Method for analyzing stability of permanent magnet synchronous generator-based wind turbines connected to weak power grid considering influence of power control

Information

  • Patent Grant
  • 11988696
  • Patent Number
    11,988,696
  • Date Filed
    Monday, December 20, 2021
    2 years ago
  • Date Issued
    Tuesday, May 21, 2024
    6 months ago
Abstract
Provided is a method for analyzing the stability of a PMSG-WT connected to a weak power grid considering the influence of power control. New energy power generation mostly uses a perturbation and observation (P&O) method for maximum power point tracking, and nonlinear discontinuous links therein make stability analysis difficult. The present application analyzes the stability of the PMSG-WT connected to the weak grid system based on a describing function method, and fully considers the nonlinear discontinuous links in the power loop, thus making the analysis result more accurate. At the same time, the describing function method is a method that can quantitatively calculate the frequency and amplitude of oscillation. The analysis method of the present application can provide a powerful and good reference for oscillation suppression and controller design.
Description
TECHNICAL FIELD

The present application relates to a method for analyzing the stability of a permanent magnet synchronous generator-based wind turbine connected to a weak power grid considering the influence of power control, and belongs to the field of stability analysis of a new energy power generation system in an electrical power system.


BACKGROUND

The proportion of renewable energy power generation continues to increase, the installed capacity of wind power generation continues to grow, and the stable operation of a grid-connected wind power system has become an important issue. A permanent magnet synchronous generator (PMSG) based wind turbines (WTs) has the advantages of high energy conversion efficiency, good operational reliability and strong controllability, and the proportion of installed capacity continues to increase. In order to make better use of wind energy, a suitable maximum power point tracking algorithm must be adopted. A perturbation and observation (P&O) method does not need to measure the wind speed, and thus has a better practical value. However, the P&O method implies a nonlinear discontinuous link, which makes the traditional small-signal stability analysis method difficult to apply. The conventional stability analysis method generally ignores a power loop based on the P&O method. A describing function method can well complete the modeling of a nonlinear link and the stability analysis of the system, the basic idea is that when the system meets certain assumed conditions, under the action of sinusoidal input, the output of the nonlinear link of the system can be approximately expressed by its first harmonic component, so as to obtain the approximate equivalent frequency characteristics of the nonlinear link. Therefore, based on the describing function method, the present application proposes a method for analyzing the stability of a permanent magnet synchronous generator-based wind turbines (PMSG-WT) connected to a weak power grid considering the influence of power control, which fully considers the nonlinear link in the power loop, and improves the accuracy of stability analysis.


SUMMARY

The present application aims to provide a method for analyzing the stability of a PMSG-WT connected to a weak power grid considering the influence of power control. The PMSG-WT includes a wind turbine, a generator, a machine-side converter (MSC), a DC capacitor, a grid-side converter (GSC), a filter, an MSC controller, and a GSC controller. The MSC controller includes a power loop, a rotating speed loop, and a machine-side current loop; and the GSC controller includes a voltage loop and a grid-side current loop.


The present application adopts the following technical solutions:


Step 1: acquiring main parameters of the PMSG-WT, establishing mathematical models of the wind turbine, the generator and the MSC, the MSC controller, the DC capacitor, the GSC and the filter, and the GSC controller, respectively, performing linearization in a dq coordinate system, and calculating steady-state operation parameters to obtain small-signal models of the wind turbine, the generator and the MSC, the MSC controller, the DC capacitor, the GSC and the filter, and the GSC controller.


Step 2: modeling the power loop in the MSC controller based on a describing function method, wherein its mathematical expression is:







ω
g
ref

=


ε

T
Ρ







sgn

(


P
ref

-

P
n


)


sgn


(


P
n

-

P

n
-
1



)



sgn

(


ω

g
,
n


-

ω

g
,

n
-
1




)


dt







where ε represents a perturbation step length of the power loop, Tp represents a control period of the power loop, Pref represents a reference value of the output power of the PMSG-WT, P represents an output power of the PMSG-WT, Pn represents an output power of the PMSG-WT at the current sampling moment n, Pn−1 represents an output power of the PMSG-WT at the previous sampling moment, ωg represents a rotating speed of the generator, ωgref represents a reference value of the rotating speed of the generator, ωg,n represents a rotating speed of the generator at the current sampling moment, and ωg,n−1 represents a rotating speed of the generator at the previous sampling moment. sgn(x) is a sign function, when x≥0, sgn(x)=1, and when x<0, sgn(x)=−1. Considering an actual power-rotating speed curve of the PMSG-WT, it can be deemed that:








sgn

(


P
n

-

P

n
-
1



)



sgn

(


ω

g
,
n


-

ω

g
,

n
-
1




)


=

{



1



(


ω
g



ω
mpp


)






-
1




(


ω
g

>

ω
mpp


)









where ωmpp represents the rotating speed of the generator at the maximum power point. Then, the power loop model can be simplified as:







ω
g
ref

=

{






ε

T
Ρ







sgn

(


P
ref

-

P
n


)


dt



,

(


ω
g



ω
mpp


)









-

ε

T
Ρ








sgn

(


P
ref

-

P
n


)


dt



,

(


ω
g

>

ω
mpp


)










the sign function in the formula can be modeled by a describing function, and the describing function is:







N

(
A
)

=

4

π

A






in the formula, A represents an amplitude of an input signal.


Step 3: considering the influence of the weak AC power grid, combining the linear parts of the small-signal models of the weak power grid and the power loop with the small-signal model of the PMSG-WT established in step 1, and deriving a transfer function G(s) of the linear part of the system.


Step 4: drawing G(s) and −1/N(A) curves in a complex plane, and analyzing the stability of the system based on the describing function method, wherein the method is specifically that if G(s) contains a right-half-plane (RHP) pole, the system must be unstable; if the G(s) does not contain any RHP pole, then judging the stability of the system through the relationship between the G(s) curve and the −1/N (A) curve:

    • a. if the G(s) curve does not surround the −1/N(A) curve, the system is stable and does not oscillate;
    • b. if the G(s) curve and the −1/N(A) curve intersect, the system is critically stable, at this time, the system oscillates at a constant amplitude and a constant frequency, and the frequency and amplitude of the oscillation can be calculated by the following formula:






{






G

I

m


(

ω
0

)

=
0








N

(

A
0

)

=


-
1

/


G
Re

(

ω
0

)












    • where G(jω)=GRe(ω)+jGIm(ω), GRe means to find the real part of a complex number, GIm means to find the imaginary part of the complex number, ω0 represents an angular frequency of the oscillation, and A0 represents the amplitude of the oscillation; and

    • c. if the G(s) curve surrounds the −1/N(A) curve, the system is unstable.





Further, in step 1, the small-signal models of the wind turbine, the generator and the MSC, and the MSC controller are established as follows:


the mathematical model of the wind turbine is established as:

sJωg=Tm−Te−Bωg


in the formula, J represents rotational inertia of an equivalent concentrated mass block of the wind turbine and the generator, Tm represents a mechanical torque of the generator, Te represents an electromagnetic torque of the generator, B represents a self-damping coefficient, it is deemed that B=0 herein, and s represents a parameter introduced by the Laplace transform. Linearization is performed on the model to obtain:

sJΔωg=ΔTm−ΔTe


the electromagnetic torque of the generator is:

Te=3/2npψfiqr


np represents the number of pole pairs of the generator, iqr represents stator current of the q-axis generator, and ψf represents a permanent magnet flux linkage of the generator. This formula is linearized to obtain:

ΔTe=3/2npψfΔiqr


the mechanical torque of the generator is:

Tm=Btωg


in the formula,







B
t

=



dT
m


d


ω
g




|


ω
g

=

ω
g
*









represents a linearization constant of the mechanical torque of the wind turbine, and ωg* represents a steady-state value of the rotating speed of the generator, which is a specific constant at an equilibrium point. This formula is linearized to obtain:

ΔTm=BtΔωg


from this, the small-signal model of the wind turbine can be obtained,







Δω
g

=




3


n
p


ψ

f


2


(


B
t

-
sJ

)




Δ


i
qr


=



[



0




3


n
p


ψ

f


2


(


B
t

-
sJ

)






]

·
Δ



i
dqr







setting







G

iq

ω


=

[



0






3


n
p


ψ

f


2


(


B
t

-
sJ

)



]

,










then

Δωg=Giqω·Δidqr,Δωe=npGiqω·Δidqr.


The mathematical model of the generator and the MSC is:








[





sL
s

+

R
s






-

ω
e




L
s








ω
e



L
s






sL
s

+

R
s





]

·

[




i
dr






i

q

r





]


=


[



0






ω
e



ψ
f





]

-


[




d

d

r







d

q

r





]

·

u

d

c








in the formula, Rs and Ls represent rotor resistance and armature inductance of the generator, respectively, ωe represents an electrical angular speed of the rotor, and ωe=npωg. idr and iqr represent the stator current of the generator in the dq coordinate system, ddr and dqr represent output duty ratios of the MSC controller in the dq coordinate system, udc represents a DC voltage. By linearizing the model, the small-signal model of the generator and MSC can be obtained as:

Zdqr·Δidqr=−U*dc·Δddqr−D*dqr·Δudc+Gωe·Δωe


where








Z

d

q

r


=

[





sL
s

+

R
s






-

ω
e




L
s








ω
e



L
s






sL
s

+

R
s





]


,


Δ


i

d

q

r



=

[




Δ


i

d

r








Δ


i

q

r






]


,


Δ


d

d

q

r



=

[




Δ


d

d

r








Δ


d

q

r






]


,








D

d

q

r

*

=

[




D

d

r

*






D

q

r

*




]


,



G

ω

e


=

[





L
s



I

q

r

*








ψ
f

-


L
s



I

d

r

*






]


;






and capital letters and superscripts * represent steady-state components of corresponding lowercase variables, and Δ represents a small-signal component of the corresponding variable.


The mathematical model of the MSC controller is established as:






{






d
dr
c



U

d

c

*


=


-


H
cr

(

0
-

i
dr
c


)


+


ω
e



L
s



i
dr
c











d
qr
c



U

d

c

*


=


-


H
cr

(


-


H
ω

(


ω
g
ref

-

ω
g


)


-

i
qr
c


)


-


ω
e



L
s



i
dr
c


+


ω
e



ψ
f











where








H
cr

=


K
cpr

+


K
cir

s



,





Kcpr and Kcir represent a proportional parameter and an integral parameter of machine-side current loop PI control, respectively,








H
ω

=


K

ω

p


+


K

ω

i


s



,





and Kωp and Kωi represent the proportional parameter and the integral parameter of rotating speed loop PI control, respectively. Superscript c represents a dq coordinate system of the MSC controller. ωgref represents the reference value of the rotating speed of the generator. By linearizing the model, the small-signal model of the MSC controller can be obtained as:







Δ


d
dqr
c


=


1

U

d

c

*




(




G
cr

·
Δ



i
dqr
c


+


G

ω

g


(


ω
g
ref

-

ω
g


)

+



G

ω

e


·
Δ



ω
e



)



where









G
cr

=

[




H
cr





ω
e
*



L
s








-

ω
e
*




L
s





H
cr




]


,


G

ω

g


=


[



0






H
cr



H
ω





]

.






ωe* represents the steady-state value of the electrical angular speed of the rotor. Affected by the disturbance of the rotating speed, the dq coordinate system of the MSC controller will have a phase angle difference with the dq coordinate system of the generator during the dynamic process. The electrical angle of the generator is:

θe=npωg/s


the formula is linearized to obtain:







Δ


θ
e


=




n
p


Δ


ω
g


s

=




3


n
p
2



ψ
f



2


s

(


B
t

-
sJ

)




Δ


i
qr


=


H

θ

e



Δ


i
qr








in the formula,







H

θ

e


=



3


n
p
2



ψ
f



2


s

(


B
t

-

s

J


)



.





Therefore, the variable conversion relationship between the dq coordinate system of the MSC controller and the dq coordinate system of the generator is:






{






Δ


i
dqr
c


=



G

θ

e

i

·
Δ



i
dqr









Δ


d
dqr
c


=




G

θ

e

d

·
Δ



i
dqr


+

Δ


d
dqr









where









G

θ

e

i

=

[



1




H

θ

e




I
qr
*






0



1
-


H

θ

e




I
dr
*






]


,


G

θ

e

d

=


[



0




H

θ

e




D
qr
*






0




-

H

θ

e





D
dr
*





]

.






Then, the small-signal model of the MSC controller is:










G

θ

e

d

·
Δ



i
dqr


+

Δ


d
dqr



=


1

U

d

c

*





(




G
cr

·

G

θ

e

i

·
Δ



i
dqr


+


G

ω

g


(


ω
g
ref

-

ω
g


)

+


G

ω

e


·

Δω
e



)

.






Further, in step 1, the establishment process of the small-signal model is as follows:


the mathematical model of the DC capacitor is established as:

sCdcudc=idc2−idc1=1.5(ddridr+dqriqr)−1.5(ddgidg+dqgiqg)


in the formula, Cdc represents the DC capacitor, idc1 represents grid-side DC current, idc2 represents machine-side DC current, idg and iqg represent d-axis current and q-axis current of the AC port of the GSC, respectively, and ddg and dqg represent the output duty ratios of the GSC controller in the dq coordinate system, respectively. udc represents the DC voltage, idr and iqr represent the stator current of the generator in the dq coordinate system, respectively, ddr and dqr represent the output duty ratios of the MSC controller in the dq coordinate system, respectively, and by linearizing the model, the small-signal model of the DC capacitor can be obtained as:

sCdcΔudc=1.5(D*dqrT·Δidqr+I*dqrT·Δddqr)−1.5(D*dqgT·Δidqg+I*dqgT·Δddqg)


in the formula,








Δ


i
dqr


=

[




Δ


i

d

r








Δ


i
qr





]


,


Δ


d
dqg


=

[




Δ


d

d

g








Δ


d
qg





]


,


D
dqg
*

=

[




D

d

g

*






D
qg
*




]


,


I
dqg
*

=


[




I

d

g

*






I
qg
*




]

.







The capital letters and the superscripts * represent the steady-state components of corresponding lowercase variables, and Δ represents the small-signal component of the corresponding variable.


Further, in step 1, the establishment process of the small-signal models of the GSC and the filter, and the GSC controller is as follows:


the mathematical model of the GSC and the filter is established as:








[




sL
f





-
ω



L
f







ω


L
f





sL
f




]

·

[




i

d

g









i
qg





]


=



[






d

d

g








d
qg




]

·

u

d

c



-

[






u

d

g










u
qg





]






in the formula, Lf represents a filtering inductance, ω represents a power frequency angular frequency, ω=100π rad/s, idg and iqg represent the d-axis current and the q-axis current of the AC port of the GSC, respectively, ddg and dqg represent the output duty ratios of the GSC controller in the dq coordinate system, respectively, udc represents the DC voltage, and udg and uqg represent a d-axis voltage and a q-axis voltage of a grid-connected point, respectively. By linearizing the model, the small-signal model of the GSC and the filter can be obtained as:

Zf·Δidqg=U*dc·Δddqg+D*dqg·Δudc−Δudqg


where








Z
f

=

[




sL
f





-
ω



L
f







ω


L
f





sL
f




]


,


Δ


i
dqg


=

[




Δ


i

d

g








Δ


i
qg





]


,








Δ


d
dqg


=

[




Δ


d

d

g








Δ


d
qg





]


,


D
dqg
*

=


[




D

d

g

*






D
qg
*




]

.







The capital letters and the superscripts * represent the steady-state components of corresponding lowercase variables, and Δ represents the small-signal component of the corresponding variable.


The mathematical model of the GSC controller is established as:






{






d

d

g

c



U

d

c

*


=


u

d

g

c

+


H
cg

(


-


H
v

(


U
dcref

-

u

d

c



)


-

i

d

g

c


)

-

ω


L
f



i
qg
c











d
qg
c



U

d

c

*


=


u

d

g

c

+


H
cg

(

0
-

i
qg
c


)

+

ω


L
f



i

d

g

c











where








H

c

g


=


K

c

p

g


+


K

c

i

g


s



,





Kcpg and Kcig represent a proportional parameter and an integral parameter of grid-side current loop PI control, respectively,








H
v

=


K
vp

+


K
vi

s



,





and Kvp and Kvi represent the proportional parameter and the integral parameter of grid-side voltage loop PI control, respectively. Udcref represents the reference value of the DC voltage. In the GSC controller, a phase-locked loop is used to keep the PMSG-WT synchronous with the power grid. The superscript c represents the dq coordinate system of the GSC controller. By linearizing the model, the small-signal model of the GSC controller can be obtained as:

Δddqgc·U*dc=Δudqgc+GcgΔidqgc+GudcΔudc


where








G
cg

=

[




-

H
cg





-
ω


L
f







ω


L
f





-

H
cg





]


,


G
udc

=


[





H
cg



H
v






0



]

.






In addition, the dynamics of the phase-locked loop should also be considered in the GSC, and its mathematical model is:






θ
=


H
pll

·

1
s

·

u
qg
c






where








H
pll

=


K
ppll

+


K
ipll

s



,





Kpll and Kipll represent the proportional parameter and the integral parameter of a phase-locked loop PI controller, respectively, and uqgc represents the q-axis voltage of the grid-connected point in the dq coordinate system of the GSC controller. The model is linearized to obtain:







Δ

θ

=



H
pll

·

1
s

·
Δ



u
qg
c






wherein there is a certain deviation between the dq coordinate system of the system and the dq coordinate system of the controller, and the two coordinate systems can be converted to each other through the following equation:






{





Δ


x
d
c


=


Δ


x
d


+

Δθ
·

X
q
*










Δ


x
q
c


=


Δ


x
q


+

Δθ
·

X
d
*











in the formula, the variables Δxd and Δxq may represent the output current Δidg and Δiqg of the GSC, the voltages Δudg and Δuqg of the grid-connected point, or the output duty ratios Δddg and Δdqg of the grid-side controller, and X*q and X*d represent steady-state components I*qg, I*dg, U*qg, U*dg, D*qg, D*dg.


From this, the small-signal model of the phase-locked loop can be derived, namely:

Δθ=Gpll·Δuqg


where








G
pll

=


H
pll


s
+


U
dg
*



H
pll





,





and then the relationship between the dq coordinate system of the controller and the dq coordinate system of the system can be obtained as:








{





Δ


u
dqg
c


=



G
pll
u

·
Δ



u
dqg









Δ


i
dqg
c


=




G
pll
i

·
Δ



u
dqg


+

Δ


i
dqg










Δ


d
dqg
c


=




G
pll
d

·
Δ



u
dqg


+

Δ


d
dqg















where








G
pll
u

=

[



1




G
pll



U
qg
*






0



1
-


G
pll



U
dg
*






]


,


G
pll
i

=

[



0




G
pll



I
qg
*






0



-

G
pll



I
dg
*





]


,


G
pll
d

=


[



0




G
pll



D
qg
*






0



-

G
pll



D
dg
*





]

.






Then, the small-signal model of the GSC controller is converted into:

(Gplld·Δudqg+ΔddqgU*dc=Gpllu·Δudqg+Gcg(Gplli·Δudqg+Δidqg)+GudcΔudc


Further, the step 3 is specifically:


the AC weak power grid is expressed by series equivalent inductance of an ideal voltage source, and its mathematical model is established as:








[




sL
g




-
ω


L
g







ω


L
g





sL
g




]

·

[




i
dg






i
qg




]


=


[




u
dg






u
qg




]

-

[




u
ds






u
qs




]






in the formula, Lg represents the equivalent inductance of the weak grid, uds and uqs represent ideal voltage source voltages of the d axis and the q axis, respectively, and idg and iqg represent the d axis current and the q axis current of the AC port of the GSC, respectively. The formula is linearized to obtain:

Zg·Δidqg=Δudqg


in the formula,







Z
g

=


[




sL
g




-
ω


L
g







ω


L
g





sL
g




]

.





The output power of the PMSG-WT is:

P=1.5(idgudg+iqguqg)


The formula is linearized to obtain:

ΔP=1.5(I*dqgT·Zg+U*dqgT)·Δidqg


in the formula,







U
dqg
*

=


[




U
dg
*






U
qg
*




]

.






By combining the linear parts of various part models of the aforementioned PMSG-WT grid-connected system, the transfer function G(s) of the linear part of the system can be obtained as:










G


(
s
)


=

-


1.5
ε


T

p
S





(




I
dqg
*

T



Z
g


+


U
dqg
*

T


)



M
5

-
1




(


D
dqg
*

+

G
udc


)



M
7

-
1





M
8

·

1

1
+

T

f
S




·

1

1
+

1.5

T

p
S














M
8

=


-



D
dqr
*

T

·

M
1

-
1


·

G

ω

g




+



I
dqr
*

T

·

M
3










M
7

=

(



2


sC
dc


3

+



I
dqg
*

T



M
6


-



I
dqr
*

T



M
4


+



D
dqg
*

T




M
5

-
1


(


D
dqg
*

+

G
udc


)


+



D
dqr
*

T



M
1

-
1




D
dqr
*



)








M
6

=


(



(



(



G
cg



G
pll
i


-


G
pll
d



U
dc
*


+

G
pll
u


)



Z
g


+

G
cg


)




M
5

-
1


(


D
dqg
*

+

G
udc


)


+

G
udc


)

/

U
dc
*









M
5

=


-

G
cg


+

Z
f

-

(



(



G
cg



G
pll
i


-


G
pll
d



U
dc
*


+

G
pll
u


)



Z
g


+

Z
g











M
4

=

-

M
2



M
1

-
1




D
dqr
*

/

U
dc
*









M
3

=


(


-

M
2



M
1

-
1




G

ω

g



+

G

ω

g



)

/

U
dc
*









M
2

=



G

ω

e




G

iq

ω




n
p


+


G
cr



G

θ

e

i


-


G

ω

g




G

iq

ω



-


U
dc
*



G

θ

e

d










M
1

=



G
cr



G

θ

e

i


-


G

ω

g




G

iq

ω



-


U
dc
*



G

θ

e

d


+

Z
dqr









in the formula, Tf represents the period of a power sampling filter, 1/(1+Tfs) represents the delay of the power sampling filter, and 1/(1+1.5Tps) represents the delay of the controller and the PWM.


Compared with the prior art, the present application has the advantages that:

    • (1) the present application applies the describing function method to the stability analysis of the grid-connected PMSG-WT system, fully considers the nonlinear link in the power loop based on the P&O method, and overcomes the problem that the traditional small-signal analysis method cannot be applied to discontinuous nonlinear links.
    • (2) When the system is in a critically stable state, oscillation occurs at constant amplitude and constant frequency. The describing function method can quantitatively calculate the frequency and amplitude of the oscillation, which provides an important basis for the prevention and suppression of the oscillation.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 shows a topological structure (A) of a PMSG-WT and its controller structure (B and D represent coordinate conversion, C represents a phase-locked loop, E represents an MSC controller, and F represents a GSC controller);



FIG. 2 shows a distribution diagram of G(s) poles;



FIG. 3 shows G(s) and −1/N(A) curves when an Lg value is changed;



FIG. 4a shows a simulation verification waveform (a) when Lg=0.1 mH;



FIG. 4b shows FFT spectrum analysis (b) when Lg=0.1 mH;



FIG. 5a shows the simulation verification waveform (a) when Lg=0.4 mH; and



FIG. 5b shows FFT spectrum analysis (b) when Lg=0.4 mH.





DESCRIPTION OF EMBODIMENTS

The topological structure of the PMSG-WT and its controller according to the present application are shown in FIG. 1. The PMSG-WT includes a wind turbine, a generator, an MSC, a DC capacitor, a GSC, and a filter. The wind turbine captures wind energy and converts the wind energy into mechanical energy, both the MSC and the GSC are two-level voltage source converters, wherein the MSC converts the alternating current output by the permanent magnet synchronous generator into direct current, and the GSC inverts the direct current into power frequency alternating current and integrates the power frequency alternating current into the power grid. Both the MSC and the GSC adopt a vector control method in a dq coordinate system, and convert three-phase voltage and current under the abc frame into the voltage and current under d-axis and q-axis through dq transformation. The MSC controller includes a power loop (P&O), a rotating speed loop (Hω), and a machine-side current loop (Hcr); and the GSC controller includes a voltage loop (Hv) and a grid-side current loop (Hcg). In addition, the PMSG-WT also includes a phase-locked loop (PLL) and coordinate conversion links (abc/dq and dq/abc). Hereinafter, the present application will be further described in combination with specific embodiments:


In one embodiment of the present application, main parameters of the system are shown in Table 1.









TABLE 1







Main parameters of the system










Parameter
Value















Equivalent inductance of a weak
0.1
mH










power grid Lg




Voltage amplitude of an ideal
690{square root over (2)}/{square root over (3)}



voltage source of the weak




power grid Us












Filtering inductance Lf
1.2
mH



DC capacitor Cdc
2
mF



Armature inductance of the
1.5028
mH










generator Ls












Rotor resistance of generator Rs
0.0224
Ω



Permanent magnet flux
5.3445
Wb










linkage ψf












Power frequency angular
100π
rad/s










frequency ω




The number of pole pairs of the
48



generator np




Equivalent rotational inertia J
1417769.4











Perturbation step length of a
0.0001
rad/s










power loop ε












Control period of the power
0.1
ms










loop Tp












Reference value of output power
0.688
MW










of the PMSG-WT Pref




Proportional parameter of a
10902



rotating speed loop Kωp




Integral parameter of the rotating
17875



speed loop Kωi




Proportional parameter of a
3.13



machine-side current Kcpr




Integral parameter of the
109.8



machine-side current loop Kcir




Proportional parameter of a
19.05



grid-side current loop Kcpg




Integral parameter of the
176



grid-side current loop Kcig




Proportional parameter of a
1.6



grid-side voltage loop Kvp




Integral parameter of the
28



grid-side voltage loop Kvi




Proportional parameter of the
2.1



phase-locked loop Kppll




Integral parameter of the
36.6



phase-locked loop Kipll












Reference value of DC voltage
1400
V










Udcref












Steady-state value of rotating
3
rad/s










speed of the generator ωg*




Linearization constant of a
−2.742 × 105



mechanical torque of the wind




turbine Bt




Period of a power sampling
0.01



filter Tf











In the embodiment of the present application, step 1, acquiring main parameters of the PMSG-WT, wherein the main parameters as shown in Table 1, establishing mathematical models of the wind turbine, the generator and the MSC, the MSC controller, the DC capacitor, the GSC and the filter, and the GSC controller, respectively, performing linearization in a dq coordinate system, and calculating steady-state operation parameters to obtain small-signal models of the wind turbine, the generator and the MSC, the MSC controller, the DC capacitor, the GSC and the filter, and the GSC controller:










sJ


Δω
g


=


Δ


T
m


-

Δ


T
e










Δ


T
e


=

-

3
2



n
p



ψ
f


Δ


i
qr









Δ


T
m


=


B
t



Δω
g











Z
dqr

·
Δ



i
dqr


=


-


U
dc
*

·
Δ



d
dqr


-



D
dqr
*

·
Δ



u
dc


+


G

ω

e


·

Δω
e










Δ


d
dqr
c


=


1

U
dc
*




(




G
cr

·
Δ



i
dqr
c


+


G

ω

g


(


ω
g
ref

-

ω
g


)

+


G

ω

e


·

Δω
e



)











{





Δ


i
dqr
c


=



G

θ

e

i

·
Δ



i
dqr









Δ


d
dqg
c


=




G

θ

e

d

·
Δ



i
dqr


+

Δ


d
dqg















sC
dc


Δ


u
dc


=


1.5

(





D
dqr
*

T

·
Δ



i
dqr


+




I
dqr
*

T

·
Δ



d
dqr



)


-

1.5

(





D
dqg
*

T

·
Δ



i
dqg


+




I
dqg
*

T

·
Δ



d
dqg



)















Z
f

·
Δ



i
dqg


=




U
dc
*

·
Δ



d
dqg


+



D
dqg
*

·
Δ



u
dc


-

Δ


u
dqg










Δ



d
dqg
c

·

U
dc
*



=


Δ


u
dqg
c


+


G
cg


Δ


i
dqg
c


+


G
udc


Δ


u
dc












{





Δ


u
dqg
c


=



G
pll
u

·
Δ




u
dqg









Δ


i
dqg
c


=




G
pll
i

·
Δ



u
dqg


+

Δ


i
dqg










Δ


d
dqg
c


=




G
pll
d

·
Δ



u
dqg


+

Δ


d
dqg











s represents a parameter introduced by the Laplace transform, J represents rotational inertia of an equivalent concentrated mass block of the wind turbine and the generator, ωg represents a rotating speed of the generator, Tm represents a mechanical torque of the generator, and Te represents an electromagnetic torque of the generator. np represents the number of pole pairs of the generator, ψf represents a permanent magnet flux linkage of the generator, and Bt represents a linearization constant of the mechanical torque of the wind turbine.








Z
dqr

=

[





sL
s

+

R
s





-

ω
e
*



L
s








ω
e
*



L
s






sL
s

+

R
s





]


,


Δ


i
dqr


=

[




Δ


i
dr







Δ


i
qr





]


,


Δ


d
dqr


=

[




Δ


d
dr







Δ


d
qr





]


,


D
dqr
*

=

[




D
dr
*






D
qr
*




]


,


G

ω

e


=

[





L
s



I
qr
*








ψ
f

-


L
s



I
dr
*






]


,





Rs and Ls represent rotor resistance and armature inductance of the generator, respectively, ωe represents an electrical angular speed of the rotor, and ωe=npωg. idr and iqr represent the stator current of the generator in the dq coordinate system, ddr and dqr represent output duty ratios of the MSC controller in the dq coordinate system, and udc represents a DC voltage.








G
cr

=

[




H
cr





ω
e
*



L
s







-

ω
e
*



L
s





H
cr




]


,


G

ω

g


=

[



0






H
cr



H
ω





]


,


H
cr

=


K
cpr

+


K
cir

s



,





Kcpr and Kcir represent a proportional parameter and an integral parameter of machine-side current loop PI control, respectively,








H
ω

=


K

ω

p


+


K

ω

i


s



,





Kωp and Kωi represent the proportional parameter and the integral parameter of rotating speed loop PI control, respectively, ωgref represents the reference value of the rotating speed of the generator, ω*e represents the steady-state value of the electrical angular speed of the rotor, and the superscript c represents a dq coordinate system of the MSC controller.








G

θ

e


i

=

[



1




H

θ

e




I
qr
*






0



1
-


H

θ

e




I
dr
*






]


,


G

θ

e

d

=

[



0




H

θ

e




D
qr
*






0




-

H

θ

e





D
dr
*





]


,


H

θ

e


=



3


n
p
2



ψ
f



2


s

(


B
t

-
sJ

)



.



I
dqr
*

[




I
dr
*






I
qr
*




]



,


Δ


i
dqg


=

[




Δ


i
dg







Δ


i
qg





]


,


Δ


d
dqg


=

[




Δ


d
dg







Δ


d
qg





]


,


D
dqg
*

=

[




D
dg
*






D
qg
*




]


,


I
dqg
*

=

[




I
dg
*






I
qg
*




]


,





Cdc represents the DC capacitor, idg and iqg represent d-axis current and q-axis current of an AC port of the GSC, respectively, and ddg and dqg represent the output duty ratios of the GSC controller in the dq coordinate system, respectively.








Z
f

=

[




sL
f





-
ω



L
f







ω


L
f





sL
f




]


,


Δ


i
dqg


=

[




Δ


i
dg







Δ


i
qg





]


,


Δ


d
dqg


=

[




Δ


d
dg







Δ


d
qg





]


,


D
dqg
*

=

[




D
dg
*






D
qg
*




]


,


Δ


u
dqg


=

[




Δ


u
dg







Δ


u
qg





]


,





Lf represents filtering inductance, ω represents power frequency angular frequency, ω=100π rad/s, idg and iqg represent the d-axis current and the q-axis current of the AC port of the GSC, respectively, ddg and dqg represent the output duty ratios of the GSC controller in the dq coordinate system, respectively, and udg and uqg represent a d-axis voltage and a q-axis voltage of a grid-connected point, respectively.








G
cg

=

[




-

H
cg






-
ω



L
f







ω


L
f





-

H
cg





]


,


G
udc

=

[





H
cg



H
v






0



]


,


H
cg

=


K
cpg

+


K
cig

s



,





Kcpg and Kcig represent the proportional parameter and the integral parameter of grid-side current loop PI control, respectively,








H
v

=


K
vp

+


K
vi

s



,





and Kvp and Kvi represent the proportional parameter and the integral parameter of grid-side voltage loop PI control, respectively.








G
pll
u

=

[



1




G
pll



U
qg
*






0



1
-


G
pll



U
dg
*






]


,


G
pll
i

=

[



0




G
pll



I
qg
*






0




-

G
pll




I
dg
*





]


,


G
pll
d

=

[



0




G
pll



D
qg
*






0




-

G
pll




D
dg
*





]


,


G
pll

=


H
pll


s
+


U
dg
*



H
pll





,


H
pll

=


K
ppll

+


K
ipll

s



,





Kppll and Kipll represent the proportional parameter and the integral parameter of a phase-locked loop PI controller, respectively.


Capital letters and superscripts * represent steady-state components of corresponding lowercase variables, and the specific calculation method is as follows:






{





I
qr
*

=

3


P
ref

/

n
p



Ψ
f



ω
g
*









I
dr
*

=
0







U
dc
*

=

U
dcref








D
dr
*

=


(



ω
e



I
qr
*



L
s


-


R
s



I
dr
*



)

/

U
dc
*









D
qr
*

=


(



-

ω
e




L
s



I
dr
*


+


ω
e



Ψ
f


-


R
s



I
qr
*



)

/

U
dc
*









U
dg
*

=



(



(

1.5

U
s


)

2

+




(

1.5

U
s


)

4

-


(

3


P
ref


ω


L
g


)

2




)

/
4.5









U
qg
*

=
0







I
dg
*

=


P
ref

/

(

1.5

U
dg
*


)









I
qg
*

=
0







D
dg
*

=


(



-

I
qg
*



ω


L
f


+

U
dg
*


)

/

U
dc
*









D
dg
*

=


(



I
dg
*


ω


L
f


+

U
dg
*


)

/

U
dc
*










Step 2: modeling the power loop in the MSC controller based on a describing function method, wherein its mathematical expression is:







ω
g
ref

=

{






ε

s


T
P





sgn

(


P
ref

-

P
n


)



,




(


ω
g



ω
mpp


)








-

ε

s


T
P






sgn

(


P
ref

-

P
n


)



,




(


ω
g

>

ω
mpp


)









the sign function in the formula can be modeled by using a describing function, and the describing function is:







N

(
A
)

=

4

π

A






Step 3: considering the influence of the weak AC power grid, the weak AC power grid model is:

Zg·Δidqg=Δudqg


in the formula







Z
g

=


[




sL
g





-
ω



L
g







ω


L
g





sL
g




]

.






The small-signal model of the output power of the PMSG-WT is:

ΔP=1.5(I*dqgT·Zg+U*dqgT)·Δidqg


combing the linear parts of the weak power grid model and the power loop model with the small-signal model of the PMSG-WT in step 1, and deriving a transfer function G(s) of the linear part of the system:







G

(
s
)

=


-



1
.
5


ε



T
P


s





(



I
dqg

*
T




Z
g


+

U
dqg

*
T



)




M
5

-
1


(


D
dqg
*

+

G
udc


)



M
7

-
1





M
8

·

1

1
+


T
f


s



·

1

1
+


T
P


s












where









M
8

=



-

D
dqr

*
T



·

M
1

-
1


·

G

ω

g



+


I
dqr

*
T


·

M
3











M
7

=

(



2

s


C
dc


3

+


I
dqg

*
T




M
6


-


I
dqr

*
T




M
4


+


D
dqg

*
T





M
5

-
1


(


D
dqg
*

+

G
udc


)


+


D
dqr

*
T




M
1

-
1




D
dqr
*



)








M
6

=


(



(



(



G
cg



G
plli


-


G
plld



U
dc
*


+

G
pllu


)



Z
g


+

G
cg


)




M
5

-
1


(


D
dqg
*

+

G
udc


)


+

G
udc


)

/

U
dc
*











M
5

=


-

G
cg


+

Z
f

-


(



G
cg



G
plli


-


G
plld



U
dc
*


+

G
pllu


)



Z
g


+

Z
g












M
4

=


-

M
2




M
1

-
1




D
dqr
*

/

U
dc
*












M
3

=


(



-

M
2




M
1

-
1




G

ω

g



+

G

ω

g



)

/

U
dc
*












M
2

=



G

ω

e




G

i

q

ω




n
p


+


G
cr



G

θ

e

i


-


G

ω

g




G

i

q

ω



-


U
dc
*



G

θ

e

d













M
1

=



G
cr



G

θ

e

i


-


G

ω

g




G

i

q

ω



-


U
dc
*



G

θ

e

d


+

z
dqr







Step 4: analyzing the stability of the system. Firstly, a G(s) pole diagram is drawn, as shown in FIG. 2, it can be seen that G(s) does not contain the pole of the right half plane (the real part is greater than 0), so the first condition for the stability of the system is satisfied. G(s) and −1/N(A) images are drawn in a complex plane, as shown in FIG. 3, G(s) and −1/N(A) intersect, indicating that the system is in a critically stable state at this time. It can be seen from calculation that, when Lg=0.1 mH, the oscillation frequency of the system is about 129 rad/s (20.5 Hz), and the oscillation amplitude is about 61 kW; and when Lg=0.4 m, the oscillation frequency of the system is about 131 rad/s (20.9 Hz), the oscillation amplitude is about 56 kW. When the power grid strength decreases (Lg increases), the oscillation amplitude of the system decreases, indicating that under certain conditions, the increase of the equivalent impedance of the power grid is conducive to maintaining the stability of the system.



FIGS. 4a, 4b, 5a and 5b show system simulation and FFT spectrum analysis results when Lg=0.1 mH and Lg=0.4 mH, respectively. In FIGS. 4a and 4b, the DC component is 0.6889 MW, the corresponding oscillation frequency is 19.5 Hz, and the amplitude is 58 kW, which are basically consistent with the theoretical analysis results; and in FIGS. 5a and 5b, the DC component is 0.6889 MW, the corresponding oscillation frequency is 19.5 Hz, and the amplitude is 53 kW, which are basically consistent with the theoretical analysis results. The simulation results verify the effectiveness and accuracy of the analysis method.

Claims
  • 1. A method for analyzing stability of a PMSG-WT connected to a weak power grid considering influence of power control, wherein the PMSG-WT comprises a wind turbine, a generator, an MSC, a DC capacitor, a GSC, a filter, an MSC controller, and a GSC controller; the MSC controller comprises a power loop, a rotating speed loop, and a machine-side current loop; the GSC controller comprises a voltage loop and a grid-side current loop; and the method comprises the following steps: step 1: acquiring main parameters of the PMSG-WT, establishing mathematical models of the wind turbine, the generator and the MSC, the MSC controller, the DC capacitor, the GSC and the filter, and the GSC controller, respectively, performing linearization in a dq coordinate system, and calculating steady-state operation parameters to obtain small-signal models of the wind turbine, the generator and the MSC, the MSC controller, the DC capacitor, the GSC and the filter, and the GSC controller;step 2: modeling the power loop in the MSC controller based on a describing function method, wherein its mathematical expression is:
  • 2. The method according to claim 1, wherein in step 1, the small-signal models of the wind turbine, the generator and the MSC, and the MSC controller are established as follows: the mathematical model of the wind turbine is established as: sJωg=TM−Te−Bωg in the formula, J represents rotational inertia of an equivalent concentrated mass block of the wind turbine and the generator, Tm represents a mechanical torque of the generator, Te represents an electromagnetic torque of the generator, B represents a self-damping coefficient, it is deemed that B=0 herein, and s represents a parameter introduced by the Laplace transform; linearization is performed on the model to obtain: sJΔωg=ΔTm−ΔTe the electromagnetic torque of the generator is: Te= 3/2npψfiqr np represents the number of the pole pairs of the generator, iqr represents stator current of the q-axis generator, and ψf represents a permanent magnet flux linkage of the generator, and this formula is linearized to obtain: ΔTe= 3/2npψfΔiqr the mechanical torque of the generator is: Tm=Btωg in the formula,
  • 3. The method according to claim 2, wherein in step 1, the establishment process of the small-signal model of the DC capacitor is as follows: the mathematical model of the DC capacitor is established as: sCdcudc=idc2−idc1=1.5(ddridr+dqriqr)−1.5(ddgidg+dqgiqg)in the formula, Cdc represents the DC capacitor, idc1 represents grid-side DC current, idc2 represents machine-side DC current, and by linearizing the model, the small-signal model of the DC capacitor can be obtained as: sCdcΔudc=1.5(D*dqrT·Δidqr+I*dqrT·Δddqr)−1.5(D*dqgT·Δidqg+I*dqgT·Δddqg)in the formula,
  • 4. The method according to claim 3, wherein in step 1, the establishment process of the small-signal models of the GSC and the filter, and the GSC controller is as follows: the mathematical model of the GSC and the filter is established as:
  • 5. The method according to claim 4, wherein the step 3 specifically comprises: the AC weak power grid is expressed by series equivalent inductance of an ideal voltage source, and its mathematical model is established as:
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of International Application No. PCT/CN2021/089735, filed on Apr. 25, 2021, the content of which is incorporated herein by reference in its entirety.

US Referenced Citations (3)
Number Name Date Kind
10491146 Holliday Nov 2019 B2
11258256 Garcia Feb 2022 B2
11677344 Ma Jun 2023 B2
Foreign Referenced Citations (9)
Number Date Country
103812127 May 2014 CN
105589985 May 2016 CN
109103903 Dec 2018 CN
109755964 May 2019 CN
109861265 Jun 2019 CN
111342484 Jun 2020 CN
112260290 Jan 2021 CN
20140039389 Apr 2014 KR
2017016617 Feb 2017 WO
Non-Patent Literature Citations (5)
Entry
International Search Report (PCT/CN2021/089735); dated Jun. 30, 2021.
Stability Analysis and Compensator Design for PV Generators Based on Describing Function Method; Date of Mailing: Oct. 24, 2019.
Describing Function Method Based Power Oscillation Analysis of LCL-filtered Single-Stage PV Generators Connected to Weak Grid; Date of Mailing: Dec. 17, 2018.
Separated Frequency Stability Analysis of Grid-connected PV System Affected by Weak Grid; Date of Mailing: Jan. 30, 2020.
First Office Action(202110451859.4); dated Oct. 27, 2021.
Related Publications (1)
Number Date Country
20220357376 A1 Nov 2022 US
Continuations (1)
Number Date Country
Parent PCT/CN2021/089735 Apr 2021 US
Child 17556839 US