The present application relates to a method of activating, stimulating expansion of, or selecting for immune cells bearing a receptor for a specific antigen, involving contacting an immune cell expressing a cognate receptor with the antigen to which it binds. In one aspect the immune cell is an anti-MUC1*CAR T cell and the stimulating antigen is a peptide derived from the sequence of a cleaved MUC1 that is devoid of the tandem repeat domain.
We previously discovered that a cleaved form of the MUC1 (SEQ ID NO:1) transmembrane protein is a growth factor receptor that drives the growth of over 75% of all human cancers. The cleaved form of MUC1, which we called MUC1* (pronounced muk 1 star), is a powerful growth factor receptor. Cleavage and release of the bulk of the extracellular domain of MUC1 unmasks a binding site for activating ligands dimeric NME1, NME6, NME7, NME7AB, NME7-X1 or NME8. It is an ideal target for cancer drugs as it is aberrantly expressed on over 75% of all cancers and is likely overexpressed on an even higher percentage of metastatic cancers (Mahanta et al. (2008) A Minimal Fragment of MUC1 Mediates Growth of Cancer Cells. PLoS ONE 3(4): e2054. doi:10.1371/journal.pone.0002054; Fessler et al. (2009), “MUC1* is a determinant of trastuzumab (Herceptin) resistance in breast cancer cells,” Breast Cancer Res Treat. 118(1):113-124). After MUC1 cleavage most of its extracellular domain is shed from the cell surface. The remaining portion has a truncated extracellular domain that comprises most or all of the primary growth factor receptor sequence called PSMGFR (SEQ ID NO:2).
Antibodies are increasingly used to treat human diseases. Antibodies generated in non-human species have historically been used as therapeutics in humans, such as horse antibodies. More recently, antibodies are engineered or selected so that they contain mostly human sequences in order to avoid a generalized rejection of the foreign antibody. The process of engineering recognition fragments of a non-human antibody into a human antibody is generally called ‘humanizing’. The amount of non-human sequences that are used to replace the human antibody sequences determines whether they are called chimeric, humanized or fully human.
Alternative technologies exist that enable generation of humanized or fully human antibodies. These strategies involve screening libraries of human antibodies or antibody fragments and identifying those that bind to the target antigen, rather than immunizing an animal with the antigen. Another approach is to engineer the variable region(s) of an antibody into an antibody-like molecule. Another approach involves immunizing a humanized animal. The present invention is intended to also encompass these approaches for use with recognition fragments of antibodies that the inventors have determined bind to the extracellular domain of MUC1*.
In addition to treating patients with an antibody, cancer immunotherapies have recently been shown to be effective in the treatment of blood cancers. One cancer immunotherapy, called CAR T (chimeric antigen receptor T cell) therapy, engineers a T cell so that it expresses a chimeric receptor having an extra cellular domain that recognizes a tumor antigen, and a transmembrane and cytoplasmic tail of a T cell (Dai H, Wang Y, Lu X, Han W. (2016) Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy. J Natl Cancer Inst. 108(7): djv439). Such receptor is composed of an single chain antibody fragment (scFv) that recognizes a tumor antigen, linked to a T cell transmembrane and signaling domains. Upon binding of the receptor to a cancer associated antigen, a signal is transmitted resulting in T-cell activation, propagation and the targeted killing of the cancer cells. In practice, a patient's T cells are isolated and transduced with a CAR, expanded and then injected back into the patient. When the patient's CAR T cells bind to the antigen on a cancer cell, the CAR T cells expand and attack the cancer cells. A drawback of this method is the risk of activating the patient's immune system to destroy cells bearing the target antigen, when most cancer antigens are expressed on some healthy tissues, but overexpressed on cancerous tissues. To minimize the risk of off-tumor/on-target effects, the cancer antigen should be minimally expressed on healthy tissues.
Immune cells, other than T cells, can be engineered to express a receptor that recognizes a tumor antigen. Natural killer, NK, cells can also be engineered to express a receptor that recognizes a specific tumor antigen and methods of the invention can be used to activate, stimulate expansion or selecting for those immune cells that bear a receptor for a specific antigen, involving contacting the immune cell expressing the cognate receptor with the antigen to which it binds.
Another cancer immunotherapy involves BiTEs (Bi-specific T cell Engagers). The BiTE approach attempts to eliminate the CAR T associated risk of off-tumor/on-target effects. Unlike CAR T, BiTEs are bispecific antibodies that should not pose any greater risk than regular antibody-based therapies. However, unlike typical anti-cancer antibodies that bind to and block a cancer antigen, BiTEs are designed to bind to an antigen on the tumor cell and simultaneously bind to an antigen on an immune cell, such as a T cell. In this way, a BiTE recruits the T cell to the tumor. BiTEs are engineered proteins that simultaneously bind to a cancer associated antigen and a T-cell surface protein such as CD3-epsilon. BiTEs are antibodies made by genetically linking the scFv's of an antibody that binds to a T cell antigen, like anti-CD3-epsilon to a scFv of a therapeutic monoclonal antibody that binds to a cancer antigen (Patrick A. Baeuerle, and Carsten Reinhardt (2009) Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 69(12):4941-4944).
In one aspect, the present invention is directed to a non-human, human or humanized anti-MUC1* antibody or antibody fragment or antibody-like protein that binds to a region on extracellular domain of MUC1 isoform or cleavage product that is devoid of the tandem repeat domains. The non-human, human or humanized anti-MUC1* antibody or antibody fragment or antibody-like protein may specifically bind to
The non-human, human or humanized antibody may be IgG1, IgG2, IgG3, IgG4 or IgM. The human or humanized antibody fragment or antibody-like protein may be scFv or scFv-Fc.
The human or humanized antibody, antibody fragment or antibody-like protein as in above may comprise a heavy chain variable region and light chain variable region which is derived from mouse monoclonal MN-E6 antibody, and has at least 80%, 90% or 95% or 98% sequence identity to the mouse monoclonal MN-E6 antibody. The heavy chain variable region may have at least 90% or 95% or 98% sequence identity to SEQ ID NO:13 and the light chain variable region may have at least 90% or 95% or 98% sequence identity to SEQ ID NO:66.
The human or humanized antibody, antibody fragment or antibody-like protein according to above may include complementarity determining regions (CDRs) in the heavy chain variable region and light chain variable region having at least 90% or 95% or 98% sequence identity to CDR1, CDR2 or CDR3 regions having sequence as follows:
CDR1 heavy chain SEQ ID NO:17
CDR1 light chain SEQ ID NO:70,
CDR2 heavy chain SEQ ID NO:21
CDR2 light chain SEQ ID NO:74,
CDR3 heavy chain SEQ ID NO:25
CDR3 light chain SEQ ID NO:78.
The human or humanized antibody, antibody fragment or antibody-like protein described above may include a heavy chain variable region and light chain variable region which is derived from mouse monoclonal MN-C2 antibody, and has at least 80%, 90% or 95% or 98% sequence identity to the mouse monoclonal MN-C2 antibody. The heavy chain variable region may have at least 90% or 95% or 98% sequence identity to SEQ ID NO:119 and the light chain variable region has at least 90% or 95% or 98% sequence identity to SEQ ID NO:169. The complementarity determining regions (CDRs) in the heavy chain variable region and light chain variable region may have at least 90% or 95% or 98% sequence identity to CDR1, CDR2 or CDR3 regions having sequence as follows:
CDR1 heavy chain SEQ ID NO:123
CDR1 light chain SEQ ID NO:173,
CDR2 heavy chain SEQ ID NO:127
CDR2 light chain SEQ ID NO:177,
CDR3 heavy chain SEQ ID NO:131
CDR3 light chain SEQ ID NO:181.
The human or humanized antibody, antibody fragment or antibody-like protein as in above may include a heavy chain variable region and light chain variable region which is derived from mouse monoclonal MN-C3 antibody, and may have at least 80%, 90% or 95% or 98% sequence identity to the mouse monoclonal MN-C3 antibody. The heavy chain variable region may have at least 90% or 95% or 98% sequence identity to SEQ ID NO:414 and the light chain variable region may have at least 90% or 95% or 98% sequence identity to SEQ ID NO:459. The complementarity determining regions (CDRs) in the heavy chain variable region and light chain variable region may have at least 90% or 95% or 98% sequence identity to CDR1, CDR2 or CDR3 regions having sequence as follows:
CDR1 heavy chain SEQ ID NO:418
CDR1 light chain SEQ ID NO:463,
CDR2 heavy chain SEQ ID NO:422
CDR2 light chain SEQ ID NO:467,
CDR3 heavy chain SEQ ID NO:426,
CDR3 light chain SEQ ID NO:471.
The human or humanized antibody, antibody fragment or antibody-like protein described above may include a heavy chain variable region and light chain variable region which is derived from mouse monoclonal MN-C8 antibody, and has at least 80%, 90% or 95% or 98% sequence identity to the mouse monoclonal MN-C8 antibody. The heavy chain variable region may have at least 90% or 95% or 98% sequence identity to SEQ ID NO:506 and the light chain variable region may have at least 90% or 95% or 98% sequence identity to SEQ ID NO:544. The complementarity determining regions (CDRs) in the heavy chain variable region and light chain variable region may have at least 90% or 95% or 98% sequence identity to CDR1, CDR2 or CDR3 regions having sequence as follows:
CDR1 heavy chain SEQ ID NO:508
CDR1 light chain SEQ ID NO:546,
CDR2 heavy chain SEQ ID NO:510
CDR2 light chain SEQ ID NO:548,
CDR3 heavy chain SEQ ID NO:512,
CDR3 light chain SEQ ID NO:550.
In another aspect, the present invention is directed to an anti-MUC1* extracellular domain antibody comprised of sequences of a humanized MN-E6 represented by humanized IgG2 heavy chain, or humanized IgG1 heavy chain, paired with humanized Kappa light chain, or humanized Lambda light chain. The humanized IgG2 heavy chain may be SEQ ID NOS:53, humanized IgG1 heavy chain may be SEQ ID NO:57, humanized Kappa light chain may be SEQ ID NO:108, and humanized Lambda light chain may be SEQ ID NO:112, or a sequence having 90%, 95% or 98% sequence identity thereof.
In another aspect, the invention is directed to an anti-MUC1* extracellular domain antibody comprised of sequences of a humanized MN-C2 represented by humanized IgG1 heavy chain, humanized IgG2 heavy chain, paired with humanized Lambda light chain, and humanized Kappa light chain. The humanized IgG1 heavy chain MN-C2 may be SEQ ID NOS:159 or IgG2 heavy chain may be SEQ ID NOS:164 paired with Lambda light chain (SEQ ID NO:219) or Kappa light chain (SEQ ID NO:213), or a sequence having 90%, 95% or 98% sequence identity thereof.
In another aspect, the invention is directed to a human or humanized anti-MUC1* antibody or antibody fragment or antibody-like protein according to above, which inhibits the binding of NME protein to MUC1*. The NME may be NME1, NME6, NME7AB, NME7-X1, NME7 or NME8.
In yet another aspect, the invention is directed to a single chain variable fragment (scFv) comprising a heavy and light chain variable regions connected via a linker, further comprising CDRs of antibodies that bind to MUC1* extracellular domain. The CDRs may be derived from MN-E6, or MN-C2, antibodies or humanized antibodies thereof. The scFv may be one that possesses the SEQ ID NOS:233, 235 and 237 (E6); SEQ ID NOS:239, 241, and 243 (C2); SEQ ID NOS:245, 247, and 249 (C3); or SEQ ID NOS:251, 253, and 255 (C8).
In still another aspect, the invention is directed to a chimeric antigen receptor (CAR) comprising a scFv or a humanized variable region that binds to the extracellular domain of a MUC1 that is devoid of tandem repeats, a linker molecule, a transmembrane domain and a cytoplasmic domain. The single chain antibody fragment may bind to
In the CAR as described above, portions of any of the variable regions set forth and described above, or combination thereof may be used in the extracellular domain of the CAR. The CAR also comprises a transmembrane region and a cytoplasmic tail that comprises sequence motifs that signal immune system activation. The extracellular domain may be comprised of non-human, or humanized single chain antibody fragments of an MN-E6 scFv, MN-C2 scFv, MN-C3 scFv or MN-C8 scFv.
In the CAR as described above, the extracellular domain may include a non-human or humanized single chain antibody fragments of an MN-E6 scFv set forth as SEQ ID NOS: 233, 235, or 237), MN-C2 scFv (SEQ ID NOS:239, 241, or 243), MN-C3 scFv (SEQ ID NOS: 245, 247, or 249) or MN-C8 scFv (SEQ ID NOS:251, 253, or 255).
In any of the CARs described above, the cytoplasmic tail may be comprised of one or more of signaling sequence motifs CD3-zeta, CD27, CD28, 4-1BB, OX40, CD30, CD40, ICAm-1, LFA-1, ICOS, CD2, CD5, or CD7.
In any of the CARs described above, the sequence may be CARMN-E6 CD3z (SEQ ID NOS:295), CARMN-E6 CD28/CD3z (SEQ ID NOS:298); CARMN-E6 4-1BB/CD3z (SEQ ID NOS:301); CARMN-E6 OX40/CD3z (SEQ ID NOS:617); CARMN-E6 CD28/4-1BB/CD3z (SEQ ID NOS:304); CARMN-E6 CD28/OX40/CD3z (SEQ ID NOS:619); CAR MN-C2 CD3z (SEQ ID NOS:607); CAR MN-C2 CD28/CD3z (SEQ ID NOS:609); CAR MN-C2 4-1BB/CD3z (SEQ ID NOS:611 and SEQ ID NOS: 719); CAR MN-C2 OX40/CD3z (SEQ ID NOS:613); CAR MN-C2 CD28/4-1BB/CD3z (SEQ ID NOS: 307); CAR MN-C2 CD28/OX40/CD3z (SEQ ID NOS:615) or CAR MN-C3 4-1BB/CD3z (SEQ ID NOS: 601).
In another aspect, the CAR may have an extracellular domain unit that recognizes a peptide. The peptide may be PSMGFR (SEQ ID NO:2). The peptide may be a peptide derived from NME7. The peptide may be
In another aspect, the invention is directed to a composition that includes at least two CARs with different extracellular domain units transfected into the same cell.
The at least two CARs may have one CAR that does not have a tumor antigen targeting recognition unit and the other CAR does have a tumor antigen targeting recognition unit. In another aspect of the invention, one of the extracellular domain recognition units may bind to MUC1* extracellular domain. In another aspect of the invention, one of the extracellular domain recognition units may be an antibody fragment and the other is a peptide, which may be devoid of transmembrane and signaling motifs; the peptide may be a single chain antibody fragment. In another aspect of the invention, one of the recognition units may bind PD-1 or PDL-1. In another aspect of the invention, one extra cellular domain recognition unit is an anti-MUC1* scFv chosen from the group consisting of scFv of MN-E6 antibody, scFv of MN-C2 antibody, scFv of MN-C3 antibody or scFv of MN-C8 antibody and the other is a peptide single chain antibody fragment that binds to the extra cellular domain of a cleaved MUC1 or binds to NME7 or is a peptide derived from NME7 or chosen from the group consisting of
In another aspect, the invention is directed to a cell comprising a CAR with an extracellular domain that binds to the extra cellular domain of a MUC1 molecule that is devoid of tandem repeats. In another aspect, the invention is directed to a cell comprising a CAR with an extracellular domain that binds to a MUC1* transfected or transduced cell. The cell that includes the CAR may be an immune system cell, preferably a T cell, a natural killer cell (NK), a dendritic cell or mast cell.
In another aspect, the invention is directed to an engineered antibody-like protein.
In another aspect, the invention is directed to a method of screening a library of antibodies or antibody fragments that are human, for those that bind to
(vi) NME7 protein; or
(vii) a peptide fragment of NME7 protein.
In another aspect, the invention is directed to a method for treating a disease in a subject comprising administering an antibody according to any claim above, to a person suffering from the disease, wherein the subject expresses MUC1 aberrantly. The disease may be cancer, such as breast cancer, ovarian cancer, lung cancer, colon cancer, gastric cancer or esophageal cancer.
In another aspect, the invention is directed to a method for treating a disease in a subject comprising administering an NME peptide, to a person suffering from the disease, wherein the subject expresses MUC1 aberrantly.
In another aspect, the invention is directed to a scFv comprising variable domain fragments derived from an antibody that binds to an extracellular domain of MUC1 isoform or cleavage product that is devoid of the tandem repeat domains. The variable domain fragments may be derived from mouse monoclonal antibody MN-E6 (SEQ ID NO:13 and 66) or from the humanized MN-E6 (SEQ ID NO: 39 and 94), or from MN-E6 scFv (SEQ ID NO: 233, 235 and 237). Or, the variable domain fragments may be derived from mouse monoclonal antibody MN-C2 (SEQ ID NO: 119 and 169) or from the humanized MN-C2 (SEQ ID NO: 145 and 195), or from MN-C2 scFv (SEQ ID NO: 239, 241 and 243). Or, the variable domain fragments may be derived from mouse monoclonal antibody MN-C3 (SEQ ID NO: 414 and 459) or from the humanized MN-C3 (SEQ ID NO: 440 and 487), or from MN-C3 scFv (SEQ ID NO: 245, 247 and 249). Or, the variable domain fragments may be derived from mouse monoclonal antibody MN-C8 (SEQ ID NO: 505 and 544) or from the humanized MN-C8 (SEQ ID NO: 526 and 566), or from MN-C8 scFv (SEQ ID NO: 251, 253, 255).
In another aspect, the invention is directed to a method for the treatment of a person diagnosed with, suspected of having or at risk of developing a MUC1 or MUC1* positive cancer involving administering to the person an effective amount of the scFv described above.
In another aspect, the invention is directed to a polypeptide comprising at least two different scFv sequences, wherein one of the scFv sequences is a sequence that binds to extracellular domain of MUC1 isoform or cleavage product that is devoid of the tandem repeat domains. The polypeptide may bind to
The polypeptide may bind to a receptor on an immune cell, such as T cell, and in particular, CD3 on T-cell.
In another aspect, the invention is directed to a method of detecting presence of a cell that expresses MUC1* aberrantly, comprising contacting a sample of cells with the scFv-Fc described above and detecting for the presence of the binding of scFv-Fc to the cell. The cell may be cancer cell.
In another aspect, the invention is directed to a method for testing a subject's cancer for suitability of treatment with a composition comprising portions of the variable regions of MN-E6, MN-C2, MN-C3 or MN-C8, comprising the steps of contacting a bodily specimen from the patient with the corresponding MN-E6 scFv-Fc, MN-C2 scFv-Fc, MN-C3 scFv-Fc or MN-C8 scFv-Fc.
In another aspect, the invention is directed to a method of treating a subject suffering from a disease comprising, exposing T cells from the subject or from a donor to MUC1* peptides wherein through various rounds of maturation, T cells develop MUC1* specific receptors, creating adapted T cells, and expanding and administering the adapted T cells to the patient who is diagnosed with, suspected of having, or is at risk of developing a MUC1* positive cancer.
In one aspect, the invention may be directed to an immune cell transfected or transduced with a cleavage enzyme for the treatment of cancer. The cancer may be a MUC1 positive cancer. The immune cell may be a T cell. The immune cell may be derived from the patient to be treated. The cleavage enzyme may be an MMP or ADAM family member. The cleavage enzyme may be MMP2, MMP9, MMP3, MMP14, ADAM17, ADAM28, or ADAM TS16.
In another aspect of the invention, the cleavage enzyme is administered directly to the patient, alone or concurrent with an agent for the treatment of cancer, including but not limited to chemotherapy agents, targeted biologicals, CAR T cells, BiTEs or ADCs. In one aspect, the cleavage enzyme is MMP1, MMP2, MMP3, MMP7, MMP8, MMP9, MMP11, MMP12, MMP13, MMP14, MMP16, ADAMS, ADAM10, ADAM17, ADAM 19, ADAMTS16, ADAM28 or a catalytically active fragment thereof. In another aspect, the cleavage enzyme is MMP9 or MMP14 and the other agent for the treatment of cancer is an anti-MUC1* CAR T cell. In yet another aspect, the cleavage enzyme is MMP9 or MMP14 and the other agent for the treatment of cancer is an anti-MUC16 CAR T cell.
Another approach for the treatment of MUC1 positive cancers is to treat the patient, which may be by intra-tumor injection, with an agent that cleaves MUC1 to a form that is not recognized by the growth factors that activate MUC1*, especially growth factor NME7AB. In one aspect of the invention, an immune cell is transduced with a cleavage enzyme that cleaves MUC1 at a position such that growth factors dimeric NME1 and monomeric NME7AB or NME7-X1 do not bind to the remaining transmembrane portion, which is a variant of MUC1*. In some cases, the immune cell may be transduced with both a CAR and such cleavage enzyme. In yet another aspect, the cleavage enzyme that cleaves MUC1 at a position such that growth factors NME1, NME7AB or NME7-X1 do not bind to the remaining transmembrane portion, is injected directly into or near the tumor site. In yet another aspect of the invention, an immune cell is transduced with a cleavage enzyme that cleaves MUC1 at a position such that growth factors NME7AB or NME7-X1 do not bind to the remaining transmembrane portion, but dimeric or hexameric NME1 can bind to it. In some cases, the immune cell may be transduced with both a CAR and such cleavage enzyme. In yet another aspect, the cleavage enzyme that cleaves MUC1 at a position such that growth factors NME7AB or NME7-X1 do not bind to the remaining transmembrane portion, but dimeric or hexameric NME1 can bind to it, is injected directly into or near the tumor site. In all of the instances of immune cells transduced described above, the cleavage enzyme may be expressed off of an inducible promoter. In one case its expression is induced by an NFAT protein.
One method of the invention is directed to taking a biopsy from patient tumor, identifying which MUC1 cleavage enzyme the tumor overexpresses, wherein the enzyme cleaves MUC1, and administering to the patient an immune cell transduced with a CAR wherein the antibody fragment, targeting head binds to MUC1 that has been cleaved by that enzyme. In another aspect of the invention, the patient is treated with an inhibitor of that cleavage enzyme. In one case, the immune cell, expressing a CAR that binds to the form of MUC1 that is created by cleavage by that specific enzyme, is also transduced with an inhibitor of the enzyme. In a one embodiment the inhibitor is a TIMP, which may be expressed off an inducible plasmid. In one case, it is expressed off of an NFAT inducible promoter. The cleavage enzyme inhibitor can also be an antibody that inhibits catalytic activity of the enzyme, for example an anti-MMP9 wherein the antibody is a single chain version of the antibody.
In another aspect, an immune cell is engineered to express a CAR and an inhibitor of an enzyme that cleaves MUC 1. In one aspect the immune cell is a T cell. In one aspect the inhibitor of the enzyme is a biological entity. In one case the biological inhibitor is a TIMP. In one embodiment an immune cell is transduced with a CAR whose antibody targeting head binds to a portion of the MUC 1 extracellular domain and is also transduced with an enzyme inhibitor that inhibits Cleavage of MUC1. In one case the antibody of the CAR binds to a portion on MUC1 that is N-terminal to the PSMGFR portion. In another case the antibody of the CAR binds to a region of the PSMGFR. In one case the enzyme that is inhibited is an MMP, which may be MMP9, MMP14, or MMP16 or other enzyme that cleaves MUC1 and the inhibitor is a TIMP that inhibits that enzyme. In a preferred embodiment the inhibitor is expressed off an inducible promoter. In one case it is expressed off an NFAT inducible plasmid.
In another aspect, the present invention is directed to methods of activating, stimulating expansion of, or selecting for a population of immune cells that express a receptor that recognizes a specific tumor antigen, involving contacting the immune cell expressing the cognate receptor with the antigen to which it binds. In one aspect the immune cell is an anti-MUC1* CAR T cell and the stimulating antigen is a peptide derived from the sequence of a cleaved MUC1 that is devoid of the tandem repeat domain. In one aspect, the antibody fragment that targets the CAR binds to a peptide and that peptide is used to activate, stimulate or select for the CAR T cells wherein the peptide has a sequence containing at least 15 contiguous amino acids, but can have up to 4 substitutions or deletions, wherein the peptide is derived from:
In one aspect, the invention is directed to a method for training CAR T cell to be activated against a specific molecular target that is on a tumor, comprising incubating a CAR T cell, which has been transduced with nucleic acid encoding an antibody fragment that binds to the specific molecular target, with the specific molecular target. The molecular target may be any antigen specific to a tumor cell, which may be without limitation, a peptide derived from the MUC1 extra cellular domain, a peptide derived from the extra cellular domain of a transmembrane MUC1 cleavage product that is devoid of tandem repeats, a peptide derived from the extra cellular domain of MUC1*, wherein the extra cellular domain comprises PSMGFR, comprises all or part of PSMGFR plus 9 amino acids added at the N-terminus, or comprises all or part of PSMGFR plus 20 amino acids added at the N-terminus.
The specific molecular target, also known as antigen, may be in the form of:
a) antigen positive cancer cells;
b) an antigen-negative cancer cell line transfected with the antigen;
c) a substrate to which is attached a synthetic antigen or specifically reactive peptide fragment thereof;
d) free antigen or specifically reactive peptide fragment thereof; or
e) an antigen or specifically reactive peptide fragment thereof coupled to BSA but free in solution.
The incubation may be in vitro. The substrate may be magnetic bead, flask surface, cell culture dish or coated well. The antigen peptide may be attached to the substrate via bovine serum albumin or human serum albumin.
In one aspect, the antigen may be MUC1* and the specifically reactive peptide fragment may be MUC1* extra cellular domain peptide.
In one embodiment, the CAR T cells are co-cultured with the target antigen for a time period of 6 hours to 1 week. In one embodiment, the CAR T cells are co-cultured with the target antigen for a time period of 6 hours to 48 hours. In another embodiment, the CAR T cells are co-cultured with the target antigen for a time period of 12 hours to 24 hours. In another embodiment, the CAR T cells are co-cultured with the target antigen for a time period of 18 to 24 hours.
In one embodiment, the stimulated CAR T cells are administered to the patient within 4 days of the antigen stimulation. In another embodiment, the stimulated CAR T cells are administered to the patient within 2-3 days of the antigen stimulation. In still another embodiment, the stimulated CAR T cells are administered to the patient within 0-24 hours after the end of the antigen stimulation.
In one aspect, the stimulating antigen is removed from the CAR T cells prior to administration of the CAR T cell to the patient who has been diagnosed with or at risk of developing a cancer.
In one specific example, T cells are transduced with nucleic acids encoding a CAR and cultured in vitro for 8-11 days, after which the CAR T cells are cultured in the presence of the antigen peptide for a period of 18-24 hours, after which antigen peptide is removed from the CAR T cells, which are then administered to the patient within 0-48 hours after removal of the antigen peptide. In one case the patient has been diagnosed with, or at risk of developing, a cancer. In one case the cancer is a MUC1* positive cancer and the antibody fragment of the CAR binds to the peptide that is used to stimulate the CAR T cells. In a more specific example, the CAR T cells are huMNC2-CAR44 T cells and the antigen peptide is the PSMGFR peptide, or the N-10 peptide, wherein the peptide has been covalently couple to magnetic beads.
In another aspect, the invention is drawn to a method of culturing CAR T cells that produce desired memory phenotype and CD4:CD8 ratio of about 50/50, which results in persistence in vivo and low side effects when administered to a patient.
In another aspect, the invention is directed to a method of culturing a population of CAR T cells such that a greater portion of the CAR T cells are in the CD62L positive, CD45-RO negative (naïve) state and CD62L positive, CD45-RO positive (central memory) state, than CAR T cells in CD62L negative/CD45-RO positive (effector memory) and CD62L negative/CD45-RO negative effector states. The cells may be cultured in vitro for 9-12 days, 9-15 days, or 9-20 days, so as to yield a high percentage of the CAR T cells in the central memory and naïve state with far less in the effector memory and effector cell state.
In another aspect, the invention is directed to a method of treating cancer comprising administering to a cancer patient the CAR T cell prepared according to the above methods.
Thus, in one aspect, the invention is directed to a composition comprising a MUC1* extra cellular domain peptide attached to a surface and an immune cell that bears a receptor that binds to the peptide. The immune cell may be engineered to express a receptor that binds to the peptide. The MUC1* extra cellular domain peptide may be PSMGFR. The MUC1* extra cellular domain peptide may be PSMGFR with N-terminus extended by the next 9 amino acids or 20 amino acids from the MUC1* sequence. In yet another aspect, the invention is directed to a method of pre-stimulating an immune cell that bears a receptor to a cancer antigen comprising the steps of:
(i) contacting the immune cell with a peptide having a sequence derived from the cancer antigen; and
(ii) administering to a patient, diagnosed with cancer or at risk of developing a cancer, a therapeutic amount of the immune cells.
The immune cell is separated away from the peptide prior to administering to the patient. And the peptide may be free in solution, attached to a surface, attached to a bead or is expressed on a cell. The immune cell may be a CAR T cell bearing a chimeric antigen receptor (CAR) that comprises an antibody or antibody fragment that binds to the peptide. And the immune cell may be in a pool of naturally occurring T cells that may be obtained from a patient wherein the antigen is an antigen expressed by the patient's tumor, further comprising the step of expanding the patient T cells in the presence of the peptide antigen.
These and other objects of the invention will be more fully understood from the following description of the invention, the referenced drawings attached hereto and the claims appended hereto.
The present invention will become more fully understood from the detailed description given herein below, and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein;
Table 1 shows details of many of the anti-MUC1* CARs that were generated and tested. For each construct shown, a number assigned to that CAR, promoter used, signal peptide, antibody species, sequences of scFv, hinge region, transmembrane domain, and signaling motifs used in each CAR, length of the insert in number of base pairs, its molecular weight and the length of the construct are displayed.
Table 2 shows cytokine release data for some of the CARs after transduction into human T cells and co-cultured with a variety of cancer cells.
In the present application, “a” and “an” are used to refer to both single and a plurality of objects.
As used herein, occasionally, in short hand, a polypeptide is indicated as being “transduced or transfected” into a cell. In these occurrences, it is understood that the nucleic acid encoding the polypeptide sequence is transduced or transfected into the cell, as it is an impossibility that a polypeptide could be transduced or transfected into a cell.
As used herein, occasionally when referring to number of cells injected into an animal or otherwise contextually wherein the number of cells is referred to, “M” refers to millions, and “K” refers to thousands.
As used herein, interchangeable designations for various monoclonal antibodies are used, such as, “MN-C2”, which is interchangeable with “C2”, “Min-C2” and “MNC2”; “MN-E6”, which is interchangeable with “E6”, “Min-E6” and “MNE6”; “MN-C3”, which is interchangeable with “C3”, “Min-C3” and “MNC3”; and “MN-C8”, which is interchangeable with “C8”, “Min-C8” and “MNC8”.
As used herein, “h” or “hu” placed before an antibody construct is short-hand for humanized.
As used herein, the term “antibody-like” means a molecule that may be engineered such that it contains portions of antibodies but is not an antibody that would naturally occur in nature. Examples include but are not limited to CAR (chimeric antigen receptor) T cell technology and the Ylanthia® technology. The CAR technology uses an antibody epitope fused to a portion of a T cell so that the body's immune system is directed to attack a specific target protein or cell. The Ylanthia® technology consists of an “antibody-like” library that is a collection of synthetic human Fabs that are then screened for binding to peptide epitopes from target proteins. The selected Fab regions can then be engineered into a scaffold or framework so that they resemble antibodies.
As used herein, “PSMGFR” is abbreviation for Primary Sequence of the MUC1 Growth Factor Receptor which is identified by SEQ ID NO:2, and thus is not to be confused with a six amino acid sequence. “PSMGFR peptide” or “PSMGFR region” refers to a peptide or region that incorporates the Primary Sequence of the MUC1 Growth Factor Receptor (SEQ ID NO:2).
As used herein, the “MUC1*” extra cellular domain is defined primarily by the PSMGFR sequence (GTINVHDVETQFNQYKTEAASRYNLTISDVSVSDVPFPFSAQSGA (SEQ ID NO:2)). Because the exact site of MUC1 cleavage depends on the enzyme that clips it, and that the cleavage enzyme varies depending on cell type, tissue type or the time in the evolution of the cell, the exact sequence of the MUC1* extra cellular domain may vary at the N-terminus.
Other clipped amino acid sequences may include SNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYKTEAASRY (SEQ ID NO:620); or SVVVQLTLAFREGTINVHDVETQFNQYKTEAASRY (SEQ ID NO:621).
As used herein, the term “PSMGFR” is an acronym for Primary Sequence of MUC1 Growth Factor Receptor as set forth as GTINVHDVETQFNQYKTEAASRYNLTISDVSVSDVPFPFSAQSGA (SEQ ID NO:2). In this regard, the “N-number” as in “N-10 PSMGFR”, “N-15 PSMGFR”, or “N-20 PSMGFR” refers to the number of amino acid residues that have been deleted at the N-terminal end of PSMGFR. Likewise “C-number” as in “C-10 PSMGFR”, “C-15 PSMGFR”, or “C-20 PSMGFR” refers to the number of amino acid residues that have been deleted at the C-terminal end of PSMGFR.
As used herein, the “extracellular domain of MUC1*” refers to the extracellular portion of a MUC1 protein that is devoid of the tandem repeat domain. In most cases, MUC1* is a cleavage product wherein the MUC1* portion consists of a short extracellular domain devoid of tandem repeats, a transmembrane domain and a cytoplasmic tail. The precise location of cleavage of MUC1 is not known perhaps because it appears that it can be cleaved by more than one enzyme. The extracellular domain of MUC1* will include most of the PSMGFR sequence but may have an additional 10-20 N-terminal amino acids.
As used herein “sequence identity” means homology in sequence of a particular polypeptide or nucleic acid to a reference sequence of nucleic acid or amino acid such that the function of the homologous peptide is the same as the reference peptide or nucleic acid. Such homology can be so close with the reference peptide such that at times the two sequences may be 90%, 95% or 98% identical yet possess the same function in binding or other biological activities.
As used herein, “MUC1 positive” cell refers to a cell that expresses a gene for MUC1, MUC1-Y or MUC1-Z or other MUC1 variant.
As used herein, “MUC1 negative” cell refers to a cell that does not express a gene for MUC1.
As used herein, “MUC1* positive” cell refers to a cell that expresses a gene for MUC1, wherein that gene's expressed protein is a transmembrane protein that is devoid of tandem repeats, which may be a consequence of post-translational modification, cleavage, alternative splicing, or transfecting or transducing a cell with a MUC1 protein that is devoid of tandem repeats.
As used herein, “MUC1* negative” cell refers to a cell that may or may not express a gene for MUC1 but does not express a MUC1 transmembrane protein that is devoid of tandem repeats.
As used herein, “MUC1 positive” cancer cell refers to a cancer cell that overexpresses the gene for MUC1, expresses MUC1 in an aberrant pattern, wherein its expression is not restricted to the apical border and/or expresses a MUC1 that is devoid of tandem repeats.
As used herein, “MUC1 negative” cancer cell refers to a cancer cell that may or may not express a gene for MUC1 but does not overexpress MUC1 or does not overexpress a MUC1 transmembrane protein that is devoid of tandem repeats.
As used herein, “MUC1* positive” cancer cell refers to a cancer cell that overexpresses a MUC1 transmembrane protein that is devoid of tandem repeats.
As used herein, “MUC1* negative” cancer cell refers to a cancer cell that may or may not express a gene for MUC1 but does not overexpress a MUC1 transmembrane protein that is devoid of tandem repeats.
As used herein, “activation”, “stimulation” and “pre-stimulation” of CAR T cells have similar meaning and its use may vary according to context. Activation, stimulation or pre-stimulation of CAR T cell with its cognate antigen means presenting or incubating the CAR T cell with the antigen, which by the resultant activation, stimulation or pre-stimulation of the CAR T cell results in greater overall cancer cell destroying capability of the CAR T than if such presenting or incubating of the antigen had not occurred.
As used herein, a “surface” in the context of the CAR T cell being contacted with an antigen on a surface, the surface can be a solid substrate, porous substrate or a non-solid substrate. Such surface may include without limitation glass, plastic or any suitable substrate to which can be attached a peptide. Coated wells and bottom of flask bottles are some examples of such a substrate.
MUC1* Antibodies (Anti-PSMGFR) for Treatment or Prevention of Cancers
We discovered that a cleaved form of the MUC1 (SEQ ID NO:1) transmembrane protein is a growth factor receptor that drives the growth of over 75% of all human cancers. The cleaved form of MUC1, which we called MUC1* (pronounced muk 1 star), is a powerful growth factor receptor. Enzymatic cleavage releases the bulk of the MUC1 extracellular domain. It is the remaining portion comprising a truncated extracellular domain, transmembrane domain and cytoplasmic tail that is called MUC1*. Cleavage and release of the bulk of the extracellular domain of MUC1 unmasks a binding site for activating ligands dimeric NME1, NME6, NME8, NME7-AB, NME7-X1 or NME7. Cell growth assays show that it is ligand-induced dimerization of the MUC1* extracellular domain that promotes growth. MUC1* positive cells treated with either bivalent ‘by’ anti-MUC1* antibody, monovalent ‘my’ or Fab, NM23-H1 dimers or NME7-AB. Bivalent anti-MUC1* antibodies stimulate growth of cancer cells whereas the monovalent Fab inhibits growth. Classic bell-shaped curve indicates ligand induced dimerization stimulates growth. Dimeric NM23-H1, aka NME1, stimulates growth of MUC1* positive cancer cells but siRNA to suppress MUC1 expression eliminate its effect. NME7-AB also stimulates the growth of MUC1* positive cells.
MUC1* is an excellent target for cancer drugs as it is aberrantly expressed on over 75% of all cancers and is likely overexpressed on an even higher percentage of metastatic cancers. After MUC1 cleavage, most of its extracellular domain is shed from the cell surface. The remaining portion has a truncated extracellular domain that at least comprises the primary growth factor receptor sequence, PSMGFR (SEQ ID NO:2). Antibodies that bind to the PSMGFR sequence and especially those that competitively inhibit the binding of activating ligands such as NME proteins, including NME1, NME6, NME8, NME7AB, NME7-X1 and NME7, are ideal therapeutics and can be used to treat or prevent MUC1 positive or MUC1* positive cancers, as stand-alone antibodies, antibody fragments or variable region fragments thereof incorporated into bispecific antibodies, or chimeric antigen receptors also called CARs, which are then transfected or transduced into immune cells, then administered to a patient.
Therapeutic anti-MUC1* antibodies can be monoclonal, polyclonal, antibody mimics, engineered antibody-like molecules, full antibodies or antibody fragments. Examples of antibody fragments include but are not limited to Fabs, scFv, and scFv-Fc. Human or humanized antibodies are preferred for use in the treatment or prevention of cancers. In any of these antibody-like molecules, mutations can be introduced to prevent or minimize dimer formation. Anti-MUC1* antibodies that are monovalent or bispecific are preferred because MUC1* function is activated by ligand induced dimerization. Typical binding assays show that NME1 and NME7-AB bind to the PSMGFR peptide portion of MUC1*. Further, they show that these activating growth factors bind to the membrane proximal portion of MUC1*, as they do not bind to the PSMGFR peptide if the 10 C-terminal amino acids are missing. Similarly, anti-MUC1* antibodies MN-C2 and MN-E6 bind to the PSMGFR peptide if an only if the 10 C-terminal amino acids are present. Antibodies MN-C3 and MN-C8 bind to epitopes that are different from MN-C2 and MN-E6, as they do not depend on the presence of the 10 C-terminal amino acids of the PSMGFR peptide. Antibodies MN-C2, MN-E6, MN-C3 or MN-C8, or fragments derived from them, can be administered to a patient for the treatment or prevention of cancers, as stand-alone antibodies or incorporated into bispecific antibodies, BiTEs or chimeric antigen receptors also called CARs that have been transduced into immune cells. MNC2 and MNE6 and other anti-MUC1* antibodies that competitively inhibit the binding of NME1 and NME7-AB are preferred for use as stand alone antibody therapeutics.
Therapeutic anti-MUC1* antibodies for use as a stand alone antibody therapeutic or for integration into a BiTE or a CAR can be selected based on specific criteria. The parent antibody can be generated using typical methods for generating monoclonal antibodies in animals. Alternatively, they can be selected by screening antibody and antibody fragment libraries for their ability to bind to a MUC1* peptide, which can be the PSMGFR peptide (SEQ ID NO:2), SNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYKTEAASRY (SEQ ID NO:620); or SVVVQLTLAFREGTINVHDVETQFNQYKTEAASRY (SEQ ID NO:621).
Resultant antibodies or antibody fragments generated or selected in this way can then be further selected by passing additional screens. For example, antibodies or antibody fragments become more preferred based on their ability to bind to MUC1* positive cancer cells or tissues but not to MUC1 negative cancer cells or to normal tissues. Further, anti-MUC1* antibodies or antibody fragments may be de-selected as anti-cancer therapeutics if they bind to stem or progenitor cells. Anti-MUC1* antibodies or antibody fragments become more preferred if they have the ability to competitively inhibit the binding of activating ligands to MUC1*. MN-E6 and MN-C2 competitively inhibit the binding of activating ligands NME1 and NME7 to MUC1*.
A human or humanized MN-E6 antibody or antibody fragment, Fab, MN-E6 scFv or hu MN-E6 scFv-Fcmut are effective anti-cancer agents that can be administered to a person diagnosed with a MUC1 or MUC1* positive cancer, suspected of having a MUC1 or MUC1* positive cancer or is at risk of developing a MUC1 or MUC1* positive cancer.
Antibodies that bind to PSMGFR (SEQ ID NO:2) peptide of the extracellular domain of the MUC1* receptor are potent anti-cancer therapeutics that are effective for the treatment or prevention of MUC1* positive cancers. They have been shown to inhibit the binding of activating ligands dimeric NME1 (SEQ ID NOS: 3 and 4) and NME7 (SEQ ID NOS: 5 and 6) to the extracellular domain of MUC1*. Anti-MUC1* antibodies that bind to the PSMGFR sequence inhibit the growth of MUC1*-positive cancer cells, specifically if they inhibit ligand-induced receptor dimerization. Fabs of anti-MUC1* antibodies have been demonstrated to block tumor growth in animals. Thus, antibodies or antibody fragments that bind to the extracellular domain of MUC1* would be beneficial for the treatment of cancers wherein the cancerous tissues express MUC1*.
CAR T and Cancer Immunotherapy Techniques
In another aspect of the invention, some or all of the single chain portions of anti-MUC1* antibody fragments are biochemically fused onto immune system molecules, using several different chimeric antigen receptor, ‘CAR’ strategies. The idea is to fuse the recognition portion of an antibody, typically as a single chain variable fragment, to an immune system molecule that has a transmembrane domain and a cytoplasmic tail that is able to transmit signals that activate the immune system. The recognition unit can be an antibody fragment, a single chain variable fragment, scFv, or a peptide. In one aspect, the recognition portion of the extracellular domain of the CAR is comprised of sequences from the humanized variable region of MN-E6 (SEQ ID NOS: 38-39 and 93-94), MN-C2 (SEQ ID NOS: 144-145 and 194-195), MN-C3 (SEQ ID NOS: 439-440 and 486-487) and MN-C8 (SEQ ID NOS: 525-526 and 565-566). In another aspect, it is comprised of sequences from a single chain variable fragment. Examples of single chain constructs are given. Several humanized MN-E6 single chain proteins, scFv, were generated (SEQ ID NOS: 232-237). Several humanized MN-C2 single chain proteins, scFv, were generated (SEQ ID NOS: 238-243). Several humanized MN-C3 single chain proteins, scFv, were generated (SEQ ID NOS: 244-249). Several humanized MN-C8 single chain proteins, scFv, were generated (SEQ ID NOS: 250-255). The transmembrane region of the CAR can be derived from CD8, CD4, antibody domains or other transmembrane region, including the transmembrane region of the proximal cytoplasmic co-stimulatory domain, such as CD28, 4-1BB or other. The cytoplasmic tail of the CAR can be comprised of one or more motifs that signal immune system activation. This group of cytoplasmic signaling motifs, sometimes referred to as, co-stimulatory cytoplasmic domains, includes but is not limited to CD3-zeta, CD27, CD28, 4-1BB, OX40, CD30, CD40, ICAm-1, LFA-1, ICOS, CD2, CD5, CD7 and Fc receptor gamma domain. A minimal CAR may have the CD3-zeta or an Fc receptor gamma domain then one or two of the above domains in tandem on the cytoplasmic tail. In one aspect, the cytoplasmic tail comprises CD3-zeta, CD28, 4-1BB and/or OX40.
Table 1 lists many of the anti-MUC1* CARs that we generated and tested. Several examples of MN-E6 CARs were generated: CAR MN-E6 CD3z (SEQ ID NOS: 294-295); CAR MN-E6 CD28/CD3z (SEQ ID NOS: 297-298); CAR MN-E6 4-1BB/CD3z (SEQ ID NOS: 300-301); CAR MN-E6 OX40/CD3z (SEQ ID NOS: 616-617); CAR MN-E6 CD28/OX40/CD3z (SEQ ID NOS: 618-619); CAR MN-E6 CD28/4-1BB/CD3z (SEQ ID NOS: 303-304). Several examples of humanized MN-C2 CARs were generated: CAR MN-C2 CD3z (SEQ ID NOS: 606-607); CAR MN-C2 CD28/CD3z (SEQ ID NOS: 608-609); CAR MN-C2 4-1BB/CD3z (SEQ ID NOS: 610-611); CAR MN-C2 OX40/CD3z (SEQ ID NOS: 612-613); CAR MN-C2 CD28/4-1BB/CD3z (SEQ ID NOS: 306-307); CAR MN-C2 CD28/OX40/CD3z (SEQ ID NOS: 614-615). Humanized MN-C3 CAR was generated: CAR MN-C3 4-1BB/CD3z (SEQ ID NOS: 600-601).
Several examples of humanized MN-E6 CARs with different hinge regions (SEQ ID NOS:345-360) were generated: CAR MN-E6-Fc/8/41BB/CD3z (SEQ ID NOS:310-311); CAR MN-E6 FcH/8/41BB/CD3z (SEQ ID NOS:315-316); CAR MN-E6 Fc/4/41BB/CD3z (SEQ ID NOS:318-319); CAR MN-E6 FcH/4/41BB/CD3z (SEQ ID NOS:321-322); CAR MN-E6 IgD/8/41BB/CD3z (SEQ ID NOS:323-324); CAR MN-E6 IgD/4/41BB/CD3z (SEQ ID NOS:327-328); CAR MN-E6 X4/8/41BB/CD3z (SEQ ID NOS:330-331); CAR MN-E6 X4/4/41BB/CD3z (SEQ ID NOS:333-334); CAR MN-E6 8+4/4/41BB/CD3z (SEQ ID NOS:336-337). In addition, several humanized MN-C3 single chain variable fragment and humanized MN-C8 single chain variable fragments were also generated.
Several CARs were also generated and tested wherein the targeting head of the CAR was derived from the anti-MUC1* antibody MNC2. CAR MN-C2-Fc/41BB/CD3z (SEQ ID NOS:732-733); CAR-MN-C2 IgD/Fc/4-1BB/CD3z (SEQ ID NOS:734-735); CAR MN-C2 FcH/41BB/CD3z (SEQ ID NOS:736-737); CAR-MN-C2 IgD/FcH/4-1BB/CD3z (SEQ ID NOS:738-739); CAR MN-C2 IgD/41BB/CD3z (SEQ ID NOS:740-741); CAR MN-C2 X4/41BB/CD3z (SEQ ID NOS:742-743).
The extracellular domain recognition unit of a MUC1* targeting CAR can comprise variable regions of any non-human, humanized or human antibody that is able to bind to at least 12 contiguous amino acids of the PSMGFR peptide (SEQ ID NO:2). In one aspect, the MUC1* targeting portion of the CAR comprises variable regions from non-human, humanized or human MN-E6, MN-C2, MN-C3 or MN-C8. In one aspect, the extracellular domain recognition unit of a CAR is comprised essentially of a humanized MN-E6, MN-C2, MN-C3 or MN-C8 single chain variable fragment scFv. The transmembrane region of the CAR can be derived from CD8 (SEQ ID NOS:363-364), or can be the transmembrane domain of CD3-zeta, CD28, 41bb, OX40 or other transmembrane region (SEQ ID NOS:361-372) and the cytoplasmic domain of a CAR with antibody fragment targeting MUC1* extracellular domain can be comprised of one or more selected from the group comprising an immune system co-stimulatory cytoplasmic domain. The group of immune system co-stimulatory domains includes but is not limited to CD3-zeta, CD27, CD28, 4-1BB, OX40, CD30, CD40, ICAm-1, LFA-1, ICOS, CD2, CD5, CD7 and Fc receptor gamma domain (SEQ ID NOS:373-382). Alternatively, the recognition unit portion of a CAR can comprise a peptide wherein the peptide binds to the target. NME7 binds to and activates MUC1*. In one aspect of the invention, the recognition unit of a CAR is a peptide derived from NME7 (SEQ ID NOS: 5-6) or a peptide derived from NME7, including but not limited to NME7 peptide A1 (SEQ ID NO: 7), NME7 peptide A2 (SEQ ID NO: 8), NME7 peptide B1 (SEQ ID NO: 9), NME7 peptide B2 (SEQ ID NO: 10) and NME7 peptide B3 (SEQ ID NO: 11).
Some strategies for generating CARs include a portion of the molecule that dimerizes with itself. In some cases, dimerization of the target is not desirable. Therefore, CARs can be constructed such that they heterodimerize. In one case the recognition unit of the first CAR binds to a first target while the recognition unit of the second CAR binds to a second target. Both recognition units can be antibody fragments, both can be peptides or one can be an antibody fragment and the other a peptide. A first target of the CAR can be the extracellular domain of MUC1*. The recognition unit of the CAR would be comprised of an antibody fragment that binds to MUC1* extracellular domain or to a PSMGFR peptide. Alternatively, the recognition unit of the CAR would be comprised of a peptide that binds to MUC1* extracellular domain, such peptides include peptides derived from an NME protein such as NME1 or NME7, more particularly NME7 derived peptides listed as SEQ ID NOS: 7-11. A second target of a heterodimeric CAR may be a peptide or antibody fragment that binds to NME7. Alternatively, a second target of a heterodimeric CAR may be a peptide or antibody fragment that binds to PD1 or its cognate ligand PDL-1 or other target ligand of the target cancer cell. A second target may be a peptide or antibody fragment that binds to NME1 or NME7-AB. Because it is desirable to prevent dimerization of MUC1 induced by a CAR, heterodimeric CARs can be constructed so that only the extracellular domain of one molecule has an extracellular recognition unit that binds to a target (SEQ ID NOS:584-587). The other molecule can have a truncated extracellular domain that is devoid of a target recognition unit or antibody fragment (SEQ ID NOS:588-599).
The CARs described can be transfected or transduced into a cell of the immune system. In a preferred embodiment, a MUC1* targeting CAR is transfected or transduced into a T cell. In one aspect, the T cell is a CD3+/CD28+ T cell. In another case it is a dendritic cell. In another case it is a B cell. In another case it is a mast cell. The recipient cell can be from a patient or from a donor. If from a donor, it can be engineered to remove molecules that would trigger rejection. Cells transfected or transduced with a CAR of the invention can be expanded ex vivo or in vitro then administered to a patient. Administrative routes are chosen from a group containing but not limited to bone marrow transplant, intravenous injection, in situ injection or transplant. In a preferred embodiment, the MUC1* targeting CAR is administered to a person diagnosed with or at risk of developing a MUC1-positive cancer.
There are many possible anti-MUC1* CAR constructs that can be transduced into T cells or other immune cells for the treatment or prevention of MUC1* positive cancers. CARs are made up of modules and the identity of some of the modules is relatively unimportant, while the identity of other modules is critically important.
Our experiments demonstrate that the antibody recognition fragment at the outermost portion of the CAR is critically important because it targets the immune cell bearing the CAR to the tumor site. The intracellular signaling motifs are also very important but can be interchanged.
R1 is: nothing; or
a ligand or a fragment of a ligand of a cancer associated antigen; or
a ligand or a fragment of a ligand of MUC1 or MUC1*; or
an antibody or antibody fragment wherein the antibody or antibody fragment binds to MUC1 or MUC1*; or an antibody or antibody fragment wherein the antibody or antibody fragment binds to PSMGFR*, wherein the antibody may be human or humanized; or an antibody or antibody fragment of MN-E6, MN-C2, MN-C3 or MN-C8 or humanized MN-E6, MN-C2, MN-C3 or MN-C8; or a single chain variable fragment of an antibody, scFv, that binds to a cleaved MUC1 or MUC1*; or a scFv of MN-E6, MN-C2, MN-C3 or MN-C8, which may be humanized; or a peptide that binds to MUC1* or PSMGFR peptide; or is an antibody fragment, a scFv, or a peptide that binds the PSMGFR portion of MUC1*; or is comprised of sequence from the humanized variable region of MN-E6 (SEQ ID NOS: 38-39 and 93-94), MN-C2 (SEQ ID NOS: 144-145 and 194-195), MN-C3 (SEQ ID NOS: 439-440 and 486-487) and MN-C8 (SEQ ID NOS: 525-526 and 565-566). In one aspect, R1 is a scFv that binds the PSMGFR portion of MUC1* comprised of sequence from humanized MN-E6 scFv (SEQ ID NOS: 232-237), humanized MN-C2 scFv (SEQ ID NOS: 238-243), humanized MN-C3 scFv (SEQ ID NOS: 244-249) or humanized MN-C8 scFv (SEQ ID NOS: 250-255). In another aspect, R1 is a scFv that binds the PSMGFR portion of MUC1* comprised of sequence from humanized MN-E6 scFv (SEQ ID NOS: 232-237) or humanized MN-C2 scFv (SEQ ID NOS: 238-243). In one example R1 is a scFv that binds the PSMGFR portion of MUC1* comprised of sequence from humanized MN-E6 scFv (SEQ ID NOS: 232-237)
R2 is a polypeptide flexible linker that connects the recognition portion to the transmembrane domain of the CAR. In one aspect, R2 can be a polypeptide linker of different length from 5 to 250 amino acids. In another aspect, R2 is a polypeptide linker of human origin. In one aspect, R2 can be made of or a modification of the Fc region of a human immunoglobulin (IgG, IgA, IgE, IgM or IgD). I another aspect, R2 can be the hinge region or a modification of the hinge region of a human immunoglobulin (IgG, IgA, IgE, IgM or IgD). In one aspect, R2 can be the hinge region or a modification of the hinge region of a T-cell receptor (CD8a, CD28 or CD4). In one example, R2 is the hinge region of CD8a, the hinge region of human IgD or the Fc domain of human IgG1.
R3 is a transmembrane domain. In one aspect, R3 can be a transmembrane domain or a modification of a transmembrane domain of any transmembrane human proteins. In another aspect, R3 can be a transmembrane domain or a modification of a transmembrane domain from human cell receptor. In one aspect, R3 can be a transmembrane domain or a modification of a transmembrane domain of a T-cell receptor (CD8a, CD4, CD28, CD3z, OX40 or 41-BB). In another aspect, R3 is a transmembrane domain from the first cytoplasmic co-stimulatory domain of the CAR. In one aspect, R3 can be a transmembrane domain or a modification of a transmembrane domain of a T-cell receptor extended with 1, 2, 3, 4 or 5 amino acids of the cytoplasmic domain associated to the transmembrane domain. In another aspect, R3 can be a transmembrane domain or a modification of a transmembrane domain of a T-cell receptor extended with 1, 2, 3, 4 or five amino acids of the cytoplasmic domain associated to the transmembrane domain followed by a cystein for disulfide bond formation. In one example, R3 is the transmembrane domain of CD8a or CD4.
R4 is a signaling domain from a T-cell receptor. In one aspect, R4 can be the cytoplasmic signaling domain of CD3-zeta, CD27, CD28, 4-1BB, OX40, CD30, CD40, ICAm-1, LFA-1, ICOS, CD2, CD5, CD7 and Fc receptor gamma domain. In one example, R4 is the cytoplasmic domain of CD3-zeta. Several examples of humanized CAR with single signaling domain (CAR I) were regenerated: CAR MN-E6 CD3z (SEQ ID NOS: 294-295); CAR MN-C2 CD3z (SEQ ID NOS: 606-607)
R5 is a co-stimulatory domain from a T-cell receptor. In one aspect, R5 can be the cytoplasmic signaling domain of CD27, CD28, 4-1BB, OX40, CD30, CD40, ICAm-1, LFA-1, ICOS, CD2, CD5, CD7 and Fc receptor gamma domain. R5 will be different from R4 and R6. In one example, R5 is the cytoplasmic domain of CD28, 4-1BB or OX40. Several examples of humanized CAR with two signaling domain (CAR II) were regenerated: CAR MN-E6 CD28/CD3z (SEQ ID NOS: 297-298); CAR MN-E6 4-1BB/CD3z (SEQ ID NOS: 300-301); CAR MN-E6 OX40/CD3z (SEQ ID NOS: 616-617); CAR MN-C2 CD28/CD3z (SEQ ID NOS: 608-609); CAR MN-C2 4-1BB/CD3z (SEQ ID NOS: 610-611); CAR MN-C2 OX40/CD3z (SEQ ID NOS: 612-613); MN-C3 4-1BB/CD3z (SEQ ID NOS: 600-601); CAR MN-E6-Fc/8/41BB/CD3z (SEQ ID NOS:310-311); CAR MN-E6 FcH/8/41BB/CD3z (SEQ ID NOS:315-316); CAR MN-E6 Fc/4/41BB/CD3z (SEQ ID NOS:318-319); CAR MN-E6 FcH/4/41BB/CD3z (SEQ ID NOS:321-322); CAR MN-E6 IgD/8/41BB/CD3z (SEQ ID NOS:323-324); CAR MN-E6 IgD/4/41BB/CD3z (SEQ ID NOS:327-328); CAR MN-E6 X4/8/41BB/CD3z (SEQ ID NOS:330-331); CAR MN-E6 X4/4/41BB/CD3z (SEQ ID NOS:333-334); CAR MN-E6 8+4/4/41BB/CD3z (SEQ ID NOS:336-337).
R6 is a co-stimulatory domain from a T-cell receptor. In one aspect, R6 can be the cytoplasmic signaling domain of CD27, CD28, 4-1BB, OX40, CD30, CD40, ICAm-1, LFA-1, ICOS, CD2, CD5, CD7 and Fc receptor gamma domain. R6 will be different from R4 and R5. In one example, R5 is the cytoplasmic domain of CD28. Several examples of humanized CAR with two signaling domain (CAR III) were regenerated: CAR MN-E6 CD28/OX40/CD3z (SEQ ID NOS: 618-619); CAR MN-E6 CD28/4-1BB/CD3z (SEQ ID NOS: 303-304); CAR MN-C2 CD28/4-1BB/CD3z (SEQ ID NOS: 306-307); CAR MN-C2 CD28/OX40/CD3z (SEQ ID NOS: 614-615)
We and others have shown that intracellular signaling modules, such as CD3-zeta (SEQ ID NOS: 373-376), CD28 (SEQ ID NOS: 377-378) and 41BB (SEQ ID NOS: 379-380), alone or in combinations stimulate immune cell expansion, cytokine secretion and immune cell mediated killing of the targeted tumor cells (Pule M A, Straathof K C, Dotti G, Heslop H E, Rooney C M and Brenner M K (2005) A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther. 12(5):933-941; Hombach A A, Heiders J, Foppe M, Chmielewski M and Abken H. (2012) OX40 costimulation by a chimeric antigen receptor abrogates CD28 and IL-2 induced IL-10 secretion by redirected CD4(+) T cells. Oncoimmunology. 1(4):458-466; Kowolik C M, Topp M S, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N, Smith D D, Forman S J, Jensen M C and Cooper L J. (2006) CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res. 66(22):10995-11004; Loskog A, Giandomenico V, Rossig C, Pule M, Dotti G and Brenner M K. (2006) Addition of the CD28 signaling domain to chimeric T-cell receptors enhances chimeric T-cell resistance to T regulatory cells. Leukemia. 20(10):1819-1828; Milone M C, Fish J D, Carpenito C, Carroll R G, Binder G K, Teachey D, Samanta M, Lakhal M, Gloss B, Danet-Desnoyers G, Campana D, Riley J L, Grupp S A and June C H. (2009) Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 17(8):1453-1464; Song D G, Ye Q, Carpenito C, Poussin M, Wang L P, Ji C, Figini M, June C H, Coukos G, Powell D J Jr. (2011) In vivo persistence, tumor localization, and antitumor activity of CAR-engineered T cells is enhanced by costimulatory signaling through CD137 (4-1BB). Cancer Res. 71(13):4617-4627). Less important is the identity of the short extracellular piece that presents the antibody fragment, the transmembrane domain, and the short cytoplasmic tail that comes before the intracellular signaling motifs.
The identity of the recognition antibody fragment that targets the CAR to a tumor is critically important. For the treatment of MUC1 positive or MUC1* positive cancers, that antibody recognition fragment must bind to the extracellular domain of portion of MUC1 that remains after cleavage and shedding of the bulk of the extracellular domain, which contains the tandem repeat domains. In one aspect of the invention, the portion that remains comprises the PSMGFR sequence. In another aspect of the invention, the portion of MUC1 that remains after cleavage and shedding contains the PSMGFR sequence plus up to nine (9) more amino acids extended at the N-terminus. In another aspect of the invention, the portion of MUC1 that remains after cleavage and shedding contains the PSMGFR sequence plus up to twenty one (21) more amino acids extended at the N-terminus. In one aspect, the antibody recognition fragment binds to at least twelve contiguous amino acids of a PSMGFR peptide. In another aspect of the invention, the antibody recognition fragment binds to a peptide comprising the sequence SNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYKTEAASRY (SEQ ID NO:620); or SVVVQLTLAFREGTINVHDVETQFNQYKTEAASRY (SEQ ID NO:621).
As a demonstration, a single chain antibody fragment that included the variable domain of the monoclonal anti-MUC1* antibodies called MN-E6 or MN-C2 were engineered into a panel of CARs (Table 1). The MUC1* targeting CARs were then transduced, separately or in combinations, into immune cells. When challenged with surfaces presenting a MUC1* peptide, an antigen presenting cell transfected with MUC1*, or MUC1* positive cancer cells, the immune cells that were transduced with MUC1* targeting CARs elicited immune responses, including cytokine release, killing of the targeted cells and expansion of the immune cells (Table 2).
The identity of molecules that make up the non-targeting portions of the CAR such as the extracellular domain, transmembrane domain and membrane proximal portion of the cytoplasmic domain, are not essential to the function of a MUC1*-targeting CAR. For example, the extracellular domain, transmembrane domain and membrane proximal portion of the cytoplasmic domain can be comprised of portions of CD8, CD4, CD28, or generic antibody domains such as Fc, CH2CH3, or CH3. Further, the non-targeting portions of a CAR can be a composite of portions of one or more of these molecules or other family members.
One aspect of the invention is a method for treating a patient diagnosed with, suspected of having, or at risk of developing a MUC1 positive or MUC1* positive cancer, wherein the patient is administered an effective amount of immune cells that have been transduced with a MUC1* targeting CAR. In another aspect of the invention, the immune cells are T cells isolated from a patient, which are then transduced with CARs wherein the targeting head of the CAR binds to MUC1*, and after expansion of transduced T cells, the CAR T cells are administered in an effective amount to the patient. In yet another aspect of the invention, the immune cells are T cells isolated from a patient or a donor, which are then transduced with CARs wherein the targeting head of the CAR comprises portions of huMN-E6, huMN-C2, huMN-C3 or huMN-C8, and after optional expansion of transduced T cells, the CAR T cells are administered in an effective amount to the patient. In yet another aspect of the invention, the CAR that is transduced into the immune cell and administered to the patient diagnosed with a MUC1 or MUC1* positive cancer is chosen from the list of CARs in Table 1 or Table 2.
Specifics of CARs Made and Tested
One aspect of the invention is a method for treating a patient diagnosed with, suspected of having, or at risk of developing a MUC1 positive or MUC1* positive cancer, wherein a specimen is obtained from the patient's cancer and is tested for reactivity with an antibody that binds to PSMGFR SEQ ID NO:2, SNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYKTEAASRY (SEQ ID NO:620) or SVVVQLTLAFREGTINVHDVETQFNQYKTEAASRY (SEQ ID NO:621). The patient is then treated with an scFv, scFv-Fc or CAR T that comprises antibody variable fragments from the antibody that reacted with their cancer specimen. Another aspect of the invention is a method for treating a patient diagnosed with, suspected of having, or at risk of developing a MUC1 positive or MUC1* positive cancer, wherein a specimen is obtained from the patient's cancer and is tested for reactivity with MN-E6-scFv, MN-C2-scFv, MN-C3-scFv or MN-C8-scFv; the patient is then treated with the scFv, scFv-Fc-mut or CAR T that comprises portions of the antibody that reacted with their cancer specimen.
We discovered that MUC1 can be cleaved to MUC1* by more than one cleavage enzyme and that the site of cleavage affects its fold and consequently affects which monoclonal antibody is able to recognize that form of MUC1*. Different cancer cells or cancerous tissues express different cleavage enzymes. We tested various cleavage enzyme inhibitors on different cancer cell lines and found that an inhibitor that inhibits cleavage of MUC1 in one cancer cell line did not inhibit its cleavage in another cancer cell line. Similarly, PCR experiments showed that cleavage enzymes are expressed at different levels in different cells or cell lines. For example, hematopoietic stem cells of the bone marrow express a MUC1* that is recognized by monoclonal antibody MNC3 but not MNE6 or MNC2. The growth of DU145 prostate cancer cells and T47D breast cancer cells is inhibited by the Fabs of MNC2 and MNE6 but not by the Fabs of MNC3 or MNC8, indicating that the cancer cell lines express a MUC1* that is recognized by MNE6 and MNC2 but not by MNC3 or MNC8. PCR experiments show that CD34 positive cells of the bone marrow express about 2,500-times more MMP2 and about 350-times more ADAM28 than T47D breast cancer cells, while DU145 prostate cancer cells express about 2,000-times more ADAM TS16, about 400-times more MMP14 and about 100-times more MMP1 than T47D breast cancer cells. Conversely, T47D breast cancer cells express about 80-times more MMP9 than the bone marrow cells and about twice as much as DU145 prostate cancer cells. Various cleavage enzyme inhibitors were tested for their ability to inhibit cleavage in different kinds of cancer cells. TAPI-1 that inhibits MMP2, MMP9, and ADAM17 and MMP2/9 V inhibitor that inhibits MMP2, MMP9, MMP14, inhibited the cleavage of MUC1 in T47D breast cancer cells, but none of the cleavage enzyme inhibitors tested had an effect in DU145 prostate cancer cells.
BiTEs
Divalent (or bivalent) single-chain variable fragments (di-scFvs, bi-scFvs) can be engineered by linking two scFvs. This can be done by producing a single peptide chain with two VH and two VL regions, yielding tandem scFvs. Another possibility is the creation of scFvs with linker peptides that are too short for the two variable regions to fold together (about five amino acids), forcing scFvs to dimerize. This type is known as diabodies. Diabodies have been shown to have dissociation constants up to 40-fold lower than corresponding scFvs, meaning that they have a much higher affinity to their target. Consequently, diabody drugs could be dosed much lower than other therapeutic antibodies and are capable of highly specific targeting of tumors in vivo. Still shorter linkers (one or two amino acids) lead to the formation of trimers, so-called triabodies or tribodies. Tetrabodies have also been produced. They exhibit an even higher affinity to their targets than diabodies.
All of these formats can be composed from variable fragments with specificity for two different antigens, in which case they are types of bispecific antibodies. The furthest developed of these are bispecific tandem di-scFvs, known as hi-specific T-cell engagers (BiTE antibody, constructs). BiTEs are fusion proteins consisting of two says of different antibodies, on a single peptide chain of about 55 kilodaltons. One of the scFvs may bind to T cells such as via the CD3 receptor, and the other to a tumor cell via a tumor specific molecule, such aberrantly expressed MUC1*.
Another aspect of the invention is a method for treating a patient diagnosed with, suspected of having, or at risk of developing a MUC1 positive or MUC1* positive cancer, wherein the patient is administered an effective amount of a BiTE wherein one antibody variable fragment of the BiTE binds to a T cell surface antigen and the other antibody variable fragment of the BiTE binds to PSMGFR SEQ ID NO:2, SNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYKTEAASRY (SEQ ID NO:620) or SVVVQLTLAFREGTINVHDVETQFNQYKTEAASRY (SEQ ID NO:621). In one case, the antibody variable fragment of the BiTE that binds to MUC1* comprises portions of huMN-E6, huMN-C2, huMN-C3, or huMN-C8.
In another aspect of the invention, MUC1* peptides including PSMGFR SEQ ID NO:2, most or all of SNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYKTEAASRY (SEQ ID NO:620) or SVVVQLTLAFREGTINVHDVETQFNQYKTEAASRY (SEQ ID NO:621) are used in adoptive T cell approaches. In this case, a patient's T cells are exposed to the MUC1* peptides and through various rounds of maturation, the T cells develop MUC1* specific receptors. The adapted T cells are then expanded and administered to the donor patient who is diagnosed with, suspected of having, or is at risk of developing a MUC1* positive cancer.
A series of CARs were also made that had MNC2 and humanized MNC2 as the extra cellular, targeting head of the CAR. The constructs for these CARs were inserted into a plasmid that was then inserted into a Lenti viral vector. Human T cells were then transduced with the lenti viral vector carrying the MNC2 CARs and huMNC2 CARs. MNC2-scFv-CARs that were mouse sequence or humanized were generated. CARs comprising MNC2-scFv and a variety of transmembrane and intracellular co-stimulatory domains were generated including constructs listed in Table 1. In one aspect of the invention, the CAR comprised huMNC2-scFv-short hinge region-transmembrane domain derived from CD8-short intracellular piece-4-1BB-3zeta. In another aspect, the transmembrane domain was derived from CD4 transmembrane sequence. In another aspect, the intracellular co-stimulatory domain was CD28-3zeta. In yet another aspect, the intracellular co-stimulatory domain was CD28-4-1BB-3zeta.
In addition to FACS analysis, many researchers now use an xCELLigence instrument to measure CAR T killing of cancer cells. FACS is not the best method for tracking T cell induced cell killing because the T cells lyse the target cell. By FACS it is difficult to measure dead cells because they are excluded as cell debris, so one must infer an amount of cell killing and by various methods determine if the missing cells are T cells or cancer cells.
The xCELLigence instrument uses electrode arrays upon which cancer cells are plated. The adherent cancer cells insulate the electrode and so cause an increase in impedance as they grow. Conversely, T cells are not adherent and remain in suspension so do not contribute to insulation of the electrode which would increase impedance. However, if the T cells or CAR T cells kill the cancer cells on the electrode plate, the cancer cells ball up and float off as they die, which causes the impedance to decrease. The xCELLigence instrument measures impedance as a function of time, which is correlated to cancer cell killing. In addition, the electrode plates also have a viewing window. When CAR T cells effectively kill the adsorbed target cancer cells, there is a decrease in impedance but also one can see that there are no cancer cells left on the plate surface.
Pre-Activation of CAR T Cells
Experiments were also performed exploring methods of pre-activating the CAR T cells to more effectively kill the target cancer cells. We first tested pre-stimulation of the CAR T cells using beads presenting anti-CD3 and anti-CD28 antibodies. This pre-stimulation increased the amount of cell killing but the increase was not specific for the target of the CAR. Rather, the CD3-CD28 stimulated CAR T cells non-specifically killed MUC1* positive and negative cells. We next tried pre-stimulating the CAR T cells with either beads or cancer cells that expressed the target of the antibody portion of the CAR. A synthetic MUC1*extra cellular domain peptide was attached to either 1 μm or 4.5 μm beads. Anti-MUC1* CAR T cells were incubated with the peptide presenting beads for 12-24 hours.
We also tested pre-activating CAR T cells by incubating them with cancer cells that present the target antigen. We incubated huMNC2-CAR44 T cells with HCT-MUC1* cells for 12-24 hours. This pre-stimulation was done once, twice, three or four times. Target cell pre-stimulation also greatly enhanced the specific killing of CAR T cells. As can be seen in
huMNC2-scFv-CAR44 transduced human T cell that were bead stimulated (Protocol 1) or cancer cell stimulated (Protocol 2) were tested for their ability to inhibit tumor growth in animals. Human cancer cells that had been stably transfected with Luciferase were injected into female NOD/SCID/GAMMA (NSG) mice between 11 and 15 weeks of age. In one experiment, 500,000 HCT-MUC1* cancer cells were injected sub-cutaneously into a rear flank. Tumor engraftment was verified by injecting the animals with Luciferin and then imaging the fluorescent cancer cells using an IVIS instrument. IVIS images taken Day 5 post implantation showed the presence of tumor cells. On Day 6 and on Day 12, 10M huMNC2-scFv-CAR44 T cells were administered to the animals. 5M of the CAR T cells were administered by intratumor injection and the other 5M were administered by tail vein injection. Control groups were injected by same administration routes with either the same number of untransduced T cells or same volume of PBS. IVIS measurements of tumor burden were taken on Days 7, 11, 13, and 21. As can be seen in
huMNC2-scFv-CAR44 transduced human T cell that were bead stimulated (Protocol 1) or cancer cell stimulated (Protocol 2) were also tested for their ability to inhibit tumor growth in animals. Human cancer cells that had been stably transfected with Luciferase were injected into female NOD/SCID/GAMMA (NSG) mice between 11 and 15 weeks of age. In another experiment, 500,000 BT-20 MUC1* positive triple negative breast cancer cells were injected sub-cutaneously into a rear flank. Tumor engraftment was verified by injecting the animals with Luciferin and then imaging the fluorescent cancer cells using an IVIS instrument. IVIS images taken Day 6 post implantation showed the presence of tumor cells. On Day 6, after IVIS imaging, 10M huMNC2-scFv-CAR44 T cells were administered to the animals. 5M of the CAR T cells were administered by intratumor injection and the other 5M were administered by tail vein injection. Control group was injected by same administration routes with the same number of untransduced T cells. IVIS measurements of tumor burden were taken on Days 6, 8, and 12. As can be seen in
huMNC2-scFv-CAR44 transduced human T cell that were bead stimulated (Protocol 1) were also tested for their ability to inhibit ovarian cancer growth in animals. Human SKOV-3 MUC1* positive ovarian cancer cells that had been stably transfected with Luciferase were injected into female NOD/SCID/GAMMA (NSG) mice between 11 and 15 weeks of age. In one experiment, 500,000 SKOV-3 cancer cells were injected into the intraperitoneal cavity to mimic metastatic ovarian cancer in humans. Tumor engraftment was verified by injecting the animals with Luciferin and then imaging the fluorescent cancer cells using an IVIS instrument. IVIS images taken Day 3 post implantation showed the presence of tumor cells. On Day 4 and Day 11, post tumor implantation, 10M huMNC2-scFv-CAR44 T cells were IP administered to the animals. On Day 4, CAR T cells were IP injected. On Day 11 half the CAR T cells were injected into the intraperitoneal space and the other half was injected into the tail vein. Control groups were injected by same administration routes with either the same number of untransduced T cells or same volume of PBS. Subsequent IVIS measurements of tumor burden were taken on Day 7, Day 10 and Day 15. As can be seen in
One aspect of the invention is a method for treating a patient diagnosed with, suspected of having, or at risk of developing a MUC1 positive or MUC1* positive cancer, wherein the patient is administered an effective amount of immune cells that have been transduced with a MUC1* targeting CAR, wherein the CAR is chosen from among the group consisting of MN-E6-CD8-3z (SEQ ID NOS:294-295); MN-E6-CD4-3z (SEQ ID NOS:746-747); MN-E6-CD8-CD28-3z (SEQ ID NOS:297-298); MN-E6-CD4-CD28-3z (SEQ ID NOS:748-749); MN-E6-CD8-41BB-3z (SEQ ID NOS:300-301); MN-E6-CD4-41BB-3z (SEQ ID NOS:750-751); MN-E6-CD8-CD28-41BB-3z (SEQ ID NOS:303-304); MN-E6-CD4-CD28-41BB-3z (SEQ ID NOS:754-755); MN-E6scFv-Fc-8-41BB-CD3z (SEQ ID NOS:310-311); MN-E6scFv-IgD-Fc-8-41BB-CD3z (SEQ ID NOS:770-771); MN-E6scFv-FcH-8-41BB-CD3z (SEQ ID NOS:315-316); MN-E6scFv-IgD-FcH-8-41BB-CD3z (SEQ ID NOS:772-773); MN-E6scFv-Fc-4-41BB-CD3z (SEQ ID NOS:318-319); MN-E6scFv-FcH-4-41BB-CD3z (SEQ ID NOS:321-322); MN-E6scFv-IgD-8-41BB-CD3z (SEQ ID NOS:323-324); MN-E6scFv-IgD-4-41BB-CD3z (SEQ ID NOS:327-328); MN-E6scFv-X4-8-41BB-CD3z (SEQ ID NOS:330-331); MN-E6scFv-X4-4-41BB-CD3z (SEQ ID NOS:333-334); MN-E6scFv-8-4-41BB-CD3z (SEQ ID NOS:336-337), or any of the aforementioned CARs wherein the MN-E6 is replaced by MN-C2, MN-C3 or MN-C8; MN-C2-CD8-3z (SEQ ID NOS:606-607); MN-C2-CD4-3z (SEQ ID NOS:758-759); MN-C2-CD8-CD28-3z (SEQ ID NOS:608-609); MN-C2-CD4-CD28-3z (SEQ ID NOS:760-761); MN-C2-CD8-41BB-3z (SEQ ID NOS:610-611 and SEQ ID NOS:718-719); MN-C2-CD4-41BB-3z (SEQ ID NOS:762-763); MN-C2-CD8-CD28-41BB-3z (SEQ ID NOS:306-307); MN-C2-CD4-CD28-41BB-3z (SEQ ID NOS:766-767); MN-C2-Fc-8-41BB-CD3z (SEQ ID NOS:732-733); MN-C2-IgD-Fc-8-41BB-CD3z (SEQ ID NOS:734-735); MN-C2-FcH-8-41BB-CD3z (SEQ ID NOS:736-737); MN-C2-IgD-FcH-8-41BB-CD3z (SEQ ID NOS:738-739); MN-C2-IgD-8-41BB-CD3z (SEQ ID NOS:740-741); MN-C2-X4-8-41BB-CD3z (SEQ ID NOS:742-743). Another aspect of the invention is a method for treating a patient diagnosed with, suspected of having, or at risk of developing a cancer, wherein the patient is administered an effective amount of immune cells that have been transduced with one of the aforementioned CARs wherein the MN-E6 is replaced by a peptide comprising antibody variable domain fragments that are specific for a cancer antigen. In any of the above methods, the immune cell may be a T cell and may further be isolated from the patient to be treated.
Other MUC1 Cleavage Sites
It is known that MUC1 is cleaved to the growth factor receptor form, MUC1*, on some healthy cells in addition to cancer cells. For example, MUC1 is cleaved to MUC1* on healthy stem and progenitor cells. A large percentage of bone marrow cells are MUC1* positive. Portions of the intestine are MUC1* positive.
The inventors have discovered that MUC1 can be cleaved at different positions that are relatively close to each other but the location of cleavage changes the fold of the remaining portion of the extracellular domain. As a result, monoclonal antibodies can be identified that bind to MUC1* cleaved at a first position but do not bind to MUC1* that has been cleaved at a second position. This discovery is disclosed in WO2014/028668, filed Aug. 14, 2013, the contents of which are incorporated by reference herein its entirety. We identified a set of anti-MUC1* monoclonal antibodies that bind to MUC1* as it appears on cancer cells but do not bind to MUC1* as it appears on stem and progenitor cells. Conversely, we identified a second set of monoclonal antibodies that bind to stem and progenitor cells but do not bind to cancer cells. One method used to identify stem specific antibodies is as follows: supernatants from monoclonal hybridomas were separately adsorbed onto 2 multi-well plates. Stem cells, which are non-adherent cells, were put into one plate and cancer cells which are adherent were put into an identical plate. After an incubation period, the plates were rinsed and inverted. If the non-adherent stem cells stuck to the plate, then the monoclonal antibody in that particular well recognizes stem cells and will not recognize cancer cells. Antibodies that did not capture stem cells or antibodies that captured cancer cells were identified as cancer specific antibodies. FACS analysis has confirmed this method works.
Antibodies MN-E6 and MN-C2 are examples of cancer-specific antibodies. Antibodies MN-C3 and MN-C8 are examples of stem-specific antibodies. Although both sets of antibodies are able to bind to a peptide having the PSMGFR sequence, FACS analysis shows that the anti-MUC1* polyclonal antibody and MN-C3 bind to MUC1* positive bone marrow cells but MN-E6 does not. The MUC1* polyclonal antibody was generated by immunizing a rabbit with the PSMGFR peptide. Similarly, MN-C3 binds to stem cells of the intestinal crypts but MN-E6 does not. Conversely, MN-E6 antibody binds to cancerous tissue while the stem-specific MN-C3 does not. Competition ELISA experiments indicate that the C-terminal 10 amino acids of the PSMGFR peptide are required for MN-E6 and MN-C2 binding, but not for MN-C3 and MN-C8. Therefore, another method for identifying antibodies that are cancer specific is to immunize with a peptide having the sequence of the PSMGFR peptide minus the 10 N-terminal amino acids or use that peptide to screen for antibodies or antibody fragments that will be cancer specific. Antibodies that bind to a peptide with a sequence of PSMGFR peptide minus the N-terminal 10 amino acids but do not bind to a peptide with a sequence of PSMGFR peptide minus the C-terminal 10 amino acids are cancer specific antibodies for use in the treatment or prevention of cancers.
The extracellular domain of MUC1 is also cleaved on stem cells and some progenitor cells, where activation of cleaved MUC1 by ligands NME1 in dimer form or NME7 promotes growth and pluripotency and inhibits differentiation. The transmembrane portion of MUC1 that remains after cleavage is called MUC1* and the extracellular domain is comprised essentially of the Primary Sequence of MUC1 Growth Factor Receptor (PSMGFR) sequence. However, the exact site of cleavage can vary depending on cell type, tissue type, or which cleavage enzyme a particular person expresses or overexpresses. In addition to the cleavage site that we previously identified which leaves the transmembrane portion of MUC1* comprising most or all of the PSMGFR SEQ ID NO:2, other cleavage sites result in an extended MUC1* comprised of most or all of SNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYKTEAASRY (SEQ ID NO:620); or SVVVQLTLAFREGTINVHDVETQFNQYKTEAASRY (SEQ ID NO:621). The site of MUC1 cleavage affects how the remaining extracellular domain folds. We have identified monoclonal antibodies that bind to cleaved MUC1* on cancer cells but do not bind to cleaved MUC1* as it exists on healthy stem and progenitor cells.
Whereas an anti-MUC1* antibody or antibody-like molecule may be most effective if it competitively inhibits the binding of NME1, NME6, NME8 or NME7 or NME7-AB to MUC1*, for example an antibody that binds to the PSMGFR sequence especially if said antibody is unable to bind to a PSMGFR peptide if the 10 C-terminal amino acids are missing, antibodies or antibody-like molecules that carry a payload need not competitively inhibit the binding of MUC1* ligands to be effective as anti-cancer agents. For example antibodies or antibody-like molecules that are conjugated to a toxin could be effective at killing target cancer cells without necessarily inhibiting binding of the activating ligands. For example, antibodies or antibody-like molecules incorporated into CAR Ts or BiTEs which recruit the patient's immune system to the tumor can be effective as anti-cancer agents even if the antibody fragment targets a portion of MUC1* such that antibody fragment binding does not competitively inhibit the binding of NME1, NME6, NME8, NME7-AB or NME7. In a preferred embodiment the antibody fragment incorporated into a CAR, an adaptive T cell receptor or a BiTE competitively inhibits the binding of NME1, NME6, NME8, NME7-AB or NME7 to MUC1*.
Antibodies that are able to bind to the extracellular domain of the remaining transmembrane portion block the interaction between the MUC1* extracellular domain and activating ligands and in this way can be used as therapeutic agents, for example for the treatment of cancers. Anti-MUC1* antibodies are also useful for the growth, delivery, identification or isolation of stem cells both in vitro and in vivo.
General Strategy for Using Antibodies, Antibody Fragments and CARs that Target the Extracellular Domain of MUC1*
Monoclonal antibodies MN-C3 and MN-C8 have a greater binding affinity for blood cells than solid tumor cancer cells. Humanized antibodies and antibody fragments containing sequences derived from the variable regions of MN-C3 and MN-C8 can be used as a stand alone therapy or integrated into CAR Ts, BiTEs, ADCs for the treatment of blood cancers.
Alternatively, humanized antibodies and antibody fragments containing sequences derived from the variable regions of MN-C3 and MN-C8 can be used to deliver stem cells to a specific location such as for in situ human therapeutics. In one case, a substrate coated with humanized MN-C3 or MN-C8 derived antibodies or antibody fragments is loaded with stem cells then inserted into a patient. In another case, a substrate coated with humanized MN-C3 or MN-C8 derived antibodies or antibody fragments is inserted into a patient in order to recruit the patient's own stem cells to a specific area for therapy. Human therapies in which antibodies that bind to human stem cells will be of therapeutic use include spinal cord repair. Substrates coated with humanized MN-C3 or MN-C8 derived antibodies or antibody fragments are also used to identify or isolate human antibodies. Humanized MN-C3 or MN-C8 derived antibodies can also be used to stimulate the growth of stem cells.
CARs and Cleavage Enzymes
Many applications of CAR T therapy are limited by the length or flexibility of the extracellular domain between the T cell membrane and the antibody fragment that will direct the T cell to the desired location. For example, the surface of solid tumor cancer cells is populated with a myriad of cell surface proteins and growth factor receptors. Many of these cell surface proteins have bulky extracellular domains that limit the access of immune cells, such as T cells or CAR T cells, to the tumor cell surface. In one example, MUC1 and the cleaved growth factor receptor form MUC1* are overexpressed on over 75% of solid tumor cancers and on some blood cancers. The extracellular domain of MUC1 full-length contains between about 1,500 and 2,500 amino acids while the extracellular domain of MUC1* contains only about 45 to 65 amino acids. Variability in the length of MUC1 full-length is due to variability in the number of tandem repeat units that are expressed. Variability in the length of MUC1* is due to different cleavage sites when MUC1 is cleaved by different cleavage enzymes. Whereas it is most desirable to get the T cell close to the surface of the cancer cell, access can be sterically hindered by neighboring proteins, including full-length MUC1, that have large and bulky extracellular domains. This is especially true for early stage cancers. Tissue studies show that early stage cancers have more full-length MUC1 than late stage cancers that can be devoid of any full-length MUC 1. This problem can in some cases severely limit the efficacy of cancer immunotherapies, including CAR T, adaptive T cell therapy, BiTEs and other T cell engagers.
One solution to this problem is to express or activate cleavage enzymes in the area of the targeted tumor cells to cleave the bulky proteins that restrict access of T cells to the tumor.
In one aspect of the invention, the cleavage enzyme and the CAR are transduced into the same T cell. In another aspect of the invention, the cleavage enzyme is on an inducible promoter such that its expression is activated when the CAR engages the targeted cancer cells. In some cases, the expression of the cleavage enzyme is controlled by an inducible promoter. In one aspect of the invention, expression of the cleavage enzyme is induced when the immune cell is activated, for example when it recognizes or engages its target. In one example, a T cell is transfected or transduced with a cleavage enzyme whose expression is induced when the T cell recognizes a target cancer cell. One way to do this is to induce expression of the cleavage enzyme when, or shortly after, an NFAT protein is expressed or translocated to the nucleus. For example, a sequence derived from an NFAT promoter region is put upstream of the gene for the cleavage enzyme. In this way, when the transcription factors that bind to the promoter of the NFAT protein are present in sufficient concentration to bind to and induce transcription of the NFAT protein, they will also bind to that same promoter that is engineered in front of the sequence for transcription of the cleavage enzyme. The NFAT protein may be NFAT1 also known as NFATc2, NFAT2 also known as NFATc or NFATc1, NFAT3 also known as NFATc4, NFAT4 also known as NFATc3, or NFAT5. In one aspect of the invention, the NFAT is NFATc1, NFATc3 or NFATc2. In one aspect of the invention, the NFAT is NFAT2 also known as NFATc1. SEQ ID NO:646 shows nucleic acid sequence of the upstream transcriptional regulatory region for NFAT2. The promoter sequence for NFAT gene may include the nucleic acid sequence of SEQ ID NO:781-783 or SEQ ID NO:815 as examples, but it can be seen that the optimal sequence or minimal sequence for expression of the cleavage enzyme may be obtained by making fragments, extensions or mutations of the promoter and testing for the strength of the promoter with respect to expression of the cleavage enzyme. In one aspect of the invention, the transcriptional regulatory region for NFAT2 is engineered upstream of the gene encoding the cleavage enzyme MMP9 (SEQ ID NO:647) or the catalytic sub-unit of MMP9 (SEQ ID NO:648). In one aspect of the invention, the NFAT is NFATc3 and the promoter sequence of NFATc3 includes nucleic acid sequences from SEQ ID NO:816. In one aspect of the invention, the transcriptional regulatory region for NFATc3 is engineered upstream of the gene encoding the cleavage enzyme MMP9 (SEQ ID NO:647) or the catalytic sub-unit of MMP9 (SEQ ID NO:648). In another aspect of the invention, the NFAT is NFATc2. SEQ ID NO:817-818 shows nucleic acid sequence of the upstream transcriptional regulatory region for NFATc2. In one aspect of the invention, the transcriptional regulatory region for NFATc2 is engineered upstream of the gene encoding the cleavage enzyme MMP9 (SEQ ID NO:647) or the catalytic sub-unit of MMP9 (SEQ ID NO:648).
Another method for having the expression of the cleavage enzyme induced when the T cell or CAR T cell is activated is to have the gene for the cleavage enzyme on an inducible promoter where the NFAT protein itself binds to and induces transcription of the cleavage enzyme. In this case, an NFAT response element (NFAT RE) may be positioned upstream of the gene for the cleavage enzyme or fragment of the cleavage enzyme. The NFAT may bind to its responsive element upstream of the cleavage enzyme alone or as part of a complex. The NFAT protein may be NFATc1, NFATc2, NFATc3, NFATc4, or NFAT5. In a preferred embodiment, the NFAT protein is NFAT2 aka NFATc1, aka NFATc. The gene of the cleavage enzyme or fragment thereof is cloned downstream of an NFAT-response element (SEQ ID NO:649), which may be repeats of the response element (SEQ ID NO:650) and CMV minimal promoter (mCMV) (SEQ ID NO:651) to induce expression of cleavage enzyme by NFAT protein. The NFAT response element may include nucleic acid sequence of NFAT consensus sequence (SEQ ID NO:804). The NFAT response element may include the nucleic acid sequence of SEQ ID NOS:805-814 as examples, but it can be seen that the optimal sequence or minimal sequence for expression of the cleavage enzyme may be obtained by making fragments, extensions or mutations of the responsive element nucleic acid and testing for the strength of the responsive element with respect to expression of the cleavage enzyme. The enhancer region of Foxp3 also contains NFAT response elements within the 120-bp from 2079 to 2098 (SEQ ID NO:821). The NFAT response element may include nucleic acid NFAT consensus sequence of (5′-cattttttccat-3′) (SEQ ID NO:819) or (5′-tttttcca-3′) (SEQ ID NO:820), which NFATc1 specifically binds to (Xu et al., Closely related T-memory stem cells correlate with in vivo expansion of CAR. CD19-T cells and are preserved by IL-7 and IL-15, Blood 2014 123:3750-3759), or repeats thereof. The NFAT response elements may also be separated by nucleic acid spacer sequences. Other NFAT responsive elements may exist and may further be discovered, and a skilled artisan in the art when directed to determine NFAT responsive element may do so by carrying out molecular biological assays to obtain it given the guidance of at least the responsive elements as set forth as SEQ ID NOS: 804-814 albeit as only mere examples. In one aspect of the invention, the cleavage enzyme that is downstream of the NFAT-response element and CMV minimal promoter is MMP9 (SEQ ID NO:652). In another aspect of the invention, the cleavage enzyme is a catalytic sub-unit of MMP9 (SEQ ID NO:653).
Because NFATs 1-4 are regulated by the calcineurin pathway, potential toxicities that may arise in a patient can be stopped by treatment with an immunosuppressive agent such as FK506, Cyclosporin, Cyclosporin A, or Tacrolimus that block calcineurin activity and inhibit NFAT translocation to the nucleus. The T cell transduced or transfected with a cleavage enzyme on an inducible promoter may also be transfected or transduced with a CAR that recognizes a protein or molecule on the cancer cell. In a specific example, the cleavage enzyme is one that is able to cleave MUC1 full-length and the CAR bears an antibody fragment that directs it to MUC1* on the surface of cancer cells.
To determine which cleavage enzymes cleave MUC1 on cancer cells, we tested a series of MMP and ADAM enzyme inhibitors. These experiments pointed to MMP9 as being an important cleavage enzyme in cancer cells. To confirm that MMP9 cleaves MUC1 on cancer cells, we transfected HCT-116 MUC1 negative colon cancer cells with a mimic of full-length MUC1 having 41 tandem repeat domains: HCT-MUC1-41TR. Through single cell cloning we were able to establish this cell line wherein MUC1 only minimally gets cleaved to MUC1*. In one aspect of the invention, an immune cell is transduced with both a CAR to target the immune cell to the tumor, and a cleavage enzyme. The CAR and the cleavage enzyme can be encoded on the same plasmid or on two different plasmids. In one aspect, the cleavage enzyme is on an inducible promoter. In another aspect, expression of the cleavage enzyme is induced by a protein that is expressed when the immune cell is activated. In one case, expression of the cleavage enzyme is induced by an NFAT protein. In another aspect, expression of the cleavage enzyme is induced by NFATc1. In another aspect, expression of the cleavage enzyme is induced when one of the NFAT proteins binds to an NFAT response element that is inserted upstream of the gene for the cleavage enzyme or a catalytically active fragment thereof. In one aspect, the cleavage enzyme is MMP9 or a fragment of MMP9 that is catalytically active.
In one aspect of the invention, the cleavage enzyme is MMP9 (SEQ ID NO:643). In one case, the cleavage enzyme is an MMP9 fragment that is catalytically active. One example of an MMP9 catalytic fragment is given as SEQ ID NO:645.
In one example, T47D MUC1 positive tumor cells were incubated with a recombinant catalytic domain of MMP9 (Enzo Life Sciences, Inc., Farmingdale, N.Y.) at either 100 ng/mL or 500 ng/mL. Western blot analysis showed that the MUC1/MUC1* positive cancer cells underwent extensive cleavage of MUC1 to MUC1*. In another example, T47D breast cancer cells were pre-incubated with a human recombinant MMP9 catalytic domain protein then co-cultured with anti-MUC1* CAR44 T cells. The specific killing of the T47D cells by CAR44 T cells was monitored in real-time on an xCelligence instrument that measures impedance as a function of time. This analysis uses electrode arrays upon which cancer cells are plated. The adherent cancer cells insulate the electrode and cause an increase in impedance as they grow. Conversely, T cells are not adherent and remain in suspension so do not increase or decrease impedance. However, if the T cells or CAR T cells kill the cancer cells on the electrode plate, the cancer cells ball up and float as they die, which causes the impedance to decrease. The addition of MMP9 catalytic domain dramatically increased the killing of T47D cancer cells. In one aspect of the invention, an immune cell is transfected or transduced with both a CAR comprising an antibody fragment that targets a tumor antigen and a cleavage enzyme. In another aspect of the invention, an immune cell is transfected or transduced with both a CAR comprising an antibody fragment that targets a tumor antigen and a cleavage enzyme that cleaves a tumor antigen to a form recognized by the antibody fragment of the CAR. In one aspect, an immune cell is transfected or transduced with both a CAR comprising an antibody fragment that targets a tumor antigen and a cleavage enzyme that cleaves a tumor antigen to a form recognized by the antibody fragment of the CAR, wherein the antibody fragment of the CAR recognizes MUC1* extra cellular domain and the cleavage enzyme cleaves MUC1 to MUC1*. In one aspect, an immune cell, which may be a T cell or an NK cell, is transfected or transduced with a CAR comprising an antibody fragment derived from MNC2, MNE6, MNC3 or MNC8 and a cleavage enzyme chosen from the group comprising MMP1, MMP2, MMP3, MMP7, MMP8, MMP9, MMP11, MMP12, MMP13, MMP14, MMP16, ADAMS, ADAM10, ADAM17, ADAM 19, ADAMTS16, ADAM28 or a catalytically active fragment thereof.
A method for studying activation of the NFAT pathway is by chemically activating the pathway using PMA with lonomycin (Lyakh et al., Expression of NFAT-Family proteins in normal human T cells, MOLECULAR AND CELLULAR BIOLOGY, Vol. 17, No. 5, May 1997, p. 2475-2484; Rao et al., Transcription factors of the NFAT family—Regulation and function, Annu. Rev. Immunol. 1997. 15:707-47; Macian, NFAT proteins—Key regulators of T-cell development and function, Nature Reviews Immunology, Vol. 5, pp 472-484 June (2005)). It has been demonstrated that PMA and lonomycin induce expression of NFAT proteins. The above-cited references show a scheme of the regulation of NFAT activation. lonomycin increases calcium which activates the Calcineurin/Calmodulin complex. Calcineurin/Calmodulin dephosphorylate NFAT, which causes NFATs, especially NFATc1, to be translocated to the nucleus where it binds to DNA to stimulate transcription of target genes. NFATc1 is one of the first NFAT proteins to be translocated to the nucleus upon T cell activation and it is only there transiently before it exits the nucleus. Therefore, PMA plus lonomycin activation of cells we transfected or transduced with NFAT inducible cleavage enzymes is physiologically relevant and mimics in vivo T cell activation turning on expression of the NFAT inducible cleavage enzymes described herein.
A plasmid was constructed then transfected into HEK293T cells, wherein the gene for MMP9 catalytic domain was inserted downstream of either 3 or 4 NFAT response elements. The NFAT pathway was activated by the addition of PMA at 10 ng/mL and lonomycin at either luM or 2 uM. Lysate from cells transfected with the plasmid containing 3 or 4 repeats of a NFAT Response element, or the conditioned media from the cells, were assayed for the presence of MMP9 in a Western blot assay.
In one aspect of the invention, a person diagnosed with cancer or at risk of developing cancer is administered a sufficient amount of an immune cell transduced with both a CAR and a cleavage enzyme. In another aspect of the invention, a person diagnosed with cancer or at risk of developing cancer is administered a sufficient amount of an immune cell transduced with both a CAR and a cleavage enzyme, wherein the cleavage enzyme is on an inducible promoter that is activated by proteins that are expressed when the immune cell becomes activated. In another aspect of the invention, a person diagnosed with cancer or at risk of developing cancer is administered a sufficient amount of an immune cell transduced with both a CAR and a cleavage enzyme, wherein the cleavage enzyme is on an inducible promoter that is activated by one or more NFAT. In one case the NFAT is NFATc1. In another aspect, the NFAT is NFATc3. In another aspect, the NFAT is NFATc2. In any of the instances above, the extra cellular domain of the CAR comprises a fragment of an anti-MUC1* antibody. In one aspect, the anti-MUC1* antibody is MNC2scFv or a humanized form of MNC2scFv. In another aspect, the anti-MUC1* antibody is MNE6scFv or a humanized form of MNE6scFv. In any of the instances above, the immune cell can be a T cell, an NK cell, a mast cell, or a dendritic cell.
It is not intended that the present invention be limited to one or two specific methods of having expression of a cleavage enzyme induced by an activated T cell. We have demonstrated specific expression of a cleavage enzyme only upon T cell activation by constructing a plasmid with the cleavage enzyme gene downstream of an NFAT promoter sequence or downstream of one or more repeats of NFAT response elements. In another aspect of the invention, expression of the cleavage enzyme is induced by constructing a plasmid where the cleavage enzyme gene is inserted downstream of an IL-2 promoter sequence or downstream of an IL-2 response element, then inserting the plasmid into an immune cell. In another aspect of the invention, expression of the cleavage enzyme is induced by constructing a plasmid where the cleavage enzyme gene is inserted downstream of a Calcineurin promoter sequence or downstream of a Calcineurin response element, then inserting the plasmid into an immune cell and then administering to a patient for the treatment or prevention of cancers. There are also drug-inducible plasmids that can be used to induce expression of the cleavage enzyme or used to stop expression induced by an element of an activated T cell. These drug inducible systems may include tetracycline-inducible systems, Tet-on, Tet-off, tetracycline response elements, doxycycline, tamoxifen inducible systems, ecdysone inducible systems and the like.
It is not intended that the present invention be limited to one or two specific promoters used in the plasmids encoding the CARs or inducible cleavage enzymes. As is known by those skilled in the art, many promoters can be interchanged including SV40, PGK1, Ubc, CAG, TRE, UAS, Ac5, polyhedron, CaMKIIa, GAL1, GAL10, TEF1, GDS, ADH1, CaMV35S, Ubi, H1 and U6.
Table 2 shows cytokine release data for human T cells transfected with some of the long linker CARs.
In another aspect, the invention is directed to a composition that includes at least two different plasmids transfected into the same immune cell, wherein the first encodes a CAR comprising an antibody fragment, scFv, or peptide that binds to a tumor antigen and the other encodes a gene that is not a CAR, wherein the gene that is not a CAR is expressed from an inducible promoter that is activated by elements of an activated immune cell. In one aspect, the immune cell is a T cell or an NK cell. In one aspect the CAR comprises an antibody fragment, scFv or peptide that binds to the extra cellular domain of MUC1*. In one aspect the CAR comprises an scFv derived from MNC2, MNE6, MNC3 or MNC8. In one aspect the non-CAR species is a cleavage enzyme. In one aspect the cleavage enzyme is MMP2, MMP3, MMP9, MMP13, MMP14, MMP16, ADAM10, ADAM17, ADAM28 or catalytically active fragments thereof. In another aspect the non-CAR species is a cytokine. In one aspect, the Cytokine is IL-7. In one aspect the cytokine is IL-15. In another aspect the cytokine is IL-7 and IL-15. In one case expression of the non-CAR species is induced by elements of an activated immune cell. In one aspect the element of an activated immune cell is an NFAT. In one aspect the NFAT is NFATc1, NFATc3 or NFATc2. Cytokines IL-7 and IL-15 are known to promote T cell persistence. In one aspect of the invention an immune cell described above is administered to a patient for the treatment or prevention of cancer. In one aspect of the invention, the cancer is a MUC1 positive cancer or a MUC1* positive cancer.
In another aspect, the invention is directed to a composition that includes at least two different plasmids transfected into the same immune cell, wherein the first encodes a CAR comprising an antibody fragment, scFv or peptide that binds to the extra cellular domain of an antigen on the surface of a B cell and the other encodes a gene that is not a CAR, wherein the gene that is not a CAR is expressed from an inducible promoter that is activated by elements of an activated immune cell. In one aspect, the immune cell is a T cell or an NK cell. In one aspect the CAR comprises an antibody fragment, scFv or peptide that binds to CD19. In one aspect the CAR comprises sequences derived from SEQ ID NO:830-831. In another aspect the antibody fragment, scFv or peptide binds to a surface antigen of a B cell or a B cell prescursor, or binds to CD19, CD20, CD22, BCMA, CD30, CD138, CD123, CD33 or LeY antigen. In one aspect the non-CAR species is a cleavage enzyme. In another aspect the non-CAR species is a cytokine. In one aspect, the Cytokine is IL-7. In one aspect the cytokine is IL-15. In another aspect the cytokine is IL-7 and IL-15. In one case expression of the non-CAR species is induced by elements of an activated immune cell. In one aspect the element of an activated immune cell is an NFAT. In one aspect the NFAT is NFATc1, NFATc3 or NFATc2. that is not a CAR, wherein the gene that is not a CAR is expressed from an inducible promoter wherein expression is induced by elements of an activated immune cell. In one aspect the immune cell transfected or transduced with the composition is administered to a patient for the treatment or prevention of cancer. In one case the cancer is a leukemia, lymphoma or blood cancer.
It is not intended for the invention to be limited by a specific method or technology for inserting the gene or plasmid comprising a sequence encoding a CAR or activated T cell inducible protein or peptide there encoded. For example, the gene encoding the CARs and activated T cell induced genes described herein can be virally transduced into an immune cell using viruses, which may or may not result in the CAR gene being integrated into the genome of the recipient cell. Virus delivery systems and viral vectors include but are not limited to retroviruses, including gamma-retroviruses, lentivirus, adenoviruses, adeno-associated viruses, baculoviruses, poxvirus, herpes simplex viruses, oncolytic viruses, HF10, T-Vec and the like. In addition to viral transduction, CARs and activated T cell induced genes decribed herein can be directly spliced into the genome of the recipient cell using methods such as CRISPR technology, CRISPR-Cas9 and -CPF1, TALEN, Sleeping Beauty transposon system, and SB 100X.
Bulky cell surface proteins such as MUC1-FL can also cause a steric hindrance problem for BiTEs. A BiTE is a two-headed bi-specific antibody wherein one head binds to a T cell and the other head binds to a tumor-associated antigen. In this way, the BiTE links together the T cell and the tumor cells. The antibody that binds to the T cell should be an antibody that activates the T cell, such as an antibody against CD3 such as OKT3 scFv (SEQ ID NO:687) or CD28. To solve the steric hindrance problem, the linker between the T cell specific antibody and the tumor specific antibody is lengthened. Examples of BiTEs with extended linkers Anti-CD3-linker-anti-MUC1*, are shown as SEQ ID NOS:689, 691, 693, 695, 697, and 699.
In another aspect of the invention, an anti-MUC1* single chain molecule is fused to a cleavage enzyme or a catalytically active fragment of a cleavage enzyme. In one aspect of the invention, the cleavage enzyme is MMP9 (SEQ ID NO:701). In another aspect of the invention, the enzyme is a catalytically active fragment of MMP9 (SEQ ID NO:703), In some cases, the antibody fragment of the CAR is chosen for its ability to recognize MUC1* when cleaved by that specific cleavage enzyme. In one embodiment, the cleavage enzyme is MMP9, MMP3, MMP14, MMP2, ADAM17, ADAM TS16, and/or ADAM28. In one embodiment, the antibody or antibody fragment binds to a peptide having the sequence of SEQ ID NO:2 (PSMGFR) GTINVHDVETQFNQYKTEAASRYNLTISDVSVSDVPFPFSAQSGA, PSMGFR N-10, QFNQYKTEAASRYNLTISDVSVSDVPFPFSAQS GA, or PSMGFR N+18 SNIKFRPGSVVVQLTLAFREGTINVHDVETQFNQYKTEAASRYNLTISDVSVSDVPFPFSAQS GA. “PSMGFR N+18” refers to a fragment of MUC1 receptor in which 18 amino acid residues have been added at the N-terminal end of PSMGFR segment within the MUC1 receptor of SEQ ID NO:1. In another embodiment, cleavage enzymes MMP9 and MMP3 are transduced into a T cell that is also transduced with a CAR with an antibody fragment that is a fragment of MNC2.
In many cases it is desirable to have the cleavage enzyme expressed only after an immune cell recognizes the tumor-associated target on a solid tumor. In this way, the cleavage enzyme will not freely move throughout the body, cleaving MUC1, MUC16 or other proteins, wherein their cleavage could actually promote cancer. However, there are cancers that are physically accessible to direct application of chemotherapy agents, CAR T cells and other anti-cancer agents. For example, types of brain cancers, prostate cancer and ovarian cancers have all shown the benefit of direct application of anti-cancer agents into the local vicinity of the cancer. CAR T cells have been injected directly into the brain and/or cerebral spinal fluid of glioblastoma patients. Radiation has been directed to the prostate area for the treatment of prostate cancers, including those that have metastasized. Hot chemo therapy agents have been directly injected into the intraperitoneal cavity for the treatment of ovarian cancers. In these and other cases, where the cancers that are physically accessible to direct application of chemotherapy agents, a cleavage enzyme is administered in the presence or absence of another anti-cancer agent, which could be a CAR T cell, an immune cell engineered to recognize a tumor-associated antigen, a BiTE, an ADC, a biological or a standard chemotherapy agent. Although ovarian cancer can metastasize to anywhere in the body, it usually stays in the abdomen as it spreads to adjacent organs, such as the intestines, liver and stomach. This makes ovarian cancer an ideal test case for improving the effect of anti-cancer agents by administering a cleavage enzyme in combination with other anti-cancer agents, including a platinum-based drug such as carboplatin (Paraplatin) or cisplatin, and/or a taxane such as paclitaxel (Taxol) or docetaxel (Taxotere). Alkeran (Melphalan), Avastin (Bevacizumab), Carboplatin, Clafen (Cyclophosphamide), and Cytoxan have all been approved for the treatment of ovarian cancer. Other treatments that are being tested for the treatment of ovarian cancers include agents that target MUC1, MUC16 and as described herein, MUC1*.
Stimulation of CAR T Cell with Antigen
Researchers have been trying to train or pre-stimulate CAR T cells so that they are more effective killing cells when they are injected into the patient. In some cases, they incubate the CAR T cells with anti-CD3/CD28 magnetic beads, which activates the CAR T cells but results in two negative outcomes. First, stimulating CAR T cells with anti-CD3/CD28 beads increases killing of target as well as non-target cells, which would end up killing normal cells and tissues in the patient. One researcher attempted to train anti-CD19 CAR T cells to better recognize and kill target blood cancer cells, by taking some of the patient's cancer cells and incubating the CAR T cells with them, then injecting the CAR T cells plus cancer cells back into the patient. One potential problem with this approach is that it introduces risk by injecting cancer cells back into the patient. The other risk with all of these pre-stimulation approaches is that they extend the amount of time that the CAR T cells are in culture which makes them mature from the universal naïve state to the Effector Memory and Effector state. Research now shows that CAR T cells comprising sub-populations that include a significant percentage in the Naïve state and Central Memory state increase persistence in vivo, leading to a permanent cure. In contrast, CAR T cells where most of the sub-populations are Effector Memory or Effector state gives a transient therapeutic response.
In another aspect, the present invention is directed to methods of activating, stimulating expansion of, or selecting for a population of immune cells that express a receptor that recognizes a specific tumor antigen, involving contacting the immune cell expressing the cognate receptor with the antigen to which it binds. In one aspect the immune cell is an anti-MUC1* CAR T cell and the stimulating antigen is a peptide derived from the sequence of a cleaved MUC1 that is devoid of the tandem repeat domain. In one aspect, the antibody fragment that targets the CAR binds to a peptide and that peptide is used to activate, stimulate or select for the CAR T cells wherein the peptide has a sequence containing at least 15 contiguous amino acids, but can have up to 4 substitutions or deletions, wherein the peptide is derived from:
Here, we describe novel methods of pre-stimulating CAR T cells that increases specific killing of target cells without increasing non-specific killing and does so in a short time period that keeps the CAR T cells, mostly in the Naïve and Central Memory state, with lower populations in Effector Memory and Effector state. An improvement over previous training or stimulation methods is that instead of incubating CAR T cells with the patient cancer cells, we incubated the CAR T cells with patient cancer cells that had been transfected with even more antigen, which led to an increased specific stimulation. In another case, CAR T cells are pre-stimulated by quick incubation with a synthetic mimic of the antigen attached to a surface which can be a cell culture plate. Although these examples were performed with anti-MUC1* CAR T cells and MUC1* positive cancer cells, the methods can be extended to increase the specificity and efficiency of killing for any cancer immunotherapy.
In one aspect of the invention, immune cells bearing a chimeric antigen receptor (CAR), are incubated with an entity that presents the antigen to which the antibody portion of the CAR binds, before the CAR presenting therapeutic cells are administered to a patient. In this way, the immune cells are pre-stimulated or trained to attack cells that present that antigen. In one case the entity that presents the antigen is a cell. In another case the entity that presents the antigen is a bead. In yet another case, the entity that presents the antigen is a surface or a substrate. In still another case, the entity that presents the antigen is a particle, which may be a soluble protein, to which the antigen is attached. In another case, the immune cell bearing a CAR is incubated with the free antigen.
In one aspect of the invention, the immune cells bearing a CAR are incubated with the antigen in vitro for a period of time, then the most or all of the antigen is removed before the CAR bearing immune cells are administered to the patient. In another aspect of the invention, the immune cells bearing a CAR are mixed with the antigen in vitro and administered together to the patient. In yet another aspect of the invention, the immune cells bearing a CAR are incubated with patient cells that have been transfected or transduced with the antigen and the CAR-bearing immune cells together with the antigen modified patient cells are administered to the patient. In one aspect of the invention, the patient cells are the targeted cancer cells and they are transfected or transduced with an even greater amount of the target antigen.
Here we show the effect of incubating the CAR-bearing immune cells with engineered antigen presenting entities wherein the immune cells are T cells, the CAR comprises an antibody fragment that binds to MUC1* and the antigen presented by the engineered cell, bead, surface, particle or free in solution is the MUC1* peptide SEQ ID NO:2. However, this is an example, whereas the invention can be used with virtually any CAR that comprises an antibody that binds to any target antigen.
We showed that the specific killing potential of anti-MUC1* CAR T cells was increased by incubating the CAR T cells with any entity that presented the MUC1* antigen. In one case, we incubated huMNC2-CAR44 T cells with MUC1* positive T47D breast cancer cells. In another case we incubated huMNC2-CAR44 T cells with a MUC1 negative cell line, HCT-116, that had been transfected with the transmembrane receptor MUC1*. In another case, we incubated huMNC2-CAR44 T cells with synthetic beads to which was attached a synthetic peptide having the sequence of the extra cellular domain of the MUC1* receptor, referred to herein as MUC1* peptide or MUC1*ecd peptide. In yet another case, we incubated huMNC2-CAR44 T cells with a surface that had been coated with bovine serum albumin (BSA) or human serum albumin (HSA) to which was attached the MUC1* peptide. In another case, we incubated huMNC2-CAR44 T cells with a soluble BSA or HAS to which was attached the MUC1* peptide. In another case, we incubated huMNC2-CAR44 T cells with the free MUC1* peptide. In still another case, we mixed huMNC2-CAR44 T cells with the target cancer cells that had been transfected with even more MUC1* transmembrane receptor.
Various methods of pre-stimulating CAR T cells by incubating with the target antigen were also tested in vivo. Female NOD/SCID/GAMMA (NSG) mice that had been implanted with 90-day release estrogen pellets were subcutaneously implanted with 500,000 HCT-MUC1* cancer cells. HCT-MUC1* are HCT-116 cells, a MUC1* negative colon cancer cell line, that we transfected with the MUC1* transmembrane receptor. HCT-MUC1* cancer cells were also stably transfected with Luciferase so that tumors could be visualized on an IVIS instrument after animals are injected with the substrate Luciferin. After tumor engraftment was verified by IVIS, mice were injected with 10M anti-MUC1* CAR T cells: huMNC2-CAR44 transduced into human T cells. Half of the CAR T cells were injected near the tumor and the other half were injected into the circulation via the tail vein. As controls, animals were injected with untransduced T cells or an equal volume of PBS. The anti-MUC1* CAR T cells were stimulated by two different methods.
In Protocol 1, CAR T cells were stimulated by incubation with synthetic beads to which was attached the MUC1* extra cellular domain peptide. CAR T cells were separated from beads and washed before injecting into animals.
In Protocol 2, CAR T cells were stimulated by incubation with the same cancer cells that had been implanted into the mice. CAR T cells were separated from the stimulating cancer cells and washed before injecting into animals. IVIS measurements documenting the size of the tumors and response to treatment were taken about twice a week (See
In another in vivo experiment, we compared pre-stimulating CAR T cells with antigen in vitro to stimulating the CAR T cells in vivo. In this experiment, female NSG mice were implanted with T47D breast cancer cells (
As can be seen, this condition had the most dramatic tumor reduction, showing that in vivo CAR T stimulation also works and that patient cells can be harvested, transfected with more of the target antigen and then injected back into the patient. In the animals, we injected the antigen-enhanced tumor cells near the tumor site. In a patient with localized cancer, the antigen-enhanced tumor cells would be injected back into the patient at or near the tumor site. In a metastatic patient, the antigen-enhanced tumor cells can be injected into the patient systemically.
In this experiment, animals shown in
Mice that were injected with huMNC2-CAR44 T, anti-MUC1* CAR T cells, were injected on Day 7 and on Day 14. Half of the 10 million T cells were injected into the tail vein and the other half were injected near the tumor site. The number of tumor cells implanted did not affect tumor clearance. Six (6) of the ten (10) mice treated with huMNC2-CAR44 T cells were tumor free at Day 61, which was the end of the study. Three (3) of the four (4) mice with residual tumors at the end of the study had tumors that were barely detectable with IVIS readings of ˜2e7 photons/sec/mm{circumflex over ( )}3. The fourth mouse had a tumor that measured 16e7 photons/sec/mm{circumflex over ( )}3. However, the control without MMP9 treatment and no anti-MUC1* CAR T treatment had a tumor of 212e7 photons/sec/mm{circumflex over ( )}3, which is more than 10-times the size of the largest residual tumor in the treated group.
In yet another experiment, female NSG mice were subcutaneously implanted with 500,000 T47D naturally MUC1* positive breast cancer cells (
In these examples, anti-MUC1* CAR T cells, huMNC2-CAR44 T cells, are stimulated by incubating them for 24 hours with the MUC1* extra cellular domain peptide attached to a bead, to BSA then coated onto a surface, to BSA then added in solution, to a surface or free in solution. Most or all the stimulating antigen is washed away and the anti-MUC1* CAR T cells are co-cultured with MUC1* positive cancer cells. However, this strategy can be used to pre-stimulate any CAR T cell, or other immune cell bearing a CAR, just by incubating the CAR T cells with the antigen their antibody head binds to, for a period of time that can be as little as 8 hours and as much as days. The trade-off is that as CAR T cells continue to be activated, as evidenced by an increase in expression of CD69 and CD25, they continue to mature, which research has shown makes them less persistent when injected into a patient. Current research indicates that it is important for persistence in vivo to have a significant percentage of the CAR T cells in the naïve state and central memory state, as well as in the effector memory and effector state.
Described here is a method of culturing CAR T cells that produces desired memory phenotype and CD4 vs CD8 ratio, which result in persistence and low side effects when administered to patient. Previous work showed that a roughly 50/50-30/70 ratio of CD4:CD8 increased persistence of CAR T cells in vivo. It has also been shown that it is desirable to have a good portion of the CAR T cells in the CD62L positive CD45-RO negative (naïve) state and CD62L positive CD45-RO positive (central memory) state, with much smaller portion in the CD62L negative/CD45-RO positive (effector memory) and CD62L negative/CD45-RO negative effector state. In general, we found that the longer the T cells are in culture in vitro, the more differentiated they become and the less cells are in the desired naïve and central memory state. Using our protocol, the patient's T cells are only in culture for 9-12 days but the yield is great enough for at least two CAR T cell injections and the protocol produces a high percentage of the CAR T cells in the Central memory and naïve state with far less in the effector memory and effector cell state.
In brief, our protocol takes patient T cells (Day 0), activates T cells with anti-CD3/anti-CD28 beads or surfaces for 48 hrs, followed on Day 2 by transduction (can be viral, lenti virus, Sleeping Beauty, Crispr etc.) of the T cells with plasmid bearing the CAR, expansion in media containing IL2, IL15, and/or IL17 until Day 9, on Day 9 pre-stimulate CAR T cells by incubating with target antigen attached to bead or surface for 18-24 hours, inject into patient, preferably within 24-72 hours after removal from the peptide activating surface. The timing of each of these steps can be varied without too much of an effect on outcome. In general, CAR T cells should be kept in culture for as short a time as possible and administered to patient, preferably within 24-48 hours of antigen stimulation.
Peptide coupled to Mono-Mag Maleimide Activated Magnetic Beads (Bead Stim)
Commercially available mono-mag maleimide activated magnetic beads (Ocean Nanontech catalog #MM1001) were conjugated through the thiol of C-terminal cysteine of FLR-Cys. To 2.5 mg of 1 μm Mono-Mag beads (50 mg of powder) in coupling buffer (1 mL, 100 mM PBS with 5 mM EDTA, 0.01% tween, pH 7.4) was added 25 nanomoles of peptide in DMSO (250 uL). The coupling reaction was rocked overnight at 4 C. Quenching buffer (100 uL) composed of 10 mg/mL mercaptosuccinic acid in 100 mM PBS was added and the incubated for an addition 4 hours at room temperature. The beads were then separated from the supernatant in a magnetic separator and washed three times with storage buffer composed of 10 mM PBS with 0.02% NaN3, 0.01% tween 20, 0.1% BSA, pH 7.4. The resulting beads were stored at +4 C until ready for use.
Peptide Coupled to Epoxy Dynabeads Magentic Beads (Bead Stim)
Commerically available epoxy dynabeads (Invitrogen/Thermo H-450, 4.5 um, catalog #14011) (1 mL) were washed with water in a magnetic separator, then conc. ammonium hydroxide (1 mL) was added. The beads were rocked at 15 C over the weekend (36 h). The resulting amine beads were washed with water (4×1 mL) in a magnetic separator until the pH was 7 (litmus paper). The amine beads were then suspended in coupling buffer composed of 100 mM PBS, 5 mM EDTA, 0.01% tween, pH 7.4 and to that was added sulfo-SMCC (10 mg) dissolved in DMSO (200 uL). The amide formation reaction was rocked at 15 C for 3 hours. Then more sulfo-SMCC (10 mg) dissolved in DMSO (200 uL) was added and the reaction mixture rocked overnight at room temperature. The maleimide-activated beads were then separated and washed with coupling buffer (3×1 mL). The maleimide-activated beads were then suspended in 0.75 mL of coupling buffer (100 mM PBS, 5 mM EDTA, 0.01% tween, pH 7.4). FLR-cysteine peptide (25 nmoles) in 250 uL of 5% DMSO in coupling buffer. The beads were rocked at 25 C overnight. The beads were then magnetically separated and washed with PBS containing 0.1% BSA at pH 7.4. The beads were then separated and suspended in storage buffer composed of 10 mM PBS with 0.02% NaN3, 0.01% tween 20, 0.1% BSA, pH 7.4. The resulting beads were stored at +4 C until ready for use.
Methods Used in Carrying Out Experimentation in Relation to the Present Invention
Lentivirus Production and Viral Transduction of Immune Cells
HEK293 or HEK293T cells (ATCC) were used to produce lentivirus. The day prior transfection plates (6well plate) were coated with poly-D-lysine and cells seeded so that cell density reaches 90-95% at the time of transfection and cultures in a 5% CO2 atmosphere. The next day cells were transfected with Lipofectamine 3000 (life technologies) and Opti-MEM® I Reduced Serum Medium according to the manufacturer instructions (0.75 ug of lentiviral expression vector and 2.25 ug of pPACKH1 packaging mix was used). After 6 h incubation, the media was changed and media containing lentivirus was harvested after 24 and 48 hours. Lentivirus was concentrated with Lenti-X concentrator (Clontech) and titer was calculated using the Lenti-X p@4 Rapid Titer Kit (Clontech). Lentivirus was store at −80 C in single-use aliquots.
Transduction of Immune Cells with Constructs Including CARs
Human T cells, if frozen, were thawed and pre-warmed in 100-200 units IL-2 and TexMACS medium, 20 ml, and pelleted by centrifugation. Cells were resuspended in 10 ml of medium and cultured at 37° C., 5% CO2 at 1×106 cells/ml in complete medium with anti-CD3/anti-CD28 beads (TransAct kit).
After 4 days in culture, cells were counted and 450 ul of cell suspension was placed in single well of a 24-well plate at a density of approximately 1×106 cells/ml. Cells were allowed to settle. 150 ul was carefully removed from the top of each well. To each well was added an appropriate dilution of lentiviral vector, diluted in plain TexMACS medium, along with protamine sulfate to a final concentration of 10 ug/ml, in a 150 ul volume, for a final total volume of 450 ul per well and incubated for 24 hrs. Transduced cells were removed, pelleted by centrifugation, and resuspended in fresh medium, adjusting cell density, not to exceed 1.0×106 cells/ml. Transduced T cells can be expanded and frozen or used directly. Typically transduced T cells are used or frozen between Day 7 and Day 20 post activation with IL-2 and TransAct media.
Analysis of CAR T Cell Induced Killing of MUC1* Positive Cancer Cells by xCELLigence
In addition to FACS analysis, many researchers now use an xCELLigence instrument to measure CAR T killing of cancer cells. The xCELLigence instrument uses electrode arrays upon which cancer cells are plated. The adherent cancer cells insulate the electrode and so cause an increase in impedance as they grow. Conversely, T cells are not adherent and remain in suspension so do not contribute to insulation of the electrode which would increase impedance. However, if the T cells or CAR T cells kill the cancer cells on the electrode plate, the cancer cells ball up and float off as they die, which causes the impedance to decrease. The xCELLigence instrument measures impedance as a function of time, which is correlated to cancer cell killing. In addition, the electrode plates also have a viewing window. When CAR T cells effectively kill the adsorbed target cancer cells, there is a decrease in impedance but also one can see that there are no cancer cells left on the plate surface.
In most of the XCELLigence experiments, 5,000 cancer cells were plated per well of a 96-well electrode array plate. Cells were allowed to adhere and grow for 24 hours. CAR T cells were then added at an Effector to Target ratio (E:T) of 0.5:1, 1:1, 2:1, 5:1, 10:1 and sometimes 20:1. The E:T ratio assumes 100% transduction of the CAR into the T cells, when the actual transduction efficiency is 40%.
The xCELLigence instrument records impedance as a function of time and experiments can go on for up to 7 days.
Anti-MUC1* CAR T Cell Therapy in Mice Bearing Human Tumors
Female NOD/SCID/GAMMA (NSG) mice between 8-12 weeks of age were implanted with 500,000 human cancer cells, wherein the cancer cells had previously been stably transfected with Luciferase. Mice bearing Luciferase positive cells can be injected with the enzyme's substrate Luciferin just prior to imaging, which makes the cancer cells fluoresce. The cancer cells are imaged in live mice within 10-15 minutes after injection with Luciferin on an IVIS instrument. The readout is flux or photons per second. Tumors were allowed to engraft until tumors were clearly visible by IVIS.
NSG (NOD/SCID/GAMMA) immune compromised mice that on Day 0 were injected into the intraperitoneal cavity (IP) with 500K human SKOV-3 cells which are a MUC1* positive ovarian cancer cell line. The cancer cells had been stably transfected with Luciferase. Tumors were allowed to engraft. On Day 3 after IVIS measurement, animals were IP injected with 10M either human T cells transduced with huMNC2-scFv-CAR44, untransduced T cells or PBS. Animals were IVIS imaged again on Day 7. 10 minutes prior to IVIS photographs, mice were IP injected with Luciferin.
Antigen Peptide Coupled to BSA (Bovine Serum Albumin)
A MUC1* extra cellular domain peptide, PSMGFR sequence with Cys modification at C-terminus was coupled to maleimide activated bovine serum albumin (ThermoFisher, Cat #77115) through thiol coupling of the terminal cysteine. Peptide was serially diluted in 0.1M bicarbonate buffer (pH 9.6) to concentrations of 10, 2, 1, 0.2, 0.1, 0.01, 0.001 ug/mL. 1 mL of each dilution was added to each well of a 6well Nunc plate. A bicarbonate buffer only well was also coated as a negative control. Plates were wrapped in parafilm and stored at 4 degrees C. overnight. The following day coating solution was aspirated and then wells were washed with 2 mL of PBS. Day 9 T Cells were then added at 1 million cells per mL. 24 hrs later, wells were inspected for changes in T Cell morphology and clumping behavior that denotes activation; images were taken. A portion of the T Cells were removed from the coated well at 24, 48, 72, and 96 hours, washed and re-plated in normal uncoated culture conditions. Analysis of activation and memory markers was done at multiple time points. T Cells were also subjected to co-culture assays with various cancer cell lines to assess cytotoxicity.
Antigen Peptide Coupled to HSA (Human Serum Albumin)
Peptide was coupled to maleimide activated human serum albumin (Nanoc, Cat # HS1-ML-1) (Minerva Biotechnologies, STM258158) through thiol coupling of the terminal cysteine. Peptide was serially diluted in 0.1M bicarbonate buffer (pH 9.6) to concentrations of 10, 2, 1, 0.2, 0.1, 0.01, 0.001 ug/mL. 1 mL of each dilution was added to each well of a 6well Nunc plate. A bicarbonate buffer only well was also coated as a negative control. Plates were wrapped in parafilm and stored at 4 degrees C. overnight. The following day coating solution was aspirated and then wells were washed with 2 mL of PBS. Day 9 T Cells were then added at 1 million cells per mL. 24 hrs later wells were inspected for changes in T Cell morphology and clumping behavior that denotes activation; images were taken. T Cells were then removed from coated wells and analyzed by flow cytometry for activation/memory markers and subjected to co-culture assays with various cancer cell lines.
Antigen Peptide Attached to Amine Derivatized Surface
Amine derivatized 6-well plates from Corning were coupled to SMCC by reaction with sulfo-SMCC. MUC1* peptide was conjugated to maleimide group on SMCC through thiol of terminal cysteine. Reaction was performed at different concentrations of peptide in the presence of capping agent—mercaptosuccinic acid to achieve different amounts of peptide conjugated to the plate. At the conclusion of the reaction, excess mercaptosuccinic acid was used to cap remaining maleimide. Plates were then washed 3 times with PBS and stored at 4 degrees C. overnight. The following day PBS was aspirated and then wells were washed again with 2 mL of PBS. Day 9 T Cells were then added at 1 million cells per mL. 24 hrs later wells were inspected for changes in T Cell morphology and clumping behavior indicative of activation; images were taken. T Cells were then removed from coated wells and analyzed by flow cytometry for activation/memory markers and subjected to co-culture assays with various cancer cell lines.
Antigen Peptide-BSA Free in Solution (Soluble Stim)
Peptide was coupled to maleimide activated bovine serum albumin (ThermoFisher, Cat #77115) through thiol coupling of the terminal cysteine. Day 9 T Cells were plated at 1 million cells per mL. Peptide-BSA was pre-diluted in 1 mL of media and then added to respective wells of a 6 well plate. Day 9 T Cells were added to each well for a final concentration of 1 million cells per mL and to the effect of 10, 1, 0.1, 0.01, 0.001 ug/mL of peptide-BSA. 24 hrs later wells were inspected for changes in T Cell morphology and clumping behavior indicative of activation; images were taken. A portion of the T Cells were removed from the well at 24, 48, 72, and 96 hours, washed and re-plated in normal uncoated culture conditions. Analysis of activation and memory markers was done at multiple time points. T Cells were also subjected to co-culture assays with various cancer cell lines to assess cytotoxicity.
Antigen Peptide Free in Solution
Peptide was coupled to maleimide activated bovine serum albumin (ThermoFisher, Cat #77115) through thiol coupling of the terminal cysteine. Day 9 T Cells were plated at 1 million cells per mL. Peptide-BSA was prediluted in 1 mL of media and then added to respective wells of a 6 well plate. Day 9 T Cells were added to each well for a final concentration of 1 million cells per mL and to the effect of 1 ug/mL of MUC1* peptide. 24 hrs later wells were inspected for changes in T Cell morphology and clumping behavior indicative of activation; images were taken. A portion of the T Cells were removed from the well at 24 hours, washed and re-plated in normal uncoated culture conditions. Analysis of activation and memory markers was done at multiple time points. T Cells were also subjected to co-culture assays with various cancer cell lines to assess cytotoxicity.
Antigen Peptide Non-Specifically Adsorbed to a Plate
Peptide was serially diluted in 0.1M bicarbonate buffer (pH 9.6) to concentrations of 10, 1, 0.1, 0.01, 0.001, 0.0001 ug/mL. 1 mL of each dilution was added to respective well of a 6well Nunc plate. A bicarbonate buffer only well was also coated as a negative control. Plates were wrapped in parafilm and stored at 4 degrees C. overnight. The following day coating solution was aspirated and then wells were washed with 2 mL of PBS. Day 9 T Cells were then added at 1 million cells per mL. 24 hrs later wells were inspected for changes in T Cell morphology and clumping behavior that denotes activation; images were taken. A portion of the T Cells were removed from the coated well at 24 hours, washed and re-plated in normal uncoated culture conditions. Analysis of activation and memory markers was done at multiple time points. T Cells were also subjected to co-culture assays with various cancer cell lines to assess cytotoxicity.
All of the references cited herein are incorporated by reference in their entirety.
aagtgataa
ggatgacgacgataagtgataa
Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention specifically described herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/021556 | 3/11/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62640697 | Mar 2018 | US |