The present invention is directed to a plastic part incorporating one or more inserts allowing for the plastic part to be joined to some other part by conventional metal screws, bolts or other similar threaded members.
It is often desirable for plastic parts, such as blow molded plastic parts, to be attached to another part by conventional screws, bolts or some other similar threaded member (collectively referred to herein as “threaded fasteners”). The plastic part may be attached to a part made of metal, wood, or another material.
Because of the properties of the plastic part, and the diameter and thread size of conventional threaded fasteners, satisfactory threaded engagement directly with the plastic part may not be achievable. The threaded fastener may strip an opening formed directly in the plastic part. Metal inserts are commonly used to remedy this problem. The insert is inserted into an opening created in the plastic part, and the conventional threaded fastener threads into a threaded female opening in the insert.
While the conventional inserts may provide benefits over using no inserts at all, they still suffer from several disadvantages. One of such disadvantages is that, during insertion of the insert into the hole in the plastic part, it is relatively easy to over-rotate the insert with respect to the plastic part, thereby stripping the female threads in the opening in the plastic part. Consequently, the attachment of a second part to the plastic part may not be satisfactory.
An object of the present invention is to remedy the problem of over-rotation of the insert within the plastic part. The present invention modifies the insert to make it significantly more difficult to over-rotate the insert within the plastic part. The present invention may also modify the plastic part in a similar manner to further resist over-rotation of the insert. These modifications remedy the over-rotation problem commonly present with the conventional insert. The invention allows a blow molded plastic part to join to a second part. The second part can be made of wood, metal or another material.
The present invention uses an insert to join a first part to a second part. The insert has a longitudinal body, the outer surface of the longitudinal body having male threads. An annular flange is provided on one end of the longitudinal body, and there is a threaded hole in the center of the longitudinal body. The annular flange has an inner circumference defined by where the longitudinal body and the annular flange meet. The annular flange also has an outer circumference. Protrusions and recesses alternate in a radial pattern around the annular flange. The protrusions and recesses extend axially inward between the outer and inner circumferences of the annular flange. The insert is threaded into an opening in the first part, which is a blow molded plastic part. The protrusions and recesses are on the side of the flange that faces the first part upon installation.
The second part is secured to the first part with a threaded fastener. The threaded fastener is secured to the threaded hole in the insert, thereby attaching the first part to the second part.
The annular flange on the insert has a larger diameter than the conventional insert. The larger diameter allows for greater resistance to over-rotation of the insert within the plastic part. The threads on the outside of the longitudinal body of the insert may be discontinuous and/or coarse.
The present invention may also include modifications to the opening in the blow molded plastic part. The blow molded plastic part of the present invention has a hole and a counter bore hole. The hole in the plastic part may be threaded to receive the insert, or the hole may be un-threaded. The blow molded plastic part of the present invention further includes protrusions and recesses on the counter bore hole. The protrusions and recesses alternate around the counter bore hole. The protrusions and recesses are in the opposite pattern of the protrusions and recesses on the annular flange of the insert. When the insert is threaded into the opening in the blow molded plastic part, the recesses and protrusions on the annular flange interlock with the recesses and protrusions in the counter bore hole, resisting over-rotation of the insert relative to the plastic part. The diameter of the counter bore hole is large enough to fit the annular flange of the insert. Use of a larger diameter counter bore hole and a larger annular flange on the insert results in greater resistance to over-rotation in comparison to the conventional insert.
The plastic part with the modified opening attaches to a second part with a threaded fastener. The threaded fastener threads into the hole in the insert, thereby securing the second part to the plastic part.
The present invention also includes a method for attaching a first blow molded part to a second part. The method includes providing an insert, where the insert has a longitudinal body with a centered threaded hole and male threads on the outside. An annular flange is on one end of the longitudinal body, the annular flange has protrusions and recesses alternating around in a radial pattern.
The method further includes providing a blow molded plastic part with an opening. The opening has a threaded hole and a counter bore hole. The counter bore hole includes protrusions and recesses alternating in a radial pattern around the counter bore hole.
The method further includes inserting the insert into the threaded opening, and turning the insert until the protrusions and recesses on the annular flange interlock with the protrusions and recesses on the counter bore hole. Then attaching a second part to the blow molded part with a threaded fastener, where the threaded fastener is threaded into the threaded hole in the insert.
A second embodiment of the method for securing a first blow molded part to a second part is, manufacturing the insert with protrusions and recesses as discussed above, manufacturing a plastic part with a female threaded opening, inserting the insert into the opening, turning the insert until the protrusions and recesses on the annular flange interact with the plastic part. Then attaching a second part to the blow molded part with a threaded fastener, where the threaded fastener is threaded into the threaded hole in the insert.
As the inventive metal insert is rotated into the opening in the inventive plastic part and approaches full insertion, the radial spoke-like protrusions on the underside of the inventive metal insert interact with the radial spoke-like protrusions in the recess surrounding the opening of the inventive plastic part, thereby inhibiting the inventive metal insert from being over-rotated and thereby inhibiting stripping out of the opening in the inventive plastic part. The larger diameter of the annular flange of the inventive metal insert allows for the spoke-like protrusions of the annular flange and of the recess surrounding the opening of the inventive plastic part to be larger (i.e., to extend out to a further degree), thereby further enhancing their interaction and further inhibiting over-rotation.
The invention and its particular features and advantages will become more apparent from the following detailed description considered with reference to the accompanying drawings.
The present invention modifies a conventional insert to remedy a common problem of over-rotation within blow molded plastic parts. The inserts make it possible to attach a blow molded plastic part to another part using conventional threaded fasteners. But, when the insert is over-rotated, the threads in the blow molded plastic part are stripped, causing an unsatisfactory connection between the insert and the blow molded part. This unsatisfactory connection between the insert and the blow molded part further causes an unsatisfactory connection between the blow molded part and a second part to be joined by conventional fasteners.
Although the invention has been described with reference to a particular arrangement of parts, features and the like, these are not intended to exhaust all possible arrangements or features, and indeed many other modifications and variations will be ascertainable to those of skill in the art.
Number | Name | Date | Kind |
---|---|---|---|
280125 | Brauchler | Jun 1883 | A |
2343143 | Gill | Feb 1944 | A |
2444145 | Rosan | Jun 1948 | A |
3279519 | Neuschotz | Oct 1966 | A |
3280874 | Rosan | Oct 1966 | A |
3803667 | Rose | Apr 1974 | A |
4125051 | Herkes | Nov 1978 | A |
4223585 | Barth et al. | Sep 1980 | A |
4712955 | Reece et al. | Dec 1987 | A |
4836729 | Bisping et al. | Jun 1989 | A |
4844139 | John | Jul 1989 | A |
5039262 | Giannuzzi | Aug 1991 | A |
5190425 | Wieder et al. | Mar 1993 | A |
5238342 | Stencel | Aug 1993 | A |
5347078 | Eckels | Sep 1994 | A |
6439817 | Reed | Aug 2002 | B1 |
6530731 | Wheeler | Mar 2003 | B2 |
6592311 | Wojciechowski | Jul 2003 | B2 |
6637994 | Leistner | Oct 2003 | B2 |
6784597 | Hess et al. | Aug 2004 | B1 |
7124492 | Wojciechowski et al. | Oct 2006 | B2 |
7278341 | Novin et al. | Oct 2007 | B1 |
7318696 | Babej | Jan 2008 | B2 |
7322273 | Rafn | Jan 2008 | B2 |
7465136 | Nagayama | Dec 2008 | B2 |
7674081 | Selle | Mar 2010 | B2 |
7731464 | Nagayama | Jun 2010 | B2 |
7815406 | Babej | Oct 2010 | B2 |
8226339 | Neri | Jul 2012 | B2 |
8261422 | Babej | Sep 2012 | B2 |
8596668 | Van Bregmann, Jr. | Dec 2013 | B2 |
9028185 | Eggers | May 2015 | B2 |
9175715 | Babej | Nov 2015 | B2 |
9297405 | Diehl | Mar 2016 | B2 |
20030099525 | Michels | May 2003 | A1 |
20050053449 | Grubert et al. | Mar 2005 | A1 |
20050095078 | Makino | May 2005 | A1 |
20050123379 | Barina et al. | Jun 2005 | A1 |
20060078402 | Barnsdale | Apr 2006 | A1 |
20060137166 | Babej | Jun 2006 | A1 |
20080193256 | Neri | Aug 2008 | A1 |
20080240883 | Walling | Oct 2008 | A1 |
20090080998 | Nagayama | Mar 2009 | A1 |
20100303581 | Eggers | Dec 2010 | A1 |
20120025490 | Van Bregmann, Jr. | Feb 2012 | A1 |
20120308329 | Babej | Dec 2012 | A1 |
20150233411 | Eggers | Aug 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20150233411 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
61182950 | Jun 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12692959 | Jan 2010 | US |
Child | 14705269 | US |