The present application claims the benefit under 35 U.S.C. § 119 of German Patent Application No. DE 102020211502.8 filed on Sep. 14, 2020, which is expressly incorporated herein by reference in its entirety.
The present invention relates to a method for assessing a camera calibration and to a system for carrying out the method.
Photographic apparatuses, referred to as cameras, are able to record static or moving images on a photographic film or electronically on a memory medium or to convey them via an interface.
A measuring process, referred to as calibration, is used to establish a deviation of one measuring device with respect to another device, a reference device. This deviation is then taken into account in the subsequent use of the measuring device for correcting the read values. Thus, within the scope of the calibration of a camera, the mapping behavior thereof is established as compared to the mapping behavior of a reference camera.
A prerequisite for the use of camera systems as measuring instruments is that their geometric mapping behavior is precisely known. Specifically, this means that the mapping function, i.e., the projection of a point from the three-dimensional world into the two-dimensional image (p:R3→R2, x=(x,y,z)T→u=(u,v)T, must be known. Errors in the determination of the parameters of this mapping function or the selection of an unsuitable model may have a serious impact on all subsequent processing steps.
With the ever increasing use of cameras system comes also an increased need for methods for determining these model parameters. This should also be able to be carried out by laypersons.
Two known problems in terms of camera calibration are firstly systematic errors, in which the model is unable to describe or able to only insufficiently exactly describe the actual mapping behavior, and secondly high or unknown residual parameter uncertainties, which are typically the result of too few measurements or observations. To be able to recognize these two types of errors requires expert knowledge and experience, for example, with regard to how similar camera systems behave, or complex control experiments as they are known in photogrammetry.
A method and a system for assessing a camera calibration are provided in accordance with the present invention. Specific embodiments of the present invention result from the disclosure herein.
In accordance with an example embodiment of the present invention, the method used to assess a camera calibration, the method being used for the purpose of assessing a systematic error and to that end to ascertain an initial quality measure, which enables an assessment of the systematic error.
A systematic error εbias is to be assessed with the first quality measure, the assessment being carried out with respect to errors remaining after a calibration, an overall calibration object potentially made up of multiple calibration objects being virtually segmented into physically smaller calibration objects, a detector noise being estimated for each calibration object, which are combined to form an overall estimate, which is compared with an estimate of the detector noise of the overall calibration object.
With regard to detector noise, it is stated: a detector or feature detector is an algorithm of image processing, which extracts the position or the image coordinates of distinctive points in the image (features). In the camera calibration, the features are typically the corners of the checkerboard-like calibration target. Reference is therefore made to corner detectors. The detection of features is generally not perfect, i.e., the extracted image coordinates (u, v) deviate from the true image coordinates. These deviations are typically described as uncorrelated noise, the so-called detector noise.
An example embodiment of the present invention provides a method, which makes it possible to assess or to estimate the aforementioned systematic error and thus to be able to take this error into account.
In addition to the systematic error, there is also a so-called statistical error, for the assessment of which in an embodiment of the method a second quality measure is ascertained. Thus, a specific embodiment of the described method is presented herein, in which two informative error and uncertainty measures, which are based purely on the photos or measurements made for the calibration, are taken into account. Thus, it is provided in an embodiment to provide two quality measures and a method for determining these two quality measures, which quantitatively assess firstly systematic errors and secondly residual uncertainties. The combination of these quality measures permits both a direct feedback to the person carrying out the calibration as well as the assessment of calibration methods and structures existing or under design.
In accordance with an example embodiment of the present invention, in the method, an expected value for a mapping error is then ascertained when taking the second quality measure into account, optimal model parameters and their covariance matrix being initially accessed, then a matrix of a mapping error being determined and finally the expected value of the mapping error being ascertained.
A mapping error is understood to mean the difference in mapping behavior between the camera model estimated typically within the scope of the calibration and the true camera.
The expected value of the mapping error is the so-called uncertainty metric. The second quality measure considered here is the uncertainty metric. Thus, it is quantified how uncertain one is regarding the estimated model parameter. This uncertainty metric therefore corresponds at the same time to a measure for the statistical error to be expected. High parameter uncertainty results statistically in higher errors. The definition or form of the uncertainty metric involves that an expected value of a mapping error is determined. Thus, the expected mapping error is deduced from the uncertainty in the model parameters.
The mapping error used may, for example, be a mean square error in the image space. Alternatively, a mean square error in a local image area may also be used or else the error in a specific application of the calibrated camera.
The matrix determined may, for example, be a matrix that describes the increase of the mapping error as a function of the error in the model parameters.
After the detailed description of the quality measure, these are also demonstrated here in a feasibility study, a so-called proof-of-concept.
The assessment of a camera calibration takes place typically with respect to the errors remaining after the calibration, namely, residues, i.e., the differences between the observations and the prediction by the estimated model. In most cases, the root of the mean error square sum, the so-called root mean squared error (RMSE), or a similar measure is specified, which reflects the mean error on the calibration data set.
The following applies:
ui being the observed pixels and ûi being the pixels estimated on the basis of the model. The number of the individual observations is nobs, each observed pixel (ui=(u,v)T) being contributed in accordance with two observations.
The residues are made of a systematic error, for example, resulting from a non-modeled distortion, and a stochastic error resulting from the so-called detector noise. The detection of the checkerboard corners in the accompanying figures is subject to random and uncorrelated errors.
The following applies asymptotically for the RMSE:
depending on the type of error, σ describing the detector noise, nparam describing the number of parameters of the model and ϵbias describing the systematic error. In general, however, it remains unclear how high the individual contributions (σ and ϵbias) are. This presents a general problem, since σ is typically different for various camera optics combinations. Thus, empirical values from earlier calibrations of the same camera system, typically with the same settings such as aperture and sharp definition, are typically required for evaluating a camera system on the basis of the RMSEs. Moreover, the RMSE includes no information regarding the accuracy with which the model parameters may be estimated on the basis of the present data.
The covariance of the parameters from the optimization is typically utilized in order to evaluate the uncertainty of the estimated parameters: The smaller the variance of the parameter, the more certain one is regarding its value. The variances of individual parameters are poorly suited as a quality measure, however, since there is a multitude of camera models having different parameters. This results in a lack of comparability. In order to improve this, there is already a method for propagating the parameter uncertainty via a Monte-Carlo simulation into the image space and in this way to estimate a maximum uncertainty in the image. Moreover, a method has been introduced, in which the uncertainty of the model parameters, here quantified via the approximated Hesse matrix, is weighted with the influence of the parameters on the camera model.
The method provided herein in its different specific embodiments differs significantly from the aforementioned approaches as is described in detail below.
The method presented makes it possible, at least in one embodiment, to provide an informative error and uncertainty measure for assessing calibration body-based camera calibrations. In one specific embodiment, it includes both contributions of the potential error: firstly, systematic (model) errors and secondly, a residual uncertainty or variance. These measures allow a user, through direct feedback, to assess and to improve the calibration in a targeted manner. This may take place, for example, by selecting a more suitable model in the case of a systematic error or by recording additional data in the case of excessive uncertainty.
The error feedback may also be used to estimate errors in subsequent applications, for example, self-localization, triangulation, etc., and to request best possible additional measurements. In addition, the quality measure may also be used for the purpose of assessing, in principle, existing or new calibration methods and calibration structures.
The quality measures provided herein allow for the quantitative assessment of calibrations, the quality measures presupposing no empirical values regarding the present camera or the camera model. Thus, they allow, in particular, laypersons to assess and to potentially directly improve the calibration result. Further advantages are explained in detail below.
Further advantages and embodiments of the present invention result from the description herein and from the figures.
It is understood that the features cited above and those still to be explained below are usable not only in each indicated combination, but also in other combinations or when considered alone, without departing from the scope of the present invention.
The present invention is schematically represented in the figures based on specific embodiments and is described in greater detail below with reference to the figures.
The starting point is a calibration body-based camera calibration, in which the images of well-defined calibration bodies are recorded from various perspectives. On the basis of these images, (i) the position of the camera relative to, for example, multiple calibration bodies in each image is estimated with the aid of extrinsic parameters and (ii) the model parameters of the camera are estimated with the aid of intrinsic parameters θ. The estimate takes place, for example, via a so-called bundle adjustment, a calibration cost function, typically, the rear projection error, being optimized with the aid of a non-linear, least squares method. The results of the optimization are optimal model parameters {circumflex over (θ)}, the residues, as well as the covariance matrix of model parameters Σσ. In connection with such a standard camera calibration, it is possible to use the methods presented herein.
To recognize systematic errors (ϵbias in equation (2) and (3)) it is provided to determine an independent estimate of the detector noise, this is identified below by {circumflex over (σ)}. This may then be related to the estimation on the basis of calibration event σcalib. In a calibration without systematic errors, the relation should be close to one, since ϵbias disappears. A value deviating therefrom indicates non-modeled properties or other errors.
For an independent estimate of the detector noise, the influence of systematic errors must be minimized. The method presented is now based on the finding that systematic errors such as, for example, a non-modeled distortion are expressed locally in the image to a lesser degree. The calibration object is therefore segmented virtually into V physically smaller calibration objects, whose poses, i.e., positions and orientation, are each estimated independently. Assuming that the estimates are locally free of systematic errors, namely bias-free, an estimation of the detector noise results for each of the virtual calibration objects according to equation (2, 3):
with v∈{1 . . . V}. In a first variant of this method (A1), the checkerboard calibration bodies used for the calibration are segmented into individual tiles, whose poses are then optimized separately. After the calculation of the RMSE values (RMSEv) on the basis of the residues of each optimization, the pose parameter is then calculated σv, in this case nobs,virt=8, since each tile 4 contributes 4 corners and therefore 8 observations, and nparam,virt=6 applies, since a pose has 6 degrees of freedom. The individual estimates a are then combined to form an overall estimate {circumflex over (σ)}. This takes place by means of averaging. Once the calibration is carried out, RMSEcalib may then be determined according to equation (1). With equation (2) and assuming that no systematic errors are present, the result is
The relation σcalib/{circumflex over (σ)} is then determined. If the calibration was bias-free, then the value should be close to one and, in practice, below a threshold value or threshold τratio. The method is summarily reproduced once again below with reference to a flowchart in
In a first step 100, σcalib is determined on the basis of calibration residues with ui−ûi with ∈{1 . . . nobs/2} according to equation (1) and (5).
In a second step 102, the calibration object is segmented into V virtual, local and independent calibration objects including at least 4 measureable pixels, which corresponds to at least 8 observations.
In a third step 104, the pose parameters of each of the V virtual calibration objects are optimized, the parameters of the mapping behavior of the camera remaining unchanged. The residual errors (residuals) are determined after the optimization.
In a fourth step 106, σv= is determined from the residuals according to equation (4) σv, here the residuals of all V virtual calibration bodies being used to calculate the RMSEs.
In a fifth step 108, the quality measure for recognizing systematic errors σcalib/{circumflex over (σ)} is determined.
In a sixth step 110, the calibration is considered to be free of systematic errors (bias-free), a if σcalib/{circumflex over (σ)}≤τratio.
In fact, a systematically disrupted mapping function results in {circumflex over (σ)} being greater than the actual noise level of detector σ. This presents no problem, however, since σcalib is more heavily influenced by systematic errors. In general, robust estimate methods, such as M-Estimator (maximum-likelihood estimator including robust cost function) should be used both for determining the calibration parameters, RMSEcalib, and {circumflex over (σ)}. Important in this case is the fact that all values are determined on the basis of similar and compatible methods.
The second type of errors in a camera calibration occurs as a result of residual uncertainty in estimated model parameters. The aim of the second quality measure or uncertainty measure is to quantify the uncertainty in the mapping behavior of the camera. Since only the uncertainty of the parameters results from the calibration, it must be quantified how a parameter error Δθ impacts the mapping behavior of the camera.
For this purpose, a mapping error K({circumflex over (θ)},Δθ) is defined, which describes the difference in the mapping behavior of two camera models pC(x;{circumflex over (θ)}) and pC(x;{circumflex over (θ)}+Δθ). In this regard, reference is made to
where xi=pC−1(ui;{circumflex over (θ)}) is the 3D point determined by inverse projection of pixels ui. The mapping error may be expressed as follows via a Taylor approximation up to the 2nd order:
K({circumflex over (θ)},Δθ)≈ΔθTHΔθ, (8)
the matrix
being defined as the product of the Jacobi Matrix Jres=dres/dΔθ of residue vector res({circumflex over (θ)},Δθ)=(Δu1T, . . . , ΔuNT)T.
It may then be mathematically deduced that the expected value of the mapping error of a calibration result pC(x;{circumflex over (θ)}) with covariance matrix Σθ as compared to the true (unknown!) camera model pC(x;{circumflex over (θ)}) is provided by:
[K]=trace(Σθ1/2HΣθ1/2). (9)
This means that the expected mapping error of the calibration result as compared to the true camera model may be predicted, even though the true camera model is unknown. This expected value trace(Σθ1/2HΣθ1/2) is the uncertainty metric.
The calculation of the uncertainty metric takes place specifically as is explained with reference to the accompanying flowchart in
In a first step 200, the calibration body-based calibration is carried out and optimal model parameters {circumflex over (θ)} and covariance matrix Σ0 are determined.
In a second step 202, matrix H of the mapping error is determined:
In a third step 204, [K]=trace(εθ1/2HΣθ1/2) is determined.
One example for the use of the uncertainty metric is given below. Depending on the data set, the calibration remains an uncertainty. This is a function of the number of recordings and of the information content of the recordings. Examples of informative and less informative recordings are shown above. The uncertainty matrix presented indicates after one calibration how high the error to be expected is in the image. This decreases with the number of data points and with the information content of the data.
This method may be clearly differentiated from the existing methods for quantifying the uncertainty.
The calculation of the metric presented requires no complex Monte-Carlo simulation. Instead of a maximum error in a selected set of points, a mean error occurs across all pixels. The method provided herein makes it possible to consider possible compensations using extrinsic parameters, as well as application-specific adaptations of the mapping error to be predicted.
The observability indicates the increase of the calibration cost function in the most poorly observable parameter direction. In contrast, the method provided herein considers the uncertainty of all parameter directions (not only the most poorly observable parameter direction). Moreover, the metric provided herein is more readily interpretable: the error to be expected is determined in the image space, while the observability indicates an increase of the calibration cost function.
The behavior of both measures is represented below based on real experiments.
In
A pinhole camera model including two radial distortion parameters has been used. Photos in which the calibration body in the image is large and in which the body has extreme angles of inclination relative to the camera, are particularly informative. Less informative are photos in which the body is far away and is positioned frontoparallel to the camera. Laypersons frequently take unsuitable (uninformative) photos. In return, the uncertainty metric provided herein offers a direct feedback (
The quality measures provided herein allow for the quantitative assessment of calibrations, the quality measures presupposing no empirical values with respect to the present camera or the camera model. Thus, they allow lay users, in particular, to assess and to potentially directly improve the calibration result. Further advantages are cited in detail below.
Recognition and quantification of systematic errors:
Previously used measures such as, for example, RMSE, contain a mixture of stochastic errors (detector noise) and systematic errors. Since the stochastic error varies depending on the camera and depending on the corner detector, it is not apparent from the previously used measures whether a systematic error or only strong noise is present. The method provided herein enables the independent estimation of the noise and thus the decoupling of both portions.
Virtually all types of systematic errors such as, for example, an inadequate camera model, false imaging assignment, errors in the calibration body, etc., may be recognized with the method.
The recognition and quantitative assessment take place without the addition of new data or of a reference experiment, as is otherwise customary in photogrammetry but requiring great additional effort.
The measure presented is independent of the underlying camera model and may therefore be used in general.
The measure presented presupposes no empirical values for examined cameras. This would be the case, for example, in an analysis based purely on the RMSE.
The residual uncertainty is indicated typically via the (co)variance of the camera model parameters, or via the sum of these variances. There is, however, a multitude of different camera models, ranging from simple pinhole cameras including three parameters up to and including local camera models including approximately 105 parameters. The specification of parameter uncertainties is therefore difficult to interpret and is not comparable across camera models. The method provided propagates the parameter uncertainty in the image space and offers as a result an interpretable and comparable measure for the uncertainty in the image.
The method enables a flexible adaptability of the reference experiment: depending on the application, for example, the expected mean error in a particular image area may be predicted. Instead of the error in the image space, the error in the angles of the camera eye rays may also be predicted. A specific application, for example, triangulation, self-localization, etc., may also be defined as a reference experiment. This then provides, for example, the square triangulation error to be expected.
The metric may be utilized to request best possible additional measurements. In this way, the expected error in the image space may be reduced as quickly as possible.
The calculation of the metric provided herein requires no complex Monte-Carlo simulation. Instead of a maximum error in a selected set of points, a mean error occurs across all pixels. The method provided herein makes it possible to consider possible compensations using extrinsic parameters, as well as other application-specific adaptations of the mapping error to be predicted.
The observability indicates the increase of the calibration cost function in the most poorly observable parameter direction. In contrast, the method provided herein considers the uncertainty of all parameter directions (not only the most poorly observable parameter direction). Moreover, the metric provided herein is more readily interpretable: the error to be expected is determined in the image space, whereas the observability indicates an increase of the calibration cost function.
(1B) In general, various methods for estimating values σcalib and σv may be used. In practice, the use, in particular, of robust estimators such as M-estimators, or Median Absolute Deviation is important.
(1C) The calibration object may be segmented in various ways into virtual calibration objects. In general, it is only the case that more than six independent observations must be present for the estimate to be overdetermined. In the case of exactly six observations, the pose parameters could be estimated, although σv could not be determined, since RMSEv=0 would apply. Groups of six corners, for example, could also be used.
(1D) The method is not limited to planar or checkerboard-like calibration bodies. Calibration bodies that include circular markings not situated on one plane may, for example, also be used. The only prerequisite is that the relative position of the individual markings to one another is known. When calibrating only one camera, even knowledge of the overall dimension (scale) of the calibration body is not required in some cases.
(1E) Alternative quality measures may also be calculated from σcalib and {circumflex over (σ)}, for example
or more generally
g
5=ƒ(σcalib,{circumflex over (σ)}). (14)
(1F) In addition, there is the possibility of computing bias term ϵbias directly. For this purpose, RMSEcalib and {circumflex over (σ)} in equation (2) are used and reshaped to
Thus, further alternative quality measures may be defined, such as
(1G) A further manner of defining a quality measure results from the prediction of the RMSE
and to relate this to RMSEcalib.
Some of the above formulations may be mathematically equivalent and differ only in the derivation.
(2B) In order to accelerate the calculation, it is possible to determine mapping error K({circumflex over (θ)},
(2C) In particular application scenarios, only limited image areas are relevant. In this case, mapping error K({circumflex over (θ)},
(2D) Depending on the application, it may be taken into account in the case of mapping error K({circumflex over (θ)},
(2E) Instead of the mean error in the image, it is possible to predict the mean error in the angles of the eye rays. Mapping error K({circumflex over (θ)},
(2F) The expression [K]=trace(Σθ1/2HΣθ1/2) may also be formulated as follows (mathematical equivalent):
[K]=trace(ΣθH), (29)
[K]=trace(HΣθ), (30)
[K]=Σi=1Nλi, (31)
where λi are the eigenvalues of matrix Σθ1/2HΣθ1/2.
(2G) Instead of the expected value of mean square error [K] (in pixel2 units), the square root thereof
(in pixel units) may be used.
This is potentially even more easily interpretable.
(2H) More generally, an arbitrary function ƒ([K]) may be used.
Number | Date | Country | Kind |
---|---|---|---|
102020211502.8 | Sep 2020 | DE | national |