined cooking temperature Tkok in the interval 130-160° C. The cooked chips are fed out from the digester vessel after the completion of the cooking process in the digester vessel 20 as a dissolved cellulose pulp, through an outlet arranged at the bottom of the digester vessel.
At least one black liquor withdrawal is carried out through a withdrawal strainer 23 in the digester vessel essentially at the maintained cooking temperature Tkok, and this withdrawal is led along a black liquor line 22 directly to the bottom of the impregnation vessel in order there to be mixed with the chips mixture of impregnated chips and impregnation fluid. The aim of leading the black liquor withdrawal to the bottom of the impregnation vessel is to raise the temperature of the chips mixture at the bottom of the impregnation vessel. The temperature of the black liquor is at least 135° C. in association with its withdrawal from the digester.
A portion of the transfer fluid is withdrawn from the top of the digester and led in a return line 21 to the impregnation vessel 10, where it is given time to work as impregnation fluid for at least 25% of the total impregnation time for the cellulose chips in the impregnation vessel. At least a portion of the transfer fluid that is withdrawn from the top of the digester passes a first indirect heat exchanger 30, in which the transfer fluid withdrawn from the top of the digester at a temperature of at least 125° C. exchanges heat indirectly with a first fluid for the production of steam from the first fluid.
The steam that is produced is subsequently led in a line 12 directly to a steam pre-treatment position at the top of the impregnation vessel 10. The steam pre-heats the chips at the steam pre-treatment position, which is upstream of the impregnation in the impregnation vessel, before the impregnation starts. The steam pre-treatment position to which the steam is led in order to steam pre-treat the chips is held at atmospheric pressure.
It is also possible for a subfraction of the transfer fluid withdrawn from the digester to be withdrawn from the return line 21, where the subfraction is led in a return line 21b such that it can be mixed with the black liquor withdrawal in the black liquor line 22.
This cooler 31 can be constituted by a second indirect heat exchanger, where the transfer fluid withdrawn from the digester exchanges heat indirectly with a second fluid that is colder than the withdrawn transfer fluid.
The cooler 31 may also be constituted by a flash tank that relieves the pressure of the transfer fluid that has been withdrawn from the digester and thus reduces the temperature of this transfer fluid. Steam that contains NCGs (non-condensable gases) is also flashed in association with the flashing of the fluid. The NCGs are led after withdrawal onwards to a LVHC system and/or to destruction.
After being fed out from the impregnation vessel 10, the impregnated chips are fed, together with a transfer fluid, in a transfer line 11 to the inlet at the top of the subsequent digester vessel 20. The pressurisation of the chips and the transfer fluid in the transfer line 11 is carried out with a pressurising means 13 such as, for example, a sluice feeder or with at least one pump. The chips are cooked in the digester vessel 20 at a pre-determined cooking temperature Tkok in the interval 130-160° C. The cooked chips are fed out after the completion of the cooking process in the digester vessel 20 as a dissolved cellulose pulp, through an outlet arranged at the bottom of the digester vessel.
At least one black liquor withdrawal is carried out through a withdrawal strainer 23 in the digester vessel essentially at the maintained cooking temperature Tkok, and this withdrawal is led along a black liquor line 22 directly to the bottom of the impregnation vessel in order there to be mixed with the chips mixture of impregnated chips and impregnation fluid. The aim of leading the black liquor withdrawal to the bottom of the impregnation vessel is to raise the temperature of the chips mixture at the bottom of the impregnation vessel. The temperature of the black liquor is at least 135° C. in association with its withdrawal from the digester.
A steam pre-treatment vessel 40 is arranged upstream of the impregnation vessel 10. Untreated chips are fed to the steam pre-treatment vessel in order there to be pre-treated with steam. After the steam pre-treatment in the steam pre-treatment vessel 40, the treated chips fall down in a fall-pipe 42 through a rotating sluice arrangement 41 arranged between the steam pre-treatment vessel 40 and the fall-pipe 42. The steamed chips are then fed onwards in a feed line 44 to the inlet of the impregnation vessel. The feed of the chips from the outlet of the fall-pipe to the inlet of the impregnation vessel here takes place with the aid of a high-pressure tap 43.
At least a part of the transfer fluid is withdrawn from the top of the digester and led in a return line to the fall-pipe 42, such that it is to be given time to act as impregnation fluid in the subsequent impregnation vessel. At least a portion of the transfer fluid that has been withdrawn from the top of the digester passes a first indirect heat exchanger 30, in which the transfer fluid withdrawn from the top of the digester at a temperature of at least 125° C. exchanges heat indirectly with a first fluid for the production of steam from the first fluid.
The steam that is produced is then led in a line 12 to a steam pre-treatment position in the steam pre-treatment vessel 40 in order there to heat the chips before they are fed onwards to the subsequent impregnation stage. The steam pre-treatment position to which the steam is led in order to steam pre-treat the chips is held at atmospheric pressure.
It is also possible that a portion of the transfer fluid that has been withdrawn from the top of the digester can, after passage of the first indirect heat exchanger 30, be withdrawn and led to a position in the impregnation vessel 10, where it is given time to work as impregnation fluid for at least 25% of the total impregnation time for the cellulose chips in the impregnation vessel.
Furthermore, a withdrawal from the impregnation vessel can be made from a top separator at the top of the impregnation vessel and led in a line 15 to the fall-pipe 42 upstream of the impregnation vessel 10.
It is also possible for a subfraction of the transfer fluid withdrawn from the digester to be withdrawn from the return line 21, where the subfraction is led in a return line 21b such that it can be mixed with the black liquor withdrawal in the black liquor line 22.
The first fluid and the second fluid in all of the above embodiments are preferably constituted by water.
The following advantages, among others, are achieved with the invention:
Several variants in addition to the embodiments described above are possible within the scope of the attached patent claims.
While the present invention has been described in accordance with preferred compositions and embodiments, it is to be understood that certain substitutions and alterations may be made thereto without departing from the spirit and scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
0602349 | Nov 2006 | SE | national |
PCT/SE2007/050819 | Nov 2007 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE2007/050819 | 11/5/2007 | WO | 00 | 10/6/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/057040 | 5/15/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5089086 | Silander | Feb 1992 | A |
5679217 | Outzen | Oct 1997 | A |
5779856 | Kettunen | Jul 1998 | A |
5958181 | Stromberg | Sep 1999 | A |
6176971 | Yu et al. | Jan 2001 | B1 |
6306252 | Ryham | Oct 2001 | B1 |
7112256 | Snekkenes | Sep 2006 | B2 |
20040060672 | Snekkenes et al. | Apr 2004 | A1 |
20050173081 | Snekkenes et al. | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
WO03062525 | Jul 2003 | SE |
WO9632531 | Oct 1996 | WO |
Number | Date | Country | |
---|---|---|---|
20100071861 A1 | Mar 2010 | US |