METHOD FOR APPLYING MSD AND APPARATUS THEREOF

Information

  • Patent Application
  • 20220151003
  • Publication Number
    20220151003
  • Date Filed
    March 10, 2020
    4 years ago
  • Date Published
    May 12, 2022
    2 years ago
Abstract
A disclosure of this specification provides a device configured to operate in a wireless system. The device may comprise: a transceiver configured with an Evolved Universal Terrestrial Radio Access (E-UTRA)-New Radio (NR) Dual Connectivity (EN-DC). The EN-DC may be configured to use three bands. The device may comprise: a processor operably connectable to the transceiver. The processer may be configured to: control the transceiver to receive a downlink signal and control the transceiver to transmit an uplink signal via at least two bands among the three bands. A value of Maximum Sensitivity Degradation (MSD) may be applied to a reference sensitivity for receiving the downlink signal.
Description
TECHNICAL FIELD

The present disclosure relates to mobile communication.


BACKGROUND

With the success in the Evolved Universal Terrestrial Radio Access Network (E-UTRAN) for 4th generation mobile communication, i.e., long term evolution (LTE)/LTE-Advanced (LTE-A), interest in the next-generation, i.e., 5th generation (also known as 5G) mobile communication is rising, and extensive research and development are in process.


A new radio access technology (New RAT or NR) is being researched for the 5th generation (also known as 5G) mobile communication.


A frequency band for NR may be defined as two types (FR1 and FR2) of frequency ranges. FR1 may include a range from 410 MHz to 7125 MHz. That is, FR1 may include a frequency band of 6 GHz or greater (or 5850, 5900, 5925 MHz, or the like). For the convenience of description, FR1 may refer to a “sub-6-GHz range”, FR2 may refer to an “above-6-GHz range” and may be referred to as a millimeter wave (mmWave).


A mobile device should be configured to satisfy a reference sensitivity power level (REFSENS) which is the minimum average power for each antenna port of the mobile device when receiving the downlink signal.


When a harmonics component and/or an intermodulation distortion (IMD) component occurs, there is a possibility that the REFSENS for the downlink signal may not be satisfied due to the uplink signal transmitted by the mobile device.


SUMMARY

Accordingly, a disclosure of the specification has been made in an effort to solve the aforementioned problem.


In accordance with an embodiment of the present disclosure, a disclosure of this specification provides a device configured to operate in a wireless system. The device may comprise: a transceiver configured with an Evolved Universal Terrestrial Radio Access (E-UTRA)-New Radio (NR) Dual Connectivity (EN-DC). The EN-DC may be configured to use three bands. The device may comprise: a processor operably connectable to the transceiver. The processer may be configured to: control the transceiver to receive a downlink signal and control the transceiver to transmit an uplink signal via at least two bands among the three bands. A value of Maximum Sensitivity Degradation (MSD) may be applied to a reference sensitivity for receiving the downlink signal. The value of the MSD may be pre-configured for a first combination of bands 1, 40 and 78, a second combination of band 3, 40 and 78, a third combination of bands 1, 11 and 77, a fourth combination of bands 1, 11 and 78, a fifth combination of bands 8, 11 and 77 or a sixth combination of bands 8, 11 and 78.


In accordance with an embodiment of the present disclosure, a disclosure of this specification provides a method performed by a device. The method may comprise: transmitting an uplink signal via at least two bands among three bands; and receiving a downlink signal. The at least two bands may be configured for an Evolved Universal Terrestrial Radio Access (E-UTRA)-New Radio (NR) Dual Connectivity (EN-DC). A value of Maximum Sensitivity Degradation (MSD) may be applied to a reference sensitivity for receiving the downlink signal. The value of the MSD may be pre-configured for a first combination of bands 1, 40 and 78, a second combination of band 3, 40 and 78, a third combination of bands 1, 11 and 77, a fourth combination of bands 1, 11 and 78, a fifth combination of bands 8, 11 and 77 or a sixth combination of bands 8, 11 and 78.


According to a disclosure of the present disclosure, the above problem of the related art is solved.


Effects obtained through specific examples of the present specification are not limited to the effects listed above. For example, there may be a variety of technical effects that a person having ordinary skill in the related art can understand or derive from this specification. Accordingly, the specific effects of the present disclosure are not limited to those explicitly described herein, but may include various effects that may be understood or derived from the technical features of the present disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a wireless communication system.



FIGS. 2a to 2c are exemplary diagrams illustrating exemplary architectures for services of the next generation mobile communication.



FIG. 3 shows an example of subframe type in NR.



FIG. 4 shows an example of subframe type in NR.



FIG. 5A illustrates a concept view of an example of intra-band contiguous CA.



FIG. 5b illustrates a concept view of an example of intra-band non-contiguous CA.



FIG. 6a illustrates a concept view of an example of a combination of a lower frequency band and a higher frequency band for inter-band CA.



FIG. 6b illustrates a concept view of an example of a combination of similar frequency bands for inter-band CA.



FIG. 7 illustrates an example of situation in which an uplink signal transmitted via an uplink operating band affects reception of a downlink signal on via downlink operating band.



FIGS. 8a and 8b illustrate exemplary IMD by a combination of band 1, 40 and 78.



FIGS. 9a and 9b illustrate exemplary IMD by a combination of bands 3, 40 and 78.



FIGS. 10a and 10b illustrate exemplary IMD by a combination of bands 1, 11 and 77.



FIGS. 11a and 11b illustrate exemplary IMD by a combination of bands 1, 11 and 78.



FIGS. 12a and 12b illustrate exemplary IMD by a combination of bands 8, 11 and 77.



FIGS. 13a and 13b illustrate exemplary IMD by a combination of bands 8, 11 and 78.



FIG. 14 is a block diagram illustrating a wireless device and a base station, by which the disclosure of this specification can be implemented.



FIG. 15 is a block diagram showing a detail structure of the wireless device shown in FIG. 14.



FIG. 16 is a detailed block diagram illustrating a transceiver of the wireless device shown in FIG. 14 and FIG. 15.



FIG. 17 illustrates a detailed block diagram illustrating a processor of the wireless device shown in FIG. 14 and FIG. 15.



FIG. 18 illustrates a communication system that can be applied to the present specification.





DESCRIPTION OF EXEMPLARY EMBODIMENTS

Hereinafter, based on 3rd Generation Partnership Project (3GPP) long term evolution (LTE), 3GPP LTE-advanced (LTE-A), 3GPP 5G (5th generation) or 3GPP New Radio (NR), the present specification will be applied. This is just an example, and the present specification may be applied to various wireless communication systems. Hereinafter, LTE includes LTE and/or LTE-A.


The technical terms used herein are used to merely describe specific embodiments and should not be construed as limiting the present specification. Further, the technical terms used herein should be, unless defined otherwise, interpreted as having meanings generally understood by those skilled in the art but not too broadly or too narrowly. Further, the technical terms used herein, which are determined not to exactly represent the spirit of the specification, should be replaced by or understood by such technical terms as being able to be exactly understood by those skilled in the art. Further, the general terms used herein should be interpreted in the context as defined in the dictionary, but not in an excessively narrowed manner.


The expression of the singular number in the present specification includes the meaning of the plural number unless the meaning of the singular number is definitely different from that of the plural number in the context. In the following description, the term ‘include’ or ‘have’ may represent the existence of a feature, a number, a step, an operation, a component, a part or the combination thereof described in the present specification, and may not exclude the existence or addition of another feature, another number, another step, another operation, another component, another part or the combination thereof.


The terms ‘first’ and ‘second’ are used for the purpose of explanation about various components, and the components are not limited to the terms ‘first’ and ‘second’. The terms ‘first’ and ‘second’ are only used to distinguish one component from another component. For example, a first component may be named as a second component without deviating from the scope of the present specification.


It will be understood that when an element or layer is referred to as being “connected to” or “coupled to” another element or layer, it can be directly connected or coupled to the other element or layer or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly connected to” or “directly coupled to” another element or layer, there are no intervening elements or layers present.


Hereinafter, exemplary embodiments of the present specification will be described in greater detail with reference to the accompanying drawings. In describing the present specification, for ease of understanding, the same reference numerals are used to denote the same components throughout the drawings, and repetitive description on the same components will be omitted. Detailed description on well-known arts which are determined to make the gist of the specification unclear will be omitted. The accompanying drawings are provided to merely make the spirit of the specification readily understood, but not should be intended to be limiting of the specification. It should be understood that the spirit of the specification may be expanded to its modifications, replacements or equivalents in addition to what is shown in the drawings.


In the appended drawings, although a User Equipment (UE) is illustrated as an example, this is merely an example given to simplify the description of the present disclosure. Herein, a UE may mean to a wireless communication device performing communication in a communication system, such as EPS and/or 5GS, and so on. And, the UE shown in the drawing may also be referred to as a terminal, a mobile equipment (ME), a wireless communication device, a wireless communication apparatus, and so on. Additionally, the UE may be a portable device, such as a laptop computer, a mobile phone, a PDA, a smart phone, a multimedia device, and so on, or the UE may be a non-portable device, such as a personal computer (PC) or a vehicle mounted device.


Although the present disclosure has been described based on a Universal Mobile Telecommunication System (UMTS), an Evolved Packet Core (EPC), and a next generation (also known as 5th generation or 5G) mobile communication network, the present disclosure will be limited only to the aforementioned communication systems and may, therefore, be applied to all communication system and methods to which the technical scope and spirit of the present disclosure can be applied.


As used herein, “A or B” may mean “only A”, “only B”, or “both A and B”. In other words, “A or B” herein may be understood as “A and/or B”. For example, “A, B or C” herein means “only A”, “only B”, “only C”, or any combination of A, B and C (any combination of A, B and C)”.


As used herein, a slash (/) or a comma may mean “and/or”. For example, “A/B” may mean “A and/or B”. Accordingly, “A/B” may mean “only A”, “only B”, or “both A and B”. For example, “A, B, C” may mean “A, B, or C”.


As used herein, “at least one of A and B” may mean “only A”, “only B”, or “both A and B”. In addition, the expression “at least one of A or B” or “at least one of A and/or B” may be understood as “At least one of A and B”.


In addition, in this specification, “at least one of A, B and C” may mean “only A”, “only B”, “only C”, or “any combination of A, B and C”. In addition, “at least one of A, B or C” or “at least one of A, B and/or C” may mean “at least one of A, B and C”.


In addition, the parentheses used herein may mean “for example”. In detail, when “control information (PDCCH (Physical Downlink Control Channel))” is written herein, “PDCCH” may be proposed as an example of “control information”. In other words, “control information” of the present specification is not limited to “PDCCH”, and “PDDCH” may be proposed as an example of “control information”. In addition, even when “control information (i.e. PDCCH)” is written, “PDCCH” may be proposed as an example of “control information”.


The technical features individually described in one drawing in this specification may be implemented separately or at the same time.


As used herein, ‘base station’ generally refers to a fixed station that communicates with a wireless device and may be denoted by other terms such as eNB (evolved-NodeB), BTS (base transceiver system), gNB (next-generation NodeB), or access point.


As used herein, ‘user equipment (UE)’ may be an example of a wireless communication device such as stationary or mobile. Also, UE may be denoted by other terms such as device, wireless device, terminal, MS (mobile station), UT (user terminal), SS (subscriber station), MT (mobile terminal) and etc.


<Next-Generation Mobile Communication Network>


The following description of this specification may be applied to a next-generation (also known as 5th generation or 5G) mobile communication network.


Thanks to the success of long term evolution (LTE)/LTE-advanced (LTE-A) for 4G mobile communication, interest in the next generation, i.e., 5-generation (so called 5G) mobile communication has been increased and researches have been continuously conducted.


The 5G mobile telecommunications defined by the International Telecommunication Union (ITU) refers to providing a data transmission rate of up to 20 Gbps and a feel transmission rate of at least 100 Mbps or more at any location. The official name is ‘IMT-2020’ and its goal is to be commercialized worldwide in 2300.


ITU proposes three usage scenarios, for example, enhanced Mobile Broad Band (eMBB) and massive machine type communication (mMTC) and ultra reliable and low latency communications (URLLC).


URLLC relates to usage scenarios that require high reliability and low latency. For example, services such as autonomous navigation, factory automation, augmented reality require high reliability and low latency (e.g., a delay time of 1 ms or less). Currently, the delay time of 4G (LTE) is statistically 21 to 43 ms (best 10%) and 33 to 75 ms (median). This is insufficient to support a service requiring a delay time of 1 ms or less. Next, an eMBB usage scenario relates to a usage scenario requiring a mobile ultra-wideband.


That is, the 5G mobile communication system aims at higher capacity than the current 4G LTE, may increase the density of mobile broadband users, and may support device to device (D2D), high stability and machine type communication (MTC). 5G research and development also aims at a lower latency time and lower battery consumption than a 4G mobile communication system to better implement the Internet of things. A new radio access technology (New RAT or NR) may be proposed for such 5G mobile communication.



FIG. 1 illustrates a wireless communication system.


As seen with reference to FIG. 1, the wireless communication system includes at least one base station (BS). The BS is classified into a gNB 20a and an eNB 20b. The gNB 20a is for 5G mobile communication such as NR. And, the eNB 20b is for 4G mobile communication such as LTE or LTE-A.


Each BS (e.g., gNB 20a and eNB 20b) provides a communication service to specific geographical areas (generally, referred to as cells) 20-1, 20-2, and 20-3. The cell can be further divided into a plurality of areas (sectors).


The UE 10 generally belongs to one cell and the cell to which the UE belong is referred to as a serving cell. A BS that provides the communication service to the serving cell is referred to as a serving BS. Since the wireless communication system is a cellular system, another cell that neighbors to the serving cell is present. Another cell which neighbors to the serving cell is referred to a neighbor cell. A BS that provides the communication service to the neighbor cell is referred to as a neighbor BS. The serving cell and the neighbor cell are relatively decided based on the UE.


Hereinafter, a downlink means communication from the BS 20 to the UE 10 and an uplink means communication from the UE 10 to the BS 200. In the downlink, a transmitter may be a part of the BS 20 and a receiver may be a part of the UE 10. In the uplink, the transmitter may be a part of the UE 10 and the receiver may be a part of the BS 20.


Meanwhile, the wireless communication system may be generally divided into a frequency division duplex (FDD) type and a time division duplex (TDD) type. According to the FDD type, uplink transmission and downlink transmission are achieved while occupying different frequency bands. According to the TDD type, the uplink transmission and the downlink transmission are achieved at different time while occupying the same frequency band. A channel response of the TDD type is substantially reciprocal. This means that a downlink channel response and an uplink channel response are approximately the same as each other in a given frequency area. Accordingly, in the TDD based wireless communication system, the downlink channel response may be acquired from the uplink channel response. In the TDD type, since an entire frequency band is time-divided in the uplink transmission and the downlink transmission, the downlink transmission by the base station and the uplink transmission by the terminal may not be performed simultaneously. In the TDD system in which the uplink transmission and the downlink transmission are divided by the unit of a subframe, the uplink transmission and the downlink transmission are performed in different subframes.


<Carrier Aggregation>


A carrier aggregation system is now described.


A carrier aggregation system aggregates a plurality of component carriers (CCs). A meaning of an existing cell is changed according to the above carrier aggregation. According to the carrier aggregation, a cell may signify a combination of a downlink component carrier and an uplink component carrier or an independent downlink component carrier.


Further, the cell in the carrier aggregation may be classified into a primary cell, a secondary cell, and a serving cell. The primary cell signifies a cell operated in a primary frequency. The primary cell signifies a cell which UE performs an initial connection establishment procedure or a connection reestablishment procedure or a cell indicated as a primary cell in a handover procedure. The secondary cell signifies a cell operating in a secondary frequency. Once the RRC connection is established, the secondary cell is used to provide an additional radio resource.


As described above, the carrier aggregation system may support a plurality of component carriers (CCs), that is, a plurality of serving cells unlike a single carrier system.


The carrier aggregation system may support a cross-carrier scheduling. The cross-carrier scheduling is a scheduling method capable of performing resource allocation of a PDSCH transmitted through other component carrier through a PDCCH transmitted through a specific component carrier and/or resource allocation of a PUSCH transmitted through other component carrier different from a component carrier basically linked with the specific component carrier.


<Introduction of Dual Connectivity (DC)>


Recently, a scheme for simultaneously connecting UE to different base stations, for example, a macro cell base station and a small cell base station, is being studied. This is called dual connectivity (DC).


In DC, the eNodeB for the primary cell (Pcell) may be referred to as a master eNodeB (hereinafter referred to as MeNB). In addition, the eNodeB only for the secondary cell (Scell) may be referred to as a secondary eNodeB (hereinafter referred to as SeNB).


A cell group including a primary cell (Pcell) implemented by MeNB may be referred to as a master cell group (MCG) or PUCCH cell group 1. A cell group including a secondary cell (Scell) implemented by the SeNB may be referred to as a secondary cell group (SCG) or PUCCH cell group 2.


Meanwhile, among the secondary cells in the secondary cell group (SCG), a secondary cell in which the UE can transmit Uplink Control Information (UCI), or the secondary cell in which the UE can transmit a PUCCH may be referred to as a super secondary cell (Super SCell) or a primary secondary cell (Primary Scell; PScell).



FIGS. 2a to 2c are exemplary diagrams illustrating exemplary architectures for services of the next generation mobile communication.


Referring to FIG. 2a, the UE is connected to LTE/LTE-A based cells and NR based cells in a dual connectivity (DC) manner.


The NR-based cell is connected to a core network for existing 4G mobile communication, that is, an evolved packet core (EPC).


Referring to FIG. 2b, unlike FIG. 2a, the LTE/LTE-A based cell is connected to a core network for the 5G mobile communication, that is, a next generation (NG) core network.


The service scheme based on the architecture as illustrated in FIGS. 2a and 2B is called non-standalone (NSA).


Referring to FIG. 2c, the UE is connected only to NR-based cells. The service method based on such an architecture is called standalone (SA).


On the other hand, in the NR, it may be considered that the reception from the base station uses a downlink subframe, and the transmission to the base station uses an uplink subframe. This method may be applied to paired spectra and unpaired spectra. A pair of spectra means that the two carrier spectra are included for downlink and uplink operations. For example, in a pair of spectra, one carrier may include a downlink band and an uplink band that are paired with each other.


The NR supports a plurality of numerologies (e.g. a plurality of values of subcarrier spacing (SCS)) in order to support various 5G services. For example, when the SCS is 15 kHz, a wide area in traditional cellular bands is supported. When the SCS is 30 kHz/60 kHz, a dense-urban, lower-latency, and wider carrier bandwidth is supported. When the SCS is 60 kHz or greater, a bandwidth greater than 24.25 GHz is supported in order to overcome phase noise.


The LTE/LTE-A based cell operates in an Evolved Universal Terrestrial Radio Access (E-UTRA) operating band. And, the NR-based cell operates in a NR band. Here, the DC may be called as EN-DC.


The following table is an example of E-UTRA operating bands.












TABLE 1






Uplink (UL)
Downlink (DL)




operating band
operating band


E-UTRA
BS receive
BS transmit


Operating
UE transmit
UE receive
Duplex


Band
FULlow-FULhigh
FDLlow-FDLhigh
Mode







 1
1920 MHz-1980 MHz
2110 MHz-2170 MHz
FDD


 2
1850 MHz-1910 MHz
1930 MHz-1990 MHz
FDD


 3
1710 MHz-1785 MHz
1805 MHz-1880 MHz
FDD


 4
1710 MHz-1755 MHz
2110 MHz-2155 MHz
FDD


 5
824 MHz-849 MHz
869 MHz-894 MHz
FDD


 61
830 MHz-840 MHz
875 MHz-885 MHz
FDD


 7
2500 MHz-2570 MHz
2620 MHz-2690 MHz
FDD


 8
880 MHz-915 MHz
925 MHz-960 MHz
FDD


 9
1749.9 MHz-1784.9 MHz
1844.9 MHz-1879.9 MHz
FDD


10
1710 MHz-1770 MHz
2110 MHz-2170 MHz
FDD


11
1427.9 MHz-1447.9 MHz
1475.9 MHz-1495.9 MHz
FDD


12
699 MHz-716 MHz
729 MHz-746 MHz
FDD


13
777 MHz-787 MHz
746 MHz-756 MHz
FDD


14
788 MHz-798 MHz
758 MHz-768 MHz
FDD


15
Reserved
Reserved
FDD


16
Reserved
Reserved
FDD


17
704 MHz-716 MHz
734 MHz-746 MHz
FDD


18
815 MHz-830 MHz
860 MHz-875 MHz
FDD


19
830 MHz-845 MHz
875 MHz-890 MHz
FDD


20
832 MHz-862 MHz
791 MHz-821 MHz
FDD


21
1447.9 MHz-1462.9 MHz
1495.9 MHz-1510.9 MHz
FDD


22
3410 MHz-3490 MHz
3510 MHz-3590 MHz
FDD


231
2000 MHz-2020 MHz
2180 MHz-2200 MHz
FDD


24
1626.5 MHz-1660.5 MHz
1525 MHz-1559 MHz
FDD


25
1850 MHz-1915 MHz
1930 MHz-1995 MHz
FDD


26
814 MHz-849 MHz
859 MHz-894 MHz
FDD


27
807 MHz-824 MHz
852 MHz-869 MHz
FDD


28
703 MHz-748 MHz
758 MHz-803 MHz
FDD


29
N/A
717 MHz-728 MHz
FDD2


3015
2305 MHz-2315 MHz
2350 MHz-2360 MHz
FDD


31
452.5 MHz-457.5 MHz
462.5 MHz-467.5 MHz
FDD


32
N/A
1452 MHz-1496 MHz
FDD2


33
1900 MHz-1920 MHz
1900 MHz-1920 MHz
TDD


34
2010 MHz-2025 MHz
2010 MHz-2025 MHz
TDD


35
1850 MHz-1910 MHz
1850 MHz-1910 MHz
TDD


36
1930 MHz-1990 MHz
1930 MHz-1990 MHz
TDD


37
1910 MHz-1930 MHz
1910 MHz-1930 MHz
TDD


38
2570 MHz-2620 MHz
2570 MHz-2620 MHz
TDD


39
1880 MHz-1920 MHz
1880 MHz-1920 MHz
TDD


40
2300 MHz-2400 MHz
2300 MHz-2400 MHz
TDD


41
2496 MHz 2690 MHz
2496 MHz 2690 MHz
TDD


42
3400 MHz-3600 MHz
3400 MHz-3600 MHz
TDD


43
3600 MHz-3800 MHz
3600 MHz-3800 MHz
TDD


44
703 MHz-803 MHz
703 MHz-803 MHz
TDD


45
1447 MHz-1467 MHz
1447 MHz-1467 MHz
TDD


46
5150 MHz-5925 MHz
5150 MHz-5925 MHz
TDD8


47
5855 MHz-5925 MHz
5855 MHz-5925 MHz
TDD11


48
3550 MHz-3700 MHz
3550 MHz-3700 MHz
TDD


49
3550 MHz-3700 MHz
3550 MHz-3700 MHz
TDD16


50
1432 MHz-1517 MHz
1432 MHz-1517 MHz
TDD13


51
1427 MHz-1432 MHz
1427 MHz-1432 MHz
TDD13


52
3300 MHz-3400 MHz
3300 MHz-3400 MHz
TDD


53
2483.5 MHz-2495 MHz
2483.5 MHz-2495 MHz
TDD


. . .









64
Reserved











65
1920 MHz-2010 MHz
2110 MHz-2200 MHz
FDD


66
1710 MHz-1780 MHz
2110 MHz-2200 MHz
FDD4


67
N/A
738 MHz-758 MHz
FDD2


68
698 MHz-728 MHz
753 MHz-783 MHz
FDD


69
N/A
2570 MHz-2620 MHz
FDD2


70
1695 MHz-1710 MHz
1995 MHz-2020 MHz
FDD10


71
663 MHz-698 MHz
617 MHz-652 MHz
FDD


72
451 MHz-456 MHz
461 MHz-466 MHz
FDD


73
450 MHz-455 MHz
460 MHz-465 MHz
FDD


74
1427 MHz-1470 MHz
1475 MHz-1518 MHz
FDD


75
N/A
1432 MHz-1517 MHz
FDD2


76
N/A
1427 MHz-1432 MHz
FDD2


85
698 MHz-716 MHz
728 MHz-746 MHz
FDD


87
410 MHz-415 MHz
420 MHz-425 MHz
FDD


88
412 MHz-417 MHz
422 MHz-427 MHz
FDD









An NR frequency band may be defined as two types (FR1 and FR2) of frequency ranges. The frequency ranges may be changed. For example, the two types (FR1 and FR2) of frequency bands are illustrated in Table 2. For the convenience of description, among the frequency bands used in the NR system, FR1 may refer to a “sub-6-GHz range”, FR2 may refer to an “above-6-GHz range” and may be referred to as a millimeter wave (mmWave).











TABLE 2





Frequency
Corresponding



Range
Frequency
Subcarrier


Designation
Range
Spacing







FR1
 450 MHz-6000 MHz
 15, 30, 60 kHz


FR2
24250 MHz-52600 MHz
60, 120, 240 kHz









As described above, the frequency ranges for the NR system may be changed. For example, FR1 may include a range from 410 MHz to 7125 MHz as illustrated in Table 3. That is, FR1 may include a frequency band of 6 GHz or greater (or 5850, 5900, 5925 MHz, or the like). For example, the frequency band of 6 GHz or greater (or 5850, 5900, 5925 MHz or the like) included in FR1 may include an unlicensed band. The unlicensed band may be used for various uses, for example, for vehicular communication (e.g., autonomous driving).











TABLE 3





Frequency
Corresponding



Range
Frequency
Subcarrier


Designation
Range
Spacing







FR1
 410 MHz-7125 MHz
 15, 30, 60 kHz


FR2
24250 MHz-52600 MHz
60, 120, 240 kHz









<Operating Band in NR>


An operating band in NR is as follows.


Table 4 shows examples of operating bands on FR1. Operating bands shown in Table 4 is a reframing operating band that is transitioned from an operating band of LTE/LTE-A. This operating band may be referred to as FR1 operating band.












TABLE 4





NR
Uplink (UL)
Downlink (DL)



operating
operating band
operating band
Duplex


band
FUL_low-FUL_high
FDL_low-FDL_high
mode







n1 
1920 MHz-1980 MHz
2110 MHz-2170 MHz
FDD


n2 
1850 MHz-1910 MHz
1930 MHz-1990 MHz
FDD


n3 
1710 MHz-1785 MHz
1805 MHz-1880 MHz
FDD


n5 
824 MHz-849 MHz
869 MHz-894 MHz
FDD


n7 
2500 MHz-2570 MHz
2620 MHz-2690 MHz
FDD


n8 
880 MHz-915 MHz
925 MHz-960 MHz
FDD


n20
832 MHz-862 MHz
791 MHz-821 MHz
FDD


n28
703 MHz-748 MHz
758 MHz-803 MHz
FDD


n38
2570 MHz-2620 MHz
2570 MHz-2620 MHz
TDD


n41
2496 MHz-2690 MHz
2496 MHz-2690 MHz
TDD


n50
1432 MHz-1517 MHz
1432 MHz-1517 MHz
TDD


n51
1427 MHz-1432 MHz
1427 MHz-1432 MHz
TDD


n66
1710 MHz-1780 MHz
2110 MHz-2200 MHz
FDD


n70
1695 MHz-1710 MHz
1995 MHz-2300 MHz
FDD


n71
663 MHz-698 MHz
617 MHz-652 MHz
FDD


n74
1427 MHz-1470 MHz
1475 MHz-1518 MHz
FDD


n75
N/A
1432 MHz-1517 MHz
SDL


n76
N/A
1427 MHz-1432 MHz
SDL


n77
3300 MHz-4200 MHz
3300 MHz-4200 MHz
TDD


n78
3300 MHz-3800 MHz
3300 MHz-3800 MHz
TDD


n79
4400 MHz-5000 MHz
4400 MHz-5000 MHz
TDD


n80
1710 MHz-1785 MHz
N/A
SUL


n81
880 MHz-915 MHz
N/A
SUL


n82
832 MHz-862 MHz
N/A
SUL


n83
703 MHz-748 MHz
N/A
SUL


n84
1920 MHz-1980 MHz
N/A
SUL









Table 5 shows examples of operating bands on FR2. The following table shows operating bands defined on a high frequency. This operating band is referred to as FR2 operating band.












TABLE 5





NR
Uplink (UL)
Downlink (DL)



operating
operating band
operating band
Duplex


band
FUL_low-FUL_high
FDL_low-FDL_high
mode







n257
26500 MHz-29500 MHz
26500 MHz-29500 MHz
TDD


n258
24250 MHz-27500 MHz
24250 MHz-27500 MHz
TDD


n260
37000 MHz-40000 MHz
37000 MHz-40000 MHz
TDD


n261
 27500 MHz-283500 MHz
 27500 MHz-283500 MHz
TDD









Meanwhile, when the operating band shown in the above table is used, a channel bandwidth is used as shown in the following table.




















TABLE 6





SCS
5 MHz
10 MHz
15 MHz
20 MHz
25 MHz
30 MHz
40 MHz
50 MHz
60 MHz
80 MHz
100 MHz


(kHz)
NRB
NRB
NRB
NRB
NRB
NRB
NRB
NRB
NRB
NRB
NRB


























15
25
52
79
106
133
[160] 
216
270
N/A
N/A
N/A


30
11
24
38
51
65
[78]
106
133
162
217
273


60
N/A
11
18
24
31
[38]
51
65
79
107
135









In the above table, SCS indicates a subcarrier spacing. In the above table, NRB indicates the number of RBs.


Meanwhile, when the operating band shown in the above table is used, a channel bandwidth is used as shown in the following table.













TABLE 7





SCS
50 MHz
100 MHz
200 MHz
400 MHz


(kHz)
NRB
NRB
NRB
NRB







 60
66
132
264
N.A


120
32
 66
132
264










FIG. 3 illustrates an example of a structure of NR radio frame.


As shown in FIG. 3, a radio frame is 10 ms in length and includes two (2) half-frames. The half frame includes five (5) subframes. Each subframe is 1 ms in length. The subframe includes at least one or more slots. The number of slots in the subframe is dependent on a subcarrier spacing (SCS). Each slot includes twelve (12) or fourteen (14) OFDM symbols based on a cycle prefix (CP). Based on a normal CP, the slot includes twelve (12) OFDM symbols. Based on an extended CP, the slot includes fourteen (14) OFDM symbols. Here, the symbol means an OFDM symbols, a CP-OFDM symbol, a SC-FDMA symbol or a DFT-s-OFDM symbol.



FIG. 4 shows an example of subframe type in NR.


A transmission time interval (TTI) shown in FIG. 4 may be called a subframe or slot for NR (or new RAT). The subframe (or slot) in FIG. 4 may be used in a TDD system of NR (or new RAT) to minimize data transmission delay. As shown in FIG. 4, a subframe (or slot) includes 14 symbols as does the current subframe. A front symbol of the subframe (or slot) may be used for a downlink control channel, and a rear symbol of the subframe (or slot) may be used for a uplink control channel. Other channels may be used for downlink data transmission or uplink data transmission. According to such structure of a subframe (or slot), downlink transmission and uplink transmission may be performed sequentially in one subframe (or slot). Therefore, a downlink data may be received in the subframe (or slot), and a uplink acknowledge response (ACK/NACK) may be transmitted in the subframe (or slot). A subframe (or slot) in this structure may be called a self-constrained subframe. If this structure of a subframe (or slot) is used, it may reduce time required to retransmit data regarding which a reception error occurred, and thus, a final data transmission waiting time may be minimized. In such structure of the self-contained subframe (slot), a time gap may be required for transition from a transmission mode to a reception mode or vice versa. To this end, when downlink is transitioned to uplink in the subframe structure, some OFDM symbols may be set as a Guard Period (GP).


<Support of Various Numerologies>


In the next generation system, with development of wireless communication technologies, a plurality of numerologies may be provided to a UE.


The numerologies may be defined by a length of cycle prefix (CP) and a subcarrier spacing. One cell may provide a plurality of numerology to a UE. When an index of a numerology is represented by a subcarrier spacing and a corresponding CP length may be expressed as shown in the following table.











TABLE 8





M
Δƒ = 2μ · 15 [kHz]
CP







0
 15
Normal


1
 30
Normal


2
 60
Normal, Extended


3
120
Normal


4
240
Normal









In the case of a normal CP, when an index of a numerology is expressed by the number of OLDM symbols per slot Nslotsymb, the number of slots per frame Nframe,μslot, and the number of slots per subframe Nsubframe,μslot are expressed as shown in the following table.














TABLE 9







μ
Nsymbslot
Nslotframe, μ
Nslotsubframe, μ









0
14
 10
 1



1
14
 20
 2



2
14
 40
 4



3
14
 80
 8



4
14
160
16



5
14
320
32










In the case of an extended CP, when an index of a numerology is represented by the number of OLDM symbols per slot Nslotsymb, the number of slots per frame Nframe,μslot, and the number of slots per subframe Nsubframe,μslot are expressed as shown in the following table.














TABLE 10







M
Nsymbslot
Nslotframe, μ
Nslotsubframe, μ









2
12
40
4










Meanwhile, in the next-generation mobile communication, each symbol may be used for downlink or uplink, as shown in the following table. In the following table, uplink is indicated by U, and downlink is indicated by D. In the following table, X indicates a symbol that can be flexibly used for uplink or downlink.










TABLE 11







For-
Symbol Number in Slot





















mat
0
1
2
3
4
5
6
7
8
9
10
11
12
13
























0
D
D
D
D
D
D
D
D
D
D
D
D
D
D


1
U
U
U
U
U
U
U
U
U
U
U
U
U
U


2
X
X
X
X
X
X
X
X
X
X
X
X
X
X


3
D
D
D
D
D
D
D
D
D
D
D
D
D
X


4
D
D
D
D
D
D
D
D
D
D
D
D
X
X


5
D
D
D
D
D
D
D
D
D
D
D
X
X
X


6
D
D
D
D
D
D
D
D
D
D
X
X
X
X


7
D
D
D
D
D
D
D
D
D
X
X
X
X
X


8
X
X
X
X
X
X
X
X
X
X
X
X
X
U


9
X
X
X
X
X
X
X
X
X
X
X
X
U
U


10
X
U
U
U
U
U
U
U
U
U
U
U
U
U


11
X
X
U
U
U
U
U
U
U
U
U
U
U
U


12
X
X
X
U
U
U
U
U
U
U
U
U
U
U


13
X
X
X
X
U
U
U
U
U
U
U
U
U
U


14
X
X
X
X
X
U
U
U
U
U
U
U
U
U


15
X
X
X
X
X
X
U
U
U
U
U
U
U
U


16
D
X
X
X
X
X
X
X
X
X
X
X
X
X


17
D
D
X
X
X
X
X
X
X
X
X
X
X
X


18
D
D
D
X
X
X
X
X
X
X
X
X
X
X


19
D
X
X
X
X
X
X
X
X
X
X
X
X
U


20
D
D
X
X
X
X
X
X
X
X
X
X
X
U


21
D
D
D
X
X
X
X
X
X
X
X
X
X
U


22
D
X
X
X
X
X
X
X
X
X
X
X
U
U


23
D
D
X
X
X
X
X
X
X
X
X
X
U
U


24
D
D
D
X
X
X
X
X
X
X
X
X
U
U


25
D
X
X
X
X
X
X
X
X
X
X
U
U
U


26
D
D
X
X
X
X
X
X
X
X
X
U
U
U


27
D
D
D
X
X
X
X
X
X
X
X
U
U
U


28
D
D
D
D
D
D
D
D
D
D
D
D
X
U


29
D
D
D
D
D
D
D
D
D
D
D
X
X
U


30
D
D
D
D
D
D
D
D
D
D
X
X
X
U


31
D
D
D
D
D
D
D
D
D
D
D
X
U
U


32
D
D
D
D
D
D
D
D
D
D
X
X
U
U


33
D
D
D
D
D
D
D
D
D
X
X
X
U
U


34
D
X
U
U
U
U
U
U
U
U
U
U
U
U


35
D
D
X
U
U
U
U
U
U
U
U
U
U
U


36
D
D
D
X
U
U
U
U
U
U
U
U
U
U


37
D
X
X
U
U
U
U
U
U
U
U
U
U
U


38
D
D
X
X
U
U
U
U
U
U
U
U
U
U


39
D
D
D
X
X
U
U
U
U
U
U
U
U
U


40
D
X
X
X
u
U
U
U
U
U
U
U
U
U


41
D
D
X
X
X
U
U
U
U
U
U
U
U
U


42
D
D
D
X
X
X
U
U
U
U
U
U
U
U


43
D
D
D
D
D
D
D
D
D
X
X
X
X
U


44
D
D
D
D
D
D
X
X
X
X
X
X
U
U


45
D
D
D
D
D
D
X
X
U
U
U
U
U
U


46
D
D
D
D
D
D
X
D
D
D
D
D
D
X


47
D
D
D
D
D
X
X
D
D
D
D
D
X
X


48
D
D
X
X
X
X
X
D
D
X
X
X
X
X


49
D
X
X
X
X
X
X
D
X
X
X
X
X
X


50
X
U
U
U
U
U
U
X
U
U
U
U
U
U


51
X
X
U
U
U
U
U
X
X
U
U
U
U
U


52
X
X
X
U
U
U
U
X
X
X
U
U
U
U


53
X
X
X
X
U
U
U
X
X
X
X
U
U
U


54
D
D
D
D
D
X
U
D
D
D
D
D
X
U


55
D
D
X
U
U
U
U
D
D
X
U
U
U
U


56
D
X
U
U
U
U
U
D
X
U
U
U
U
U


57
D
D
D
D
X
X
U
D
D
D
D
X
X
U


58
D
D
X
X
U
U
U
D
D
X
X
U
U
U


59
D
X
X
U
U
U
U
D
X
X
U
U
U
U


60
D
X
X
X
X
X
U
D
X
X
X
X
X
U


61
D
D
X
X
X
X
U
D
D
X
X
X
X
U









<Maximum Output Power>


Power class 1, 2, 3, and 4 are specified based on UE types as follows:










TABLE 12





UE



Power



class
UE type







1
Fixed wireless access (FWA) UE


2
Vehicular UE


3
Handheld UE


4
High power non-handheld UE









1. UE Maximum Output Power for Power Class 1


The following requirements define the maximum output power radiated by the UE for any transmission bandwidth within the channel bandwidth for non-CA configuration, unless otherwise stated. The period of measurement shall be at least one sub frame (1 ms). The requirement is verified with the test metric of effective isotropic radiated power (EIRP) (Link=Beam peak search grids, Meas=Link angle).


Below table shows UE minimum peak EIRP for power class 1.












TABLE 13







Operating
Min peak



band
EIRP (dBm)









n257
40.0



n258
40.0



n260
38.0



n261
40.0










The maximum output power values for total radiated power (TRP) and EIRP are found in below table. The maximum allowed EIRP is derived from regulatory requirements. The requirements are verified with the test metrics of TRP (Link=TX beam peak direction) in beam locked mode and EIRP (Link=TX beam peak direction, Meas=Link angle).


Below table shows UE maximum output power limits for power class 1.











TABLE 14





Operating
Max TRP
Max EIRP


band
(dBm)
(dBm)







n257
35
55


n258
35
55


n260
35
55


n261
35
55









The minimum EIRP at the 85th percentile of the distribution of radiated power measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in below table. The requirement is verified with the test metric of EIRP (Link=Beam peak search grids, Meas=Link angle).


Below table shows UE spherical coverage for power class 1.












TABLE 15








Min EIRP



Operating
at 85%-tile



band
CDF (dBm)









n257
32.0



n258
32.0



n260
30.0



n261
32.0










2. UE Maximum Output Power for Power Class 2


The following requirements define the maximum output power radiated by the UE for any transmission bandwidth within the channel bandwidth for non-CA configuration, unless otherwise stated. The period of measurement shall be at least one sub frame (1 ms). The requirement is verified with the test metric of EIRP (Link=Beam peak search grids, Meas=Link angle).


Below table shows UE minimum peak EIRP for power class 2.












TABLE 16







Operating
Min peak



band
EIRP (dBm)









n257
29



n258
29



n261
29










The maximum output power values for TRP and EIRP are found in below table. The maximum allowed EIRP is derived from regulatory requirements [8]. The requirements are verified with the test metrics of TRP (Link=TX beam peak direction) in beam locked mode and EIRP (Link=TX beam peak direction, Meas=Link angle).


Below table shows UE maximum output power limits for power class 2.











TABLE 17





Operating
Max TRP
Max EIRP


band
(dBm)
(dBm)







n257
23
43


n258
23
43


n261
23
43









The minimum EIRP at the 60th percentile of the distribution of radiated power measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in below table. The requirement is verified with the test metric of EIRP (Link=Beam peak search grids, Meas=Link angle).


Below table shows UE spherical coverage for power class 2.












TABLE 18








Min EIRP



Operating
at 60%-tile



band
CDF (dBm)









n257
18.0



n258
18.0



n261
18.0










3. UE Maximum Output Power for Power Class 3


The following requirements define the maximum output power radiated by the UE for any transmission bandwidth within the channel bandwidth for non-CA configuration, unless otherwise stated. The period of measurement shall be at least one sub frame (1 ms). The requirement is verified with the test metric of total component of EIRP (Link=Beam peak search grids, Meas=Link angle). The requirement for the UE which supports a single FR2 band is specified in below table. The requirement for the UE which supports multiple FR2 bands is specified in both below tables.


Below table shows UE minimum peak EIRP for power class 3.












TABLE 19







Operating
Min peak



band
EIRP (dBm)









n257
22.4



n258
22.4



n259
18.7



n260
20.6



n261
22.4










The maximum output power values for TRP and EIRP are found on the below table. The max allowed EIRP is derived from regulatory requirements [8]. The requirements are verified with the test metrics of TRP (Link=TX beam peak direction) in beam locked mode and the total component of EIRP (Link=TX beam peak direction, Meas=Link angle).


Below table shows UE maximum output power limits for power class 3













TABLE 20







Operating band
Max TRP (dBm)
Max EIRP (dBm)




















n257
23
43



n258
23
43



n259
23
43



n260
23
43



n261
23
43










The minimum EIRP at the 50th percentile of the distribution of radiated power measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in below table. The requirement is verified with the test metric of the total component of EIRP (Link=Beam peak search grids, Meas=Link angle). The requirement for the UE which supports a single FR2 band is specified in the below table. The requirement for the UE which supports multiple FR2 bands is specified in both below tables.


Below table shows UE spherical coverage for power class 3.












TABLE 21







Operating band
Min EIRP at 50%-tile CDF (dBm)



















n257
11.5



n258
11.5



n259
5.8



n260
8



n261
11.5










For the UEs that support multiple FR2 bands, minimum requirement for peak EIRP and EIRP spherical coverage in above tables shall be decreased per band, respectively, by the peak EIRP relaxation parameter ΔMBP,n and EIRP spherical coverage relaxation parameter ΔMBS,n. For each combination of supported bands ΔMBP,n and ΔMBS,n apply to each supported band n, such that the total relaxations, ΣMBP and ΣMBS, across all supported bands shall not exceed the total value indicated in the below table.


Below table shows UE multi-band relaxation factors for power class 3.













TABLE 22







Supported bands
ΣMBP (dB)
ΣMBS (dB)




















n257, n258
≤1.3
≤1.25



n257, n260
≤1.0
≤0.753



n258, n260



n257, n261
0.0
0.0



n258, n261
≤1.0
≤1.25



n260, n261
0.0
≤0.752



n257, n258, n260
≤1.7
≤1.753



n257, n258, n261



n257, n258, n260, n261



n257, n260, n261
≤0.5
≤1.253



n258, n260, n261
≤1.5
≤1.253










4. UE Maximum Output Power for Power Class 4


The following requirements define the maximum output power radiated by the UE for any transmission bandwidth within the channel bandwidth for non-CA configuration, unless otherwise stated. The period of measurement shall be at least one sub frame (1 ms). The requirement is verified with the test metric of EIRP (Link=Beam peak search grids, Meas=Link angle).


Below table shows UE minimum peak EIRP for power class 4.












TABLE 23







Operating band
Min peak EIRP (dBm)



















n257
34



n258
34



n260
31



n261
34










The maximum output power values for TRP and EIRP are found in the below table. The maximum allowed EIRP is derived from regulatory requirements [8]. The requirements are verified with the test metrics of TRP (Link=TX beam peak direction) in beam locked mode and EIRP (Link=TX beam peak direction, Meas=Link angle).


Below table shows UE maximum output power limits for power class 4.













TABLE 24







Operating band
Max TRP (dBm)
Max EIRP (dBm)




















n257
23
43



n258
23
43



n260
23
43



n261
23
43










The minimum EIRP at the 20th percentile of the distribution of radiated power measured over the full sphere around the UE is defined as the spherical coverage requirement and is found in the below table. The requirement is verified with the test metric of EIRP (Link=Beam peak search grids, Meas=Link angle).


Below table shows UE spherical coverage for power class 4.












TABLE 25







Operating band
Min EIRP at 20%-tile CDF (dBm)



















n257
25



n258
25



n260
19



n261
25










<Types of CA>


On the other hand, carrier aggregation can also be classified into inter-band CA and intra-band CA. The inter-band CA is a method of aggregating and using each CC existing in different operating bands, and the intra-band CA is a method of aggregating and using each CC in the same operating band. In addition, the CA technology is more specifically, intra-band contiguous CA, intra-band non-contiguous CA and inter-band discontinuity. Non-Contiguous) CA.



FIG. 5A illustrates a concept view of an example of intra-band contiguous CA. FIG. 5b illustrates a concept view of an example of intra-band non-contiguous CA.


The CA may be split into the intra-band contiguous CA shown in FIG. 5a and the intra-band non-contiguous CA shown in FIG. 5b.



FIG. 6a illustrates a concept view of an example of a combination of a lower frequency band and a higher frequency band for inter-band CA. FIG. 6b illustrates a concept view of an example of a combination of similar frequency bands for inter-band CA.


The inter-band carrier aggregation may be separated into inter-band CA between carriers of a low band and a high band having different RF characteristics of inter-band CA as shown in FIG. 6a and inter-band CA of similar frequencies that may use a common RF terminal per component carrier due to similar RF (radio frequency) characteristics as shown in FIG. 6b.


For inter-band carrier aggregation, a carrier aggregation configuration is a combination of operating bands, each supporting a carrier aggregation bandwidth class.











TABLE 26





NR CA bandwidth
Aggregated channel
Number of


class
bandwidth
contiguous CC







A
BWChannel ≤ BWChannel, max
1


B
20 MHz ≤ BWChannelCA ≤ 100
2



MHz


C
100 MHz < BWChannelCA ≤ 2 ×
2



BWChannel, max


D
200 MHz < BWChannelCA ≤ 3 ×
3



BWChannel, max


E
300 MHz < BWChannelCA ≤ 4 ×
4



BWChannel, max


G
100 MHz < BWChannelCA
3



150 MHz


H
150 MHz < BWChannelCA
4



200 MHz


I
200 MHz < BWChannelCA
5



250 MHz


J
250 MHz < BWChannelCA
6



300 MHz


K
300 MHz < BWChannelCA
7



350 MHz


L
350 MHz < BWChannelCA
8



400 MHz










FIG. 7 illustrates an example of situation in which an uplink signal transmitted via an uplink operating band affects reception of a downlink signal on via downlink operating band.


In FIG. 7, an Intermodulation Distortion (IMD) may mean amplitude modulation of signals containing two or more different frequencies, caused by nonlinearities or time variance in a system. The intermodulation between frequency components will form additional components at frequencies that are not just at harmonic frequencies (integer multiples) of either, like harmonic distortion, but also at the sum and difference frequencies of the original frequencies and at sums and differences of multiples of those frequencies.


Referring to FIG. 7, an example in which a CA is configured in a terminal is shown. For example, the terminal may perform communication through the CA based on three downlink operating bands (DL Band X, Y, Z) and two uplink operating bands (DL Band X, Y).


As shown in FIG. 7, in a situation in which three downlink operating bands are configured by the CA and two uplink operating bands are configured, the terminal may transmit an uplink signal through two uplink operating bands. In this case, a harmonics component and an intermodulation distortion (IMD) component occurring based on the frequency band of the uplink signal may fall into its own downlink band. That is, in the example of FIG. 7, when the terminal transmits the uplink signal, the harmonics component and the intermodulation distortion (IMD) component may occur, which may affect the downlink band of the terminal itself.


The terminal should be configured to satisfy a reference sensitivity power level (REFSENS) which is the minimum average power for each antenna port of the terminal when receiving the downlink signal.


When the harmonics component and/or IMD component occur as shown in the example of FIG. 7, there is a possibility that the REFSENS for the downlink signal may not be satisfied due to the uplink signal transmitted by the UE itself.


For example, the REF SENS may be set such that the downlink signal throughput of the terminal is 95% or more of the maximum throughput of the reference measurement channel. When the harmonics component and/or IMD component occur, there is a possibility that the downlink signal throughput is reduced to 95% or less of the maximum throughput.


<Disclosure of the Present Disclosure>


Therefore, it is determined whether the harmonics component and the IMD component of the terminal occur, and when the harmonics component and/or IMD component occur, the maximum sensitivity degradation (MSD) value is defined for the corresponding frequency band, so relaxation for REFSENS in the reception band may be allowed in the reception band due to its own transmission signal. Here, the MSD may mean the maximum allowed reduction of the REF SENS. When the MSD is defined for a specific operating band of the terminal where the CA or DC is configured, the REFSENS of the corresponding operating band may be relaxed by the amount of the defined MSD.


The disclosure of the present specification provides results of analysis about self-interference in a terminal configured with NR EN-DC and amount of relaxation to sensitivity.


The EN-DC may be a band combination of LTE (xDL/1UL) band and an inter/intra-NR (2DL/1UL) band.


I. Summary of Self-Interference Analysis


Below table summarizes the EN-DC band combinations with self-interference problems for 3DL/2UL EN-DC operation.


Below table shows summary of Self-interference analysis for LTE 1 band & NR 2 bands DL and 2 bands UL EN-DC operation.














TABLE 27









interference



Downlink
Uplink
Harmonic
intermodulation
due to small


band
DC
relation
to own rx
frequency


configuration
Configuration
issues
band
separation
MSD







DC_1_n77-
DC_1A_n77A

4th IMD & 5th

These MSD issues are


n78


IMD

same in DC_1A_n77A.







So the MSD level by 4th







IMD can follow







2DL/2UL_DC_1A_n77A



DC_1A_n78A
2nd
4th IMD & 5th

2nd harmonic issue




harmonic
IMD

already specified in







TS38.101-1 for







DC_1A_n77A







These MSD issues are







same in DC_1A_n78A.







So the MSD level by 4th







IMD can follow







2DL/2UL_DC_1A_n78A


DC_3_n77-
DC_3A_n77A
2nd
4th IMD & 5th

2nd harmonic issue


n78

harmonic
IMD

already specified in







TS38.101-1 for







DC_3A_n78A







These MSD issues are







same in DC_3A_n77A.







So the MSD level by 4th







IMD can follow







2DL/2UL_DC_3A_n77A



DC_3A_n78A
2nd
4th IMD & 5th

2nd harmonic issue




harmonic
IMD

already specified in







TS38.101-1 for







DC_3A_n77A







These MSD issues are







same in DC_3A_n77A.







So the MSD level by 4th







IMD can follow







2DL/2UL_DC_3A_n78A


DC_19_n77-
DC_19A_n77A
4th
2nd IMD

4th harmonic & 2nd IMD


n78

harmonic


will be impact to n78







band. However, consider







specific band for n77 in







Japan, there was no IMD







problem



DC_19A_n78A
4th & 5th
2nd IMD

5th IMD already specified




harmonic


for DC_19A_n77A in







TS38.101-3







Consider specific band for







n78 in Japan, there was no







IMD problem


DC_21_n77-
DC_21A_n77A

4th IMD & 5th

These MSD issues are


n78


IMD

same in DC_21A_n77A.







However, RAN4 consider







the specific band for n77







in Japan, there was no







IMD problem



DC_21A_n78A

4th IMD

These MSD issue is same







in DC_21A_n78A.







However, RAN4 consider







the specific band for n78







in Japan, there was no







IMD problem


DC_1_n40-
DC_1A_n40A

4th IMD & 5th

for future study (FFS) by


n78


IMD

4th IMD







FFS by 5th IMD



DC_1A_n78A

4th IMD

FFS by 3rd IMD


DC_3_n1-
DC_3A_n1A

5th IMD
Yes
FFS by 5th IMD


n79
DC_3A_n79A

5th IMD

FFS by 5th IMD


DC_3_n40-
DC_3A_n40A
2nd
5th IMD

Harmonic issue already


n78

harmonic


covered in DC_3A_n78A







FFS by 5th IMD



DC_3A_n78A

5th IMD

FFS by 5th IMD


DC_66_n25-
DC_66A_n25A



No issue


n41
DC_66A_n41A

4th IMD

FFS by 4th IMD


DC_1_n77-
DC_1A_n77A
7th & 8th


No harmonic problems


n257

Harmonics


by 7th & 8th order




from n77


between FR1 and FR2




into n257



DC_1A_n257A
2nd


Harmonic problem




harmonic


already covered in




from B1


DC_1A_n77A




into n77


DC_1_n77-
DC_1A_n77A
6th, 7th &


No harmonic problems


n258

8th


by 6th, 7th & 8th order




Harmonics


between FR1 and FR2




from n77




into n258



DC_1A_n258A
2nd


Harmonic problem




harmonic


already covered in




from B1


DC_1A_n77A




into n77


DC_1_n78-
DC_1A_n78A
7th & 8th


No harmonic problems


n258

Harmonics


by 7th & 8th order




from n78


between FR1 and FR2




into n258



DC_1A_n258A



No issue


DC_1_n79-
DC_1A_n79A
5th & 6th


Harmonic problem will


n258

Harmonics


be solved in DC n79A-




from n79


n258A (5th order)




into n258



DC_1A_n258A



No issue


DC_3_n1-
DC_3A_n1A


Yes
No issue


n257



DC_3A_n257A



No issue


DC_3_n77-
DC_3A_n77A
6th, 7th &


No harmonic problems


n258

8th


by 6th~8th order




harmonics


between FR1 and FR2




from n77




into n258



DC_3A_n258A
2nd


Harmonic problem




harmonic


already covered in




from B3


DC_3A_n77A




into B77


DC_3_n78-
DC_3A_n78A
7th & 8th


No harmonic problems


n258

harmonics


by 7th & 8th order




from n78


between FR1 and FR2




into n258



DC_3A_n258A
2nd


Harmonic problem




harmonic


already covered in




from B3


DC_3A_n78A




into B78


DC_3_n79-
DC_3A_n79A
5th & 6th


Harmonic problem will


n258

Harmonics


be solved in DC n79A-




from n79


n258A (5th order)




into n258



DC_3A_n258A



No issue


DC_8_n77-
DC_8A_n77A
7th & 8th


No harmonic problems


n257

Harmonics


by 7th & 8th order




from n77


between FR1 and FR2




into n257



DC_8A_n257A
4th


Harmonic problem




harmonic


already covered in




from B8


DC_8A_n77A




into n77









The reference sensitivity requirement is relaxed by an amount of the Maximum Sensitivity Degradation (MSD).


Based on the above table, the present disclosure provides MSD analysis results to support EN-DC operation by dual transmission. MSD analysis for EN-DC LTE (x bands/1UL, x=1,2,3,4)+NR (2 bands/1UL) band combinations


It may be considered to use shared antenna RF architectures for NSA UE in sub-6 GHz as LTE system. Also, it may be considered to use shared antenna RF architecture for general NSA DC UE to derive MSD levels.


For the MSD analysis of these 3DL/2UL EN-DC NR UE, it is assumed that the parameters and attenuation levels based on current UE RF FE components as shown in below tables.


Below table shows the RF component isolation parameters (e.g., UE RF Front-end component parameters) to derive MSD level at sub-6 GHz.












TABLE 28









Triplexer-Diplexer




Architecture w/single ant.











DC_1A_n40A-n78A,
Cascaded Diplexer



DC_3A_n1A_n79A,
Architecture w/single ant.


UE ref.
DC_3A_n40A-n78A
DC_66A_n25A-n41A















architecture
IP2
IP3
IP4
IP5
IP2
IP3
IP4
IP5


Component
(dBm)
(dBm)
(dBm)
(dBm)
(dBm)
(dBm)
(dBm)
(dBm)


















Ant. Switch
112
68
55
55
112
68
55
55


Triplexer
110
72
55
52


Diplexer
115
87
55
55
115
87
55
55


Duplexer
100
75
55
53
100
75
55
53


PA Forward
28.0
32
30
28
28.0
32
30
28


PA Reversed
40
30.5
30
30
40
30.5
30
30


LNA
10
0
0
−10
10
0
0
−10









Below table shows the isolation levels according to the RF component (e.g., UE RF Front-end component isolation parameters).











TABLE 29





Isolation Parameter
Value (dB)
Comment

















Antenna to Antenna
10
Main antenna to diversity antenna


PA (out) to PA (in)
60
PCB isolation (PA forward mixing)


Triplexer
20
High/low band isolation


Diplexer
25
High/low band isolation


PA (out) to PA (out)
60
L-H/H-L cross-band


PA (out) to PA (out)
50
H-H cross-band


LNA (in) to PA (out)
60
L-H/H-L cross-band


LNA (in) to PA (out)
50
H-H cross-band


Duplexer
50
Tx band rejection at Rx band









Based on these assumptions, the present disclosure proposes the MSD levels as below. Below table shows a proposed MSD test configuration and results by IMD problems


















TABLE 30








UL Fc
UL BW
UL RB
DL Fc
DL BW
CF
MSD


DC bands
UL DC
IMD
(MHz)
(MHz)
#
(MHz)
(MHz)
(dB)
(dB)

























DC_1A_n40A-
1
IMD4
|3*fB1 −
1930
5
25
2120
5
1.0
N/A


n78A
n40

fn40|
2340
5
25
2340
5



n78


3450
10
50
3450
10

9.8



1
IMD5
|2*fB1 −
1925
5
25
2115
5
0.4
N/A



n40

3*fn40|
2390
5
25
2390
5



n78


3320
10
50
3320
10

4.2



1
IMD4
|3*fB1 −
1960
5
25
2150
5
0.8
N/A



n78

fn78|
3520
10
50
3520
10



n40


2360
5
25
2360
5

10.6 


DC_3A_n41A-
3
IMD5
|4*fB3 −
1720
5
25
1815
5
0.5
N/A


n79A
n1

fn1|
1930
5
25
2120
5



n79


4950
10
50
4950
10

4.7



3
IMD5
|4*fB3 −
1750
5
25
1845
5
0.5
N/A



n79

fn79|
4860
40
216
4860
10



n1


1950
5
25
2140
5

3.6


DC_3A_n40A-
3
IMD5
|2*fB3 −
1730
5
25
1825
5
0.5
N/A


n78A
n40

3*fn40|
2360
5
25
2360
5



n7


3620
10
50
3620
10

4.8



8



3
IMD5
|3*fB3 −
1730
5
25
1825
5
0.5
N/A



n78

2*fn78|
3665
10
50
3665
10



n40


1950
5
25
2140
5

4.4


DC66A_n25A-
66 
IMD4
|2*fB66 −
1715
5
25
2115
5
1.1
N/A


n41A
n41

2*fn41|
2685
10
50
2685
10



n25


1860
5
25
1940
5

11.0 









II. MSD Analysis for EN-DC LTE (2 Bands/1UL)+NR (1 Bands/1UL) Band Combinations


Below table show IMD problems cases in LTE (2DL/1UL)+NR (1DL/1UL) DC band combinations.














TABLE 31





EN-DC



interference



Downlink
Uplink
Harmonic
intermodulation
due to small


band
EN-DC
relation
to own rx
frequency


configuration
Configuration
issues
band
separation
MSD







DC_1A-
DC_1A_n77A

2nd IMD into

2nd IMD problem is FFS


11A_n77A


B11



DC_11A_n77A

2nd IMD into

2nd IMD problem is FFS





B1


DC_1A-
DC_1A_n78A

2nd IMD into

2nd IMD problem is FFS


11A_n78A


B11



DC_11A_n78A

2nd IMD into

2nd IMD problem is FFS





B1


DC_8A-
DC_8A_n77A

3rd IMD into

3rd IMD problem is FFS


11A_n77A


B11



DC_11A_n77A

3rd IMD into

3rd IMD problem is FFS





B8


DC_8A-
DC_8A_n78A

3rd IMD into

3rd IMD problem is FFS


11A_n78A


B11



DC_11A_n78A

3rd IMD into

3rd IMD problem is FFS





B8









Below table show the RF component isolation parameters (e.g., UE RF Front-end component parameters) to derive MSD level at sub-6 GHz.











TABLE 32









Triplexer-Diplexer



Architecture w/single ant.



DC_1A-11A_n77A, DC_1A-11A_n78A,



DC_8A-11A_n77A, DC_8A-11A_n78A











UE ref. architecture
IP2
IP3
IP4
IP5


Component
(dBm)
(dBm)
(dBm)
(dBm)














Ant. Switch
112
68
55
55


Triplexer
110
72
55
52


Diplexer
115
87
55
55


Duplexer
100
75
55
53


PA Forward
28.0
32
30
28


PA Reversed
40
30.5
30
30


LNA
10
0
0
−10









Below table shows the isolation levels according to the RF component (e.g., UE RF Front-end component isolation parameters).











TABLE 33





Isolation Parameter
Value (dB)
Comment

















Antenna to Antenna
10
Main antenna to diversity antenna


PA (out) to PA (in)
60
PCB isolation (PA forward mixing)


Triplexer
20
High/low band isolation


Diplexer
25
High/low band isolation


PA (out) to PA (out)
60
L-H/H-L cross-band


PA (out) to PA (out)
50
H-H cross-band


LNA (in) to PA (out)
60
L-H/H-L cross-band


LNA (in) to PA (out)
50
H-H cross-band


Duplexer
50
Tx band rejection at Rx band









Based on these assumptions, the present disclosure proposes the MSD levels as below.


Below table shows proposed MSD test configuration and results by IMD problems.


















TABLE 34








UL Fc
UL BW
UL RB
DL Fc
DL BW
MSD
Single UL


DC bands
UL DC
IMD
(MHz)
(MHz)
#
(MHz)
(MHz)
(dB)
allowed

























DC_1A-
1
IMD2
|fB1 −
1955
5
25
2145
5
N/A
No


11A_n77A
n77

fn77|
3441
10
50
3441
10



11 


1438
5
25
1486
5
31.4



11 
IMD2
|fB11 −
1438
5
25
1486
5
N/A
No



n77

fn77|
3578
10
50
3578
10



1


1950
5
25
2140
5
30.8


DC_1A-
1
IMD2
|fB1 −
1955
5
25
2145
5
N/A
No


11A_n78A
n78

fn78|
3441
10
50
3441
10



11 


1438
5
25
1486
5
31.4



11 
IMD2
|fB11 −
1438
5
25
1486
5
N/A
No



n78

fn78|
3578
10
50
3578
10



1


1950
5
25
2140
5
30.8


DC_8A-
8
IMD3
|2*fB8 −
910
5
25
955
5
N/A
No


11A_n77A
n77

fn77|
3311
10
50
3311
10



11 


1443
5
25
1491
5
18.8



11 
IMD3
|2*fB11 −
1430.5
5
25
1478.5
5
N/A
No



n77

fn77|
3791
10
50
3791
10



8


885
5
25
930
5
18.2


DC_8A-
8
IMD3
|2*fB8 −
910
5
25
955
5
N/A
No


11A_n78A
n78

fn78|
3311
10
50
3311
10



11 


1443
5
25
1491
5
18.8



11 
IMD3
|2*fB11 −
1430.5
5
25
1478.5
5
N/A
No



n78

fn78|
3791
10
50
3791
10



8


885
5
25
930
5
18.2









Accordingly, the present disclosure proposes the required MSD levels based on shared antenna RF architectures to support NSA DC operation in sub-6 GHz. Based on the analysis in session 2, we proposed as below


Proposal: The proposed MSD test configuration and MSD levels should be considered to specify the MSD requirements in related TR and TS for EN-DC band combinations.


III. Proposals for MSD Values by the Analysis


III-1. Proposed MSD Level for DC_1A_n40A-n78A



FIGS. 8a and 8b illustrate exemplary IMD by a combination of band 1, 40 and 78.


There are IMD4 & IMD5 products produced by Band 1 and n40 that impact the reference sensitivity of NR n78. For example, as shown in FIG. 8A, if the UE transmits uplink signals via uplink bands of operating bands 1 and 40, IMD products are produced and then a reference sensitivity in operating band 78 is degraded. Therefore, a value of MSD is needed to apply the reference sensitivity.


In addition, there is IMD4 product produced by Band 1 and n78 that impact the reference sensitivity of Band n40. The required MSD are shown in the following table. For example, as shown in FIG. 8B, if the UE transmits uplink signals via uplink bands of operating bands 1 and 78, IMD products are produced and then a reference sensitivity in operating band 40 is degraded. Therefore, a value of MSD is needed to apply the reference sensitivity.


Below table shows MSD exception for Scell due to dual uplink operation for EN-DC 1A n40A-n78A.
















TABLE 35








UL Fc
UL BW
UL RB
DL Fc
MSD


DC bands
UL DC
IMD
(MHz)
(MHz)
#
(MHz)
(dB)























DC_1A_n40A-
1
IMD4
|3*fB1 −
1930
5
25
2120
N/A


n78A
n40

fn40|
2340
5
25
2340



n78


3450
10
50
3450
9.8



1
IMD5
|2*fB1 −
1925
5
25
2115
N/A



n40

3*fn40
2390
5
25
2390



n78


3320
10
50
3320
4.2



1
IMD4
|3*fB1 −
1960
5
25
2150
N/A



n78

fn78|
3520
10
50
3520



n40


2360
5
25
2360
10.6 









III-2. Proposed MSD Level for DC_3_n1-n79


There is IMD5 products produced by Band 3 and n1 that impact the reference sensitivity of NR n79.


In addition, there is IMD5 product produced by Band 3 and n79 that impact the reference sensitivity of NR Band n1. The required MSD are shown in the following table.


Below table shows MSD exception for Scell due to dual uplink operation for EN-DC_3A_n1A-n79A.
















TABLE 36








UL Fc
UL BW
UL RB
DL Fc
MSD


DC bandsd
UL DC
IMD
(MHz)
(MHz)
#
(MHz)
(dB)























DC_3A_n1A-
3
IMD5
|4*fB3 −
1720
5
25
1815
N/A


n79A
n1

fn1|
1930
5
25
2120



 n79


4950
10
50
4950
4.7



3
IMD5
|4*fB3 −
1750
5
25
1845
N/A



 n79

fn79|
4860
40
216
4860



n1


1950
5
25
2140
3.6









III-3. Proposed MSD Level for DC_3_n40-n78



FIGS. 9a and 9b illustrate exemplary IMD by a combination of bands 3, 40 and 78.


There is IMD5 products produced by Band 3 and n40 that impact the reference sensitivity of NR band n78. For example, as shown in FIG. 9a, if the UE transmits uplink signals via uplink bands of operating bands 3 and 40, IMD products are produced and then a reference sensitivity in operating band 78 is degraded. Therefore, a value of MSD is needed to apply the reference sensitivity.


In addition, there is IMD5 product produced by Band 3 and n78 that impact the reference sensitivity of NR Band n40. The required MSD are shown in the following table. For example, as shown in FIG. 9B, if the UE transmits uplink signals via uplink bands of operating bands 3 and 78, IMD products are produced and then a reference sensitivity in operating band 40 is degraded. Therefore, a value of MSD is needed to apply the reference sensitivity.


Below table shows a MSD exception for Scell due to dual uplink operation for EN-DC_3A_n40A-n78A.
















TABLE 37








UL Fc
UL BW
UL RB
DL Fc
MSD


DC bands
UL DC
IMD
(MHz)
(MHz)
#
(MHz)
(dB)























DC_3A_n40A-
3
IMD5
|2*fB3 −
1730
5
25
1825
N/A


n78A
n40

3*fn40|
2360
5
25
2360



n78


3620
10
50
3620
4.8



3
IMD5
|3*fB3 −
1730
5
25
1825
N/A



n78

2*fn78|
3665
10
50
3665



n40


1950
5
25
2140
4.4









III-4. Proposed MSD Level for DC_66_n25-n41


There is IMD4 products produced by Band 66 and n41 that impact the reference sensitivity of NR band n25. The required MSD is shown in the following table.


Below table shows a MSD exception for Scell due to dual uplink operation for EN-DC_66A_n25A-n41A.
















TABLE 38








UL Fc
UL BW
UL RB
DL Fc
MSD


DC bands
UL DC
IMD
(MHz)
(MHz)
#
(MHz)
(dB)























DC_66A_n25A-
66
IMD4
|2*fB66 −
1715
5
25
2115
N/A


n41A
n41

2*fn41|
2685
10
50
2685



n25


1860
5
25
1940
11.0









III-5. Proposed MSD Level for DC_1-11_n77



FIGS. 10a and 10b illustrate exemplary IMD by a combination of bands 1, 11 and 77.


As shown in FIG. 10A, if the UE transmits uplink signals via uplink bands of operating bands 1 and 77, IMD products are produced and then a reference sensitivity in operating band 11 is degraded. Therefore, a value of MSD is needed to apply the reference sensitivity.


Also, as shown in FIG. 10B, if the UE transmits uplink signals via uplink bands of operating bands 11 and 77, IMD products are produced and then a reference sensitivity in operating band 1 is degraded. Therefore, a value of MSD is needed to apply the reference sensitivity.


As mentioned above, IMD2 of B1 and n77 to Band 11 Rx and IMD2 of B11 and n77 to Band 1 Rx need to be addressed for REFSENS relaxation. The following values are proposed:


Below table shows reference sensitivity exceptions due to dual uplink operation for EN-DC in NR FR1 (three bands).









TABLE 39







NR or E-UTRA Band/Channel bandwidth/NRB/MSD
















EN-DC
EUTRA/
UL Fc
UL/DL BW
UL
DL Fc
MSD
Duplex
IMD
Single UL


Configuration
NR band
(MHz)
(MHz)
LCRB
(MHz)
(dB)
mode
order
allowed


















DC_1A-
1
1955
5
25
2145
N/A
FDD
N/A


11A_n77A
n77
3441
10
50
3441
N/A
TDD
N/A



11 
1438
5
25
1486
31.4
FDD
IMD2


DC_1A-
11 
1438
5
25
1486
N/A
FDD
N/A


11A_n77A
n77
3578
10
50
3578
N/A
TDD
N/A



1
1950
5
25
2140
30.8
FDD
IMD2









III-6. Proposed MSD Level for DC_1-11_n78



FIGS. 11a and 11b illustrate exemplary IMD by a combination of bands 1, 11 and 78.


As shown in FIG. 11A, if the UE transmits uplink signals via uplink bands of operating bands 1 and 78, IMD products are produced and then a reference sensitivity in operating band 11 is degraded. Therefore, a value of MSD is needed to apply the reference sensitivity.


Also, as shown in FIG. 11A, if the UE transmits uplink signals via uplink bands of operating bands 11 and 78, IMD products are produced and then a reference sensitivity in operating band 1 is degraded. Therefore, a value of MSD is needed to apply the reference sensitivity.


As mentioned above, IMD2 of B1 and n78 to Band 11 Rx and IMD2 of B11 and n78 to Band 1 Rx need to be addressed for REFSENS relaxation. The following values are proposed:


Below table shows reference sensitivity exceptions due to dual uplink operation for EN-DC in NR FR1 (three bands).









TABLE 40







NR or E-UTRA Band/Channel bandwidth/NRB/MSD
















EN-DC
EUTRA/
UL Fc
UL/DL BW
UL
DL Fc
MSD
Duplex
IMD
Single UL


Configuration
NR band
(MHz)
(MHz)
LCRB
(MHz)
(dB)
mode
order
allowed


















DC_1A-
1
1955
5
25
2145
N/A
FDD
N/A


11A_n78A
n78
3441
10
50
3441
N/A
TDD
N/A



11 
1438
5
25
1486
31.4
FDD
IMD2


DC_1A-
11 
1438
5
25
1486
N/A
FDD
N/A


11A_n78A
n78
3578
10
50
3578
N/A
TDD
N/A



1
1950
5
25
2140
30.8
FDD
IMD2









III-7. Proposed MSD Level for DC_8-11_n77



FIGS. 12a and 12b illustrate exemplary IMD by a combination of bands 8, 11 and 77.


As shown in FIG. 12A, if the UE transmits uplink signals via uplink bands of operating bands 8 and 77, IMD products are produced and then a reference sensitivity in operating band 11 is degraded. Therefore, a value of MSD is needed to apply the reference sensitivity.


Also, as shown in FIG. 12A, if the UE transmits uplink signals via uplink bands of operating bands 11 and 77, IMD products are produced and then a reference sensitivity in operating band 8 is degraded. Therefore, a value of MSD is needed to apply the reference sensitivity.


As mentioned above, IMD3 of B8 and n77 to Band 11 Rx and IMD3 of B11 and n77 to Band 8 Rx need to be addressed for REFSENS relaxation. The following values are proposed:


Below table show reference sensitivity exceptions due to dual uplink operation for EN-DC in NR FR1 (three bands).









TABLE 41







NR or E-UTRA Band/Channel bandwidth/NRB/MSD
















EN-DC
EUTRA/
UL Fc
UL/DL BW
UL
DL Fc
MSD
Duplex
IMD
Single UL


Configuration
NR band
(MHz)
(MHz)
LCRB
(MHz)
(dB)
mode
order
allowed


















DC_8A-
8
910
5
25
955
N/A
FDD
N/A


11A_n77A
n77
3311
10
50
3311
N/A
TDD
N/A



11 
1443
5
25
1491
18.8
FDD
IMD3


DC_8A-
11 
1430.5
5
25
1478.5
N/A
FDD
N/A


11A_n77A
n77
3791
10
50
3791
N/A
TDD
N/A



8
885
5
25
930
18.2
FDD
IMD3









III-8. Proposed MSD Level for DC_8-11_n78



FIGS. 13a and 13b illustrate exemplary IMD by a combination of bands 8, 11 and 78.


As shown in FIG. 13A, if the UE transmits uplink signals via uplink bands of operating bands 8 and 78, IMD products are produced and then a reference sensitivity in operating band 11 is degraded. Therefore, a value of MSD is needed to apply the reference sensitivity.


Also, as shown in FIG. 13B, if the UE transmits uplink signals via uplink bands of operating bands 11 and 78, IMD products are produced and then a reference sensitivity in operating band 8 is degraded. Therefore, a value of MSD is needed to apply the reference sensitivity.


As mentioned above, IMD3 of B11 and n78 to Band 8 Rx need to be addressed for REFSENS relaxation. The following values are proposed:


Below table shows reference sensitivity exceptions due to dual uplink operation for EN-DC in NR FR1 (three bands).









TABLE 42







NR or E-UTRA Band/Channel bandwidth/NRB/MSD
















EN-DC
EUTRA/
UL Fc
UL/DL BW
UL
DL Fc
MSD
Duplex
IMD
Single UL


Configuration
NR band
(MHz)
(MHz)
LCRB
(MHz)
(dB)
mode
order
allowed


















DC_8A-
8
910
5
25
955
N/A
FDD
N/A


11A_n78A
n78
3311
10
50
3311
N/A
TDD
N/A



11 
1443
5
25
1491
18.8
FDD
IMD3


DC_8A-
11 
1430.5
5
25
1478.5
N/A
FDD
N/A


11A_n78A
n78
3791
10
50
3791
N/A
TDD
N/A



8
885
5
25
930
18.2
FDD
IMD3









<Embodiment of the Present Disclosure>


The disclosure of this specification provides a device configured to operate in a wireless system. The device may comprise: a transceiver configured with an Evolved Universal Terrestrial Radio Access (E-UTRA)-New Radio (NR) Dual Connectivity (EN-DC). The EN-DC may be configured to use three bands. The device may comprise: a processor operably connectable to the transceiver. The processer may be configured to: control the transceiver to receive a downlink signal and control the transceiver to transmit an uplink signal via at least two bands among the three bands. A value of Maximum Sensitivity Degradation (MSD) may be applied to a reference sensitivity for receiving the downlink signal. The value of the MSD may be pre-configured for a first combination of bands 1, 40 and 78, a second combination of band 3, 40 and 78, a third combination of bands 1, 11 and 77, a fourth combination of bands 1, 11 and 78, a fifth combination of bands 8, 11 and 77 or a sixth combination of bands 8, 11 and 78.


The value of the MSD may be 9.8 dB for band 78 based on the first combination of bands 1, 40 and 78.


The value of the MSD may be 10.6 dB for band 40 based on the first combination of bands 1, 40 and 78.


The value of the MSD may be 4.8 dB for band 78 based on the second combination of band 3, 40 and 78.


The value of the MSD may be 4.4 dB for band 40 based on the second combination of band 3, 40 and 78.


The value of the MSD may be 31.4 dB for band 11 based on the third combination of bands 1, 11 and 77.


The value of the MSD may be 30.8 dB for band 1 based on the third combination of bands 1, 11 and 77.


The value of the MSD may be 31.4 dB for band 11 based on the fourth combination of bands 1, 11 and 78.


The value of the MSD may be 30.8 dB for band 1 based on the fourth combination of bands 1, 11 and 78.


The value of the MSD may be 18.8 dB for band 11 based on the fifth combination of bands 8, 11 and 77.


The value of the MSD may be 18.2 dB for band 8 based on the fifth combination of bands 8, 11 and 77.


The value of the MSD may be 18.8 dB for band 11 based on the sixth combination of bands 8, 11 and 78.


The value of the MSD may be 18.2 dB for band 8 based on the sixth combination of bands 8, 11 and 78.


For the first combination of bands 1, 40 and 78, the band 1 may be used for the E-UTRA and the bands 40 and 78 may be used for the NR.


For the second combination of band 3, 40 and 78, the band 3 may be used for the E-UTRA and the bands 40 and 78 may be used for the NR.


For the third combination of bands 1, 11 and 77, the bands 1 and 11 may be used for the E-UTRA and the band 77 may be used for the NR.


For the fourth combination of bands 1, 11 and 78, the bands 1 and 11 may be used for the E-UTRA and the band 78 is used for the NR.


For the fifth combination of bands 8, 11 and 77, the bands 8 and 11 may be used for the E-UTRA and the band 77 may be used for the NR.


For the sixth combination of bands 8, 11 and 78, the bands 8 and 11 may be used for the E-UTRA and the band 78 may be used for the NR.


<Communication System to which the Disclosure of this Specification is to be Applied>


While not limited to thereto, the various descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts of the present specification disclosed herein may be applied to in various fields requiring wireless communication/connection (e.g., 5G) between devices.


Hereinafter, a communication system to which the present specification can be applied is described in more detail with reference to the drawings. The same reference numerals in the following drawings/descriptions may illustrate the same or corresponding hardware blocks, software blocks, or functional blocks unless otherwise indicated.



FIG. 14 is a block diagram illustrating a wireless device and a base station, by which the disclosure of this specification can be implemented.


Referring to FIG. 14, a wireless device 100 and a base station 200 may implement the disclosure of this specification.


The wireless device 100 includes a processor 120, a memory 130, and a transceiver 110. Likewise, the base station 200 includes a processor 220, a memory 230, and a transceiver 210. The processors 120 and 220, the memories 130 and 230, and the transceivers 110 and 210 may be implemented as separate chips, or at least two or more blocks/functions may be implemented through one chip.


Each of the transceivers 110 and 210 includes a transmitter and a receiver. When a particular operation is performed, either or both of the transmitter and the receiver may operate. Each of the transceivers 110 and 210 may include one or more antennas for transmitting and/or receiving a radio signal. In addition, each of the transceivers 110 and 210 may include an amplifier configured for amplifying a Rx signal and/or a Tx signal, and a band pass filter for transmitting a signal to a particular frequency band.


Each of the processors 120 and 220 may implement functions, procedures, and/or methods proposed in this specification. Each of the processors 120 and 220 may include an encoder and a decoder. For example, each of the processors 120 and 230 may perform operations described above. Each of the processors 120 and 220 may include an application-specific integrated circuit (ASIC), a different chipset, a logic circuit, a data processing device, and/or a converter which converts a base band signal and a radio signal into each other.


Each of the memories 130 and 230 may include a Read-Only Memory (ROM), a Random Access Memory (RAM), a flash memory, a memory card, a storage medium, and/or any other storage device.



FIG. 15 is a block diagram showing a detail structure of the wireless device shown in FIG. 14.


In particular, FIG. 15 shows an example of the wireless device of FIG. 14 in greater detail.


A wireless device includes a memory 130, a processor 120, a transceiver 110, a power management module 1091, a battery 1092, a display 1041, an input unit 1053, a speaker 1042, a microphone 1052, a subscriber identification module (SIM) card, and one or more antennas.


The processor 120 may be configured to implement the proposed functions, procedures, and/or methods described in the present specification. Layers of a radio interface protocol may be implemented in the processor 120. The processor 120 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and/or data processing units. The processor 120 may be an application processor (AP). The processor 120 may include at least one of a digital signal processor (DSP), a central processing unit (CPU), a graphics processing unit (GPS), and a modulator and demodulator (modem). An example of the processor 120 may include an SNAPDRAGON™ series processor manufactured by Qualcomm®, an EXYNOS™ series processor manufactured by Samsung®, an A series processor manufactured by Apple®, a HELIO™ series processor manufactured by MediaTek®, an ATOM™ series processor manufactured by INTEL®, or a corresponding next-generation processor.


The power management module 1091 manages power for the processor 120 and/or the transceiver 110. The battery 1092 supplies power to the power management module 1091. The display 1041 outputs a result processed by the processor 120. The input unit 1053 receives an input to be used by the processor 120. The input unit 1053 may be displayed on the display 1041. The SIM card is an integrated circuit used to safely store an international mobile subscriber identity (IMSI) used to identify and authenticate a subscriber and a key related thereto in a portable phone and a portable phone device such as a computer. Contacts information may be stored in many SIM cards.


The memory 130 is operatively coupled to the processor 120, and stores a variety of information for operating the processor 120. The memory 130 may include a read-only memory (ROM), a random access memory (RAM), a flash memory, a memory card, a storage medium, and/or other equivalent storage devices. When the embodiment is implemented in software, the techniques explained in the present specification can be implemented with a module (i.e., procedure, function, etc.) for performing the functions explained in the present specification. The module may be stored in the memory 130 and may be performed by the processor 120. The memory 130 may be implemented inside the processor 120. Alternatively, the memory 130 may be implemented outside the processor 120, and may be coupled to the processor 120 in a communicable manner by using various well-known means.


The transceiver 110 is operatively coupled to the processor 120, and transmits and/or receives a radio signal. The transceiver 110 includes a transmitter and a receiver. The transceiver 110 may include a baseband signal for processing a radio frequency signal. The transceiver controls one or more antennas to transmit and/or receive a radio signal. In order to initiate communication, the processor 120 transfers command information to the transceiver 110, for example, to transmit a radio signal constituting voice communication data. The antenna serves to transmit and receive a radio signal. When the radio signal is received, the transceiver 110 may transfer a signal to be processed by the processor 120, and may convert the signal into a baseband signal. The processed signal may be converted into audible or readable information which is output through the speaker 1042.


The speaker 1042 outputs a result related to a sound processed by the processor 120. The microphone 1052 receives a sound-related input to be used by the processor 120.


A user presses (or touches) a button of the input unit 1053 or drives voice (activates voice) by using the microphone 1052 to input command information such as a phone number or the like. The processor 120 receives the command information, and performs a proper function such as calling the phone number or the like. Operational data may be extracted from the SIM card or the memory 130. In addition, the processor 120 may display command information or operational information on the display 1041 for user's recognition and convenience.



FIG. 16 is a detailed block diagram illustrating a transceiver of the wireless device shown in FIG. 14 and FIG. 15.


Referring to FIG. 16, a transceiver 110 includes a transmitter 111 and a receiver 112. The transmitter 111 includes a Discrete Fourier Transform (DFT) unit 1111, a subcarrier mapper 1112, an IFFT unit 1113, a CP insertion unit 1114, a wireless transmitter 1115. In addition, the transceiver 1110 may further include a scramble unit (not shown), a modulation mapper (not shown), a layer mapper (not shown), and a layer permutator, and the transceiver 110 may be disposed in front of the DFT unit 1111. That is, in order to prevent a peak-to-average power ratio (PAPR) from increasing, the transmitter 111 may transmit information to pass through the DFT unit 1111 before mapping a signal to a subcarrier. A signal spread (or pre-coded for the same meaning) by the DFT unit 111 is subcarrier-mapped by the subcarrier mapper 1112, and then generated as a time domain signal by passing through the IFFT unit 1113.


The DFT unit 111 performs DFT on input symbols to output complex-valued symbols. For example, if Ntx symbols are input (here, Ntx is a natural number), a DFT size may be Ntx. The DFT unit 1111 may be called a transform precoder. The subcarrier mapper 1112 maps the complex-valued symbols to subcarriers of a frequency domain. The complex-valued symbols may be mapped to resource elements corresponding to a resource block allocated for data transmission. The subcarrier mapper 1112 may be called a resource element mapper. The IFFT unit 113 may perform IFFT on input symbols to output a baseband signal for data, which is a time-domain signal. The CP inserter 1114 copies a rear portion of the baseband signal for data and inserts the copied portion into a front part of the baseband signal. The CP insertion prevents Inter-Symbol Interference (ISI) and Inter-Carrier Interference (ICI), and therefore, orthogonality may be maintained even in multi-path channels.


Meanwhile, the receiver 112 includes a wireless receiver 1121, a CP remover 1122, an FFT unit 1123, and an equalizer 1124, and so on. The wireless receiver 1121, the CP remover 1122, and the FFT unit 1123 of the receiver 112 performs functions inverse to functions of the wireless transmitter 1115, the CP inserter 1114, and the IFFT unit 113 of the transmitter 111. The receiver 112 may further include a demodulator.



FIG. 17 illustrates a detailed block diagram illustrating a processor of the wireless device shown in FIG. 14 and FIG. 15.


Referring to FIG. 17, the processor 120 as illustrated in FIG. 14 and FIG. 15 may comprise a plurality of circuitries such as. a first circuitry 120-1, a second circuitry 120-2 and a third circuitry 120-3.


The plurality of circuitries may be configured to implement the proposed functions, procedures, and/or methods described in the present specification.


The processor 120 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and/or data processing units. The processor 120 may be an application processor (AP). The processor 120 may include at least one of a digital signal processor (DSP), a central processing unit (CPU), a graphics processing unit (GPS), and a modulator and demodulator (modem). An example of the processor 120 may include an SNAPDRAGON™ series processor manufactured by Qualcomm®, an EXYNOS™ series processor manufactured by Samsung®, an A series processor manufactured by Apple®, a HELIO™ series processor manufactured by MediaTek®, an ATOM™ series processor manufactured by INTEL®, or a corresponding next-generation processor.


Hereinafter, a communication system to which the present specification can be applied is described in more detail with reference to the drawings. The same reference numerals in the following drawings/descriptions may illustrate the same or corresponding hardware blocks, software blocks, or functional blocks unless otherwise indicated.



FIG. 18 illustrates a communication system that can be applied to the present specification.


Referring to FIG. 18, a communication system applied to the present specification includes a wireless device, a base station, and a network. Here, the wireless device means a device that performs communication using a wireless access technology (e.g., 5G New RAT (Long Term), Long Term Evolution (LTE)), and may be referred to as a communication/wireless/5G device.


Although not limited thereto, the wireless device may include a robot 100a, a vehicle 100b-1, 100b-2, an eXtended Reality (XR) device 100c, a hand-held device 100d, a home appliance 100e, an Internet of Thing (IoT) device 100f, and the AI device/server 400. For example, the vehicle may include a vehicle having a wireless communication function, an autonomous vehicle, a vehicle capable of performing inter-vehicle communication, and the like.


Here, the vehicle may include an unmanned aerial vehicle (UAV) (e.g., a drone). XR device may include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) device. XR device may be implemented in the form of Head-Mounted Device (HMD), Head-Up Display (HUD), television, smartphone, a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.


The mobile device may include a smartphone, a smart pad, a wearable device (e.g., smart watch, smart glasses), and a computer (e.g., a laptop, etc.). The home appliance may include a TV, a refrigerator, a washing machine, and the like. IoT devices may include sensors, smart meters, and the like. For example, the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station/network node to other wireless devices.


The wireless devices 100a to 100f may be connected to the network 300 through the base station 200. AI (Artificial Intelligence) technology may be applied to the wireless devices 100a to 100f, and the wireless devices 100a to 100f may be connected to the AI server 400 through the network 300.


The network 300 may be configured using a 3G network, a 4G (e.g. LTE) network, a 5G (e.g. NR) network, or the like. The wireless devices 100a-100f may communicate with each other via the base station 200/network 300, but may also communicate directly (e.g. sidelink communication) without passing through the base station/network. For example, the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. vehicle to vehicle (V2V)/vehicle to everything (V2X) communication). In addition, the IoT device (e.g. sensor) may directly communicate with another IoT device (e.g. sensor) or another wireless device 100a to 100f.


A wireless communication/connection 150a, 150b, 150c may be performed between the wireless devices 100a-100f/base station 200 and base station 200/base station 200. Here, the wireless communication/connection is implemented based on various wireless connections (e.g., 5G NR) such as uplink/downlink communication 150a, sidelink communication 150b (or D2D communication), inter-base station communication 150c (e.g. relay, integrated access backhaul), and the like.


The wireless device and the base station/wireless device, the base station, and the base station may transmit/receive radio signals to each other through the wireless communication/connections 150a, 150b, and 150c. For example, wireless communications/connections 150a, 150b, 150c may transmit/receive signals over various physical channels. To this end, based on various proposals of the present specification, At least some of various configuration information setting processes for transmitting/receiving a wireless signal, various signal processing processes (e.g., channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.) may be performed.


Claims in the present description can be combined in a various way. For instance, technical features in method claims of the present description can be combined to be implemented or performed in an apparatus, and technical features in apparatus claims can be combined to be implemented or performed in a method. Further, technical features in method claim(s) and apparatus claim(s) can be combined to be implemented or performed in an apparatus. Further, technical features in method claim(s) and apparatus claim(s) can be combined to be implemented or performed in a method.

Claims
  • 1. A device configured to operate in a wireless system, the device comprising: a transceiver configured with an Evolved Universal Terrestrial Radio Access (E-UTRA)-New Radio (NR) Dual Connectivity (EN-DC),wherein the EN-DC is configured to use three bands,a processor operably connectable to the transceiver,wherein the processer is configured to:control the transceiver to receive a downlink signal,control the transceiver to transmit an uplink signal via at least two bands among the three bands,wherein a value of Maximum Sensitivity Degradation (MSD) is applied to a reference sensitivity for receiving the downlink signal,wherein the value of the MSD is pre-configured for a first combination of bands 1, 40 and 78, a second combination of band 3, 40 and 78, a third combination of bands 1, 11 and 77, a fourth combination of bands 1, 11 and 78, a fifth combination of bands 8, 11 and 77 or a sixth combination of bands 8, 11 and 78.
  • 2. The method of claim 1, wherein the value of the MSD is 9.8 dB for band 78 based on the first combination of bands 1, 40 and 78.
  • 3. The method of claim 1, wherein the value of the MSD is 10.6 dB for band 40 based on the first combination of bands 1, 40 and 78.
  • 4. The method of claim 1, wherein the value of the MSD is 4.8 dB for band 78 based on the second combination of band 3, 40 and 78.
  • 5. The method of claim 1, wherein the value of the MSD is 4.4 dB for band 40 based on the second combination of band 3, 40 and 78.
  • 6. The method of claim 1, wherein the value of the MSD is 31.4 dB for band 11 based on the third combination of bands 1, 11 and 77.
  • 7. The method of claim 1, wherein the value of the MSD is 30.8 dB for band 1 based on the third combination of bands 1, 11 and 77.
  • 8. The method of claim 1, wherein the value of the MSD is 31.4 dB for band 11 based on the fourth combination of bands 1, 11 and 78.
  • 9. The method of claim 1, wherein the value of the MSD is 30.8 dB for band 1 based on the fourth combination of bands 1, 11 and 78.
  • 10. The method of claim 1, wherein the value of the MSD is 18.8 dB for band 11 based on the fifth combination of bands 8, 11 and 77.
  • 11. The method of claim 1, wherein the value of the MSD is 18.2 dB for band 8 based on the fifth combination of bands 8, 11 and 77.
  • 12. The method of claim 1, wherein the value of the MSD is 18.8 dB for band 11 based on the sixth combination of bands 8, 11 and 78.
  • 13. The method of claim 1, wherein the value of the MSD is 18.2 dB for band 8 based on the sixth combination of bands 8, 11 and 78.
  • 14. The method of claim 1, wherein for the first combination of bands 1, 40 and 78, the band 1 is used for the E-UTRA and the bands 40 and 78 are used for the NR.
  • 15. The method of claim 1, wherein for the second combination of band 3, 40 and 78, the band 3 is used for the E-UTRA and the bands 40 and 78 are used for the NR.
  • 16. The method of claim 1, wherein for the third combination of bands 1, 11 and 77, the bands 1 and 11 are used for the E-UTRA and the band 77 is used for the NR.
  • 17. The method of claim 1, wherein for the fourth combination of bands 1, 11 and 78, the bands 1 and 11 are used for the E-UTRA and the band 78 is used for the NR.
  • 18. The method of claim 1, wherein for the fifth combination of bands 8, 11 and 77, the bands 8 and 11 are used for the E-UTRA and the band 77 is used for the NR.
  • 19. The method of claim 1, wherein for the sixth combination of bands 8, 11 and 78, the bands 8 and 11 are used for the E-UTRA and the band 78 is used for the NR.
  • 20. A method performed by a device comprising: transmitting an uplink signal via at least two bands among three bands; andreceiving a downlink signal,wherein the at least two bands are configured for an Evolved Universal Terrestrial Radio Access (E-UTRA)-New Radio (NR) Dual Connectivity (EN-DC),wherein a value of Maximum Sensitivity Degradation (MSD) is applied to a reference sensitivity for receiving the downlink signal,wherein the value of the MSD is pre-configured for a first combination of bands 1, 40 and 78, a second combination of band 3, 40 and 78, a third combination of bands 1, 11 and 77, a fourth combination of bands 1, 11 and 78, a fifth combination of bands 8, 11 and 77 or a sixth combination of bands 8, 11 and 78.
Priority Claims (1)
Number Date Country Kind
10-2019-0032869 Mar 2019 KR national
PCT Information
Filing Document Filing Date Country Kind
PCT/KR2020/003319 3/10/2020 WO 00